Lecture 14
JavaScript Events

Instructor: Sudad H. Abed
Desgined By: Dabin Ding
UCM

<>

OBJECTIVES

In this chapter you'll:

m Learn the concepts of events, event handlers and event bubbling.

n Create and register event handlers that respond to mouse and keyboard events.
m Use the event object to get information about an event.

m Recognize and respond to many common events.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

13.1 Introduction

13.2 Reviewing the Toad Event

13.3 Event mousemove and the event Object
13.4 Rollovers with mouseover and mouseout

13.5 Form Processing with focus and blur

13.6 More Form Processing with submit and reset
13.7 Event Bubbling

13.8 More Events

13.9 Web Resource

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

=
13.1 Introduction

» JavaScript events
= allow scripts to respond to user interactions and
modify the page accordingly
» Events and event handling

= help make web applications more dynamic and
interactive

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<
13.2 Reviewing the 1oad Event

» The window object’s Toad event fires when
the window finishes loading successfully
(i.e., all its children are loaded and all
external files referenced by the page are
loaded)

» Every DOM element has a Toad event, but
it's most commonly used on the window
object.

» The next example reviews the Toad event.

» The Toad event’s handler creates an interval
timer that updates a span with the number
of seconds that have elapsed since the
document was loaded. The document’s

paragraph contains the span.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

<!DOCTYPE html>

I

2

3 <!-- Fig. 13.1: onload.html -->

4 <!-- Demonstrating the load event. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>load Event</title>

9 <link rel = "stylesheet” type = "text/css” href = "style.css">
10 <script src = "load.js"></script>

1 </head>

12 <body>

13 <p>Seconds you have spent viewing this page so far:
14 0</p>

15 </body>

16 </html>

Fig. 13.1 | Demonstrating the window’s Toad event. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<

©) load Event
€ C O file:///C:/books/2011/W: ¥

Seconds you have spent viewing this page so far: 18

Fig. 13.1 | Demonstrating the window’s Toad event. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

I // Fig. 13.2: load.js

2 // Script to demonstrate the load event.

3 var seconds = 0;

4

5 // called when the page loads to begin the timer
6 function startTimer()

7T {

8 window.setInterval("updateTime()", 1000);
9 } // end function startTimer

10

Il // called every 1000 ms to update the timer
12 function updateTime()

13

14 ++seconds;

15 document.getElementById("soFar™).innerHTML = seconds;
16 } // end function updateTime

17

18 window.addEventListener("load”, startTimer, false);

Fig. 13.2 | Script that registers window's Toad event handler and
handles the event.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

13.2 Reviewing the 1oad Event o

(Cont.)

» An event handler is a function that responds to an
event.

» Assigning an event handler to an event on a DOM
node is called registering an event handler

» Method addEventListener can be called multiple
times on a DOM node to register more than one
event-handling method for an event.

» It’s also possible to remove an event listener by
calling removeEventListener with the same
arguments that you passed to addEventListener
toregister the event handler.

» If a script.in the head _atteths to get a_.DOM node
for an HTML element in the body, getElementById
returns null because the body has not yet loaded

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.
AR

13.2 Reviewing the Toad Event o

(Cont.)

» Two models for registering event handlers
= Inline model treats events as attributes of HTML elements
= Traditional model assigns the name of the function to the event property of a DOM

node

» The inline model places calls to JavaScript functions directly in
HTML code.

» The following code indicates that JavaScript function start
should be called when the body element loads:

<body onload = "start(Q)">

» The traditional model uses a property of an object to specify
an event handler.

» The following JavaScript code indicates that function start
should be called when document loads:

document.onload = "start()";

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

13.3 Event mouseMove and the event <k

Object

» mousemove event occurs whenever the user moves the mouse
over the web page

» The next example creates a simple drawing program that
allows the user to draw inside a table element in red or blue
by holding down the Shift key or Ctr/ key and moving the

mouse over the box.

= ctrlKey property contains a boolean which reflects whether the Ctr/key was pressed
during the event

= shiftkey property reflects whether the Shift key was pressed during the event

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

I <!DOCTYPE html>

2

3 <l-- Fig. 13.3: draw.htm] -->

4 <!-- A simple drawing program. -->

5 <html>

6 <head>

7 <meta charset="utf-8">

8 <title>Simple Drawing Program</title>

9 <link rel = "stylesheet” type = "text/css” href = "style.css">
10 <script src = "draw.js"></script>

1 </head>

12 <body>

13 <table id = "canvas'>

14 <caption>Hold Ctrl (or Control) to draw blue.
15 Hold Shift to draw red.</caption>

16 <tbody id = "tablebody"></tbody>

17 </table>

18 </body>

19 </html>

Fig. 13.3 | Simple drawing program. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

Siteymd o G
Shift key and () Simple Drawing Program

moves the mouse 2 C Ofiles//Ciie| € LI RN

to draw in red. Hold Ctrl (or Control) to draw biue. Hold Shift to draw red.

NOUSE,

Fig. 13.3 | Simple drawing program. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

b) User holds the ﬁ
Ctrl key and (©) simple Drawing Program

moves the mouse 2 C Ofie//c @B = & QE A

to draw in blue. Hold Cirl (o Controf) to draw blue. Hold Shift to draw red.

M OUSE

events

Fig. 13.3 | Simple drawing program. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<

I // Fig. 13.4: draw.js

2 // A simple drawing program.

3 // initialization function to insert cells into the table
4 function createCanvas()

5 {

6 var side = 100;

7 var thody = document.getElementById("tablebody");
8

9 for (var i = 0; i < side; ++1)

10

1 var row = document.createElement("tr");

12

13 for (var j = 0; j < side; ++j)

14 {

15 var cell = document.createElement("td");
16 row.appendChild(cell);

17 } // end for

18

19 tbody.appendChild(row);

20 } // end for

21

Fig. 13.4 | JavaScript code for the simple drawing program. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

22 // register mousemove listener for the table

23 document.getElementById("canvas").addEventListener(
24 "mousemove’, processMouseMove, false);

25 } // end function createCanvas

26

27 // processes the onmousemove event
28 function processMouseMove(e)

29

30 if (e.target.tagName.toLowerCase() == "td")

31 {

32 // turn the cell blue if the Ctrl key is pressed
33 if (e.ctriKey)

34

35 e.target.setAttribute("class", "blue");

36 } // end if

37

38 // turn the cell red if the Shift key 1is pressed
39 if (e.shiftKey)

40 {

41 e.target.setAttribute("class”, "red");

42 } // end if

43 } // end if

44 } // end function processMouseMove

45

46 window.addEventListener("load”, createCanvas, false);
Fig. 13.4 | JavaScript code for the simple drawing program. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

Property Description

altkey This value is true if the Al key was pressed when the event fired.

cancelBubble Set to true to prevent the event from bubbling. Defaults to false.
(See Section 13.7, Event Bubbling.)

clientX and clienty The coordinates of the mouse cursor inside the client area (i.e., the
active arca where the web page is displayed, excluding scrollbars,
navigation buttons, etc.).

ctrikey This value is true if the Ct/ key was pressed when the event fired.

keyCode The ASCII code of the key pressed in a keyboard event. See
Appendix D for more information on the ASCII character set.

screenX and screenY The coordinates of the mouse cursor on the screen coordinate sys-
tem.

shiftkey This value is true if the Shiff key was pressed when the event fired.

target The DOM object that received the event.

type The name of the event thar fired.

Fig. 13.5 | Some event-object properties.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

13.4 Rollovers with mouseover and =k

mouseout

» When the mouse cursor enters an element, an
mouseover event occurs for that element

» When the mouse cursor leaves the element, a
mouseout event occurs for that element

» Creating an Image object and setting its src
property preloads the image

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

1
2
3
4
5
6
7
8
9

19
Fig. 13.6 | HTMLS5 document to demonstrate mouseover and
mouseout. (Part | of 6.)

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

<!DOCTYPE html>

<>

<!-- Fig 13.6: mouseoverout.htm] --»>
<!-- Events mouseover and mouseout. -->
<html>
<head>
<meta charset = "utf-8">
<title>Events mouseover and mouseout</title>
<link rel = "stylesheet” type = "text/css" href = "style.css">
<script src = "mouseoverout.js'></script>
</head>
<body>

<hl><img src = "headingl.png” id = "heading"

alt =

'Heading Image"></hl>

<p>Can you tell a color from its hexadecimal RGB code
value? Look at the hex code, guess its color. To see
what color it corresponds to, move the mouse over the

hex code.
cell will

<div>

<1i
<1i
<1i
<1i
<1i
<14
<1i
<11
<1i
<1i
<1i
(.l.i
<1i
<14
<1i
<14

</d'i\o'>
</body>
</html>

Moving the mouse out of the hex code's table
display the color name.</p>

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

"Black">#000000</T1>
"Blue">#0000FF</11i>

"Magenta">#FFOOFF</Ti>
id = "Gray">#808080</11>
id = "Green">#008000</11>
id = "Lime">#00FF00</11i>
id = "Maroon">#800000</11>
id = "Navy">#000080</114>
id = "011ive">#808000</11>
id = "Purple">#800080</11>
id = "Red">#FF0000</11i>

id = "Silver">#C0C0C0</11>
id = "Cyan">#00FFFF</14>
id = "Teal">#008080</114>
id = "Yellow">#FFFF00</11>
id = "White">#FFFFFF</14>

Fig. 13.6 | HTML5 document to demonstrate mouseover and
mouseout. (Part 2 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

10

<

a) The page loads with the blue heading image and all the hex codes in black.

() Events mouseover and mo

€ C | O file///C/books/201/W3HYY €& @ =2 & & @ A

Blueimage —— Hax Codes

Can you tell a color from its hexadecimal RGB code vahue? Look at the hex code,
guess its color. To see what color it corresponds to, move the mouse over the hex
code. Moving the mouse out of the hex code's table cell wil display the color name.

#000000 #0000FF #EFOOFF #808080
#008000 #00FFO0 #800000 #000080
#808000 #800080 #FF0000 #cococo
#OOPFFE #008080 #FFFPOO WPEEPEE

Fig. 13.6 | HTML5 document to demonstrate mouseover and
mouseout. (Part 3 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

b) The heading image switches to an image with green text when the mouse rolls over it.

(® Events mouseover and mo

€ 5 C | Ofile///C/books/2011/W3HYY & @ =2 & & A

Green image —f— Box[}c«l..

Can you tell a color from its hexadecimal RGB code value? Look at the hex code,
guess its color. To see what color it corresponds to, move the mouse over the hex
code. Moving the mouse out of the hex code’s table cell will display the color name.

#000000 #0000FF #FFOOFF #808080
#008000 #00FFO0 #800000 #000080
#808000 #800080 #FP0000 #cococo
#OOFEFF #008080 #FFFFO0 WFFFFEF

Fig. 13.6 | HTML5 document to demonstrate mouseover and
mouseout. (Part 4 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

11

<

c) When mouse rolls over a hex code, the text color changes to the color represented by
the hex code. Notice that the heading image has become blue again because the mouse
is no longer over it.

(® Events mouseover and mo:

€ 2 C | Ofiles//C/oooks2011/W3HY | & T =2 & & E A

Hex Codes

Can you tell a color from its hexadecimal RGB code vahe? Look at the hex code,
guess its color. To see what color it corresponds to, move the mouse over the hex

code. Moving the mouse out of the hex code’s table cell will display the color name.
Text now —_|

displayed in
#000000 |nnnn§t #FFOOFF #808080
blue #008000 #O00FFO0 #800000 #000080
#808000 #800080 #FF0000 #CoCoCo
#008080 #FFFFO0 #FFFFFF

Fig. 13.6 | HTML5 document to demonstrate mouseover and
mouseout. (Part 5 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

d) When the mouse leaves the hex code’s table cell, the text changes to the name of the color.

(©) Events mouseover and mo

€ 5 C | Ofile///C/oooks/2011/W3HYr & @ = & QE A

Hex Codes

Can you tell a color from its hexadecimal RGB code value? Look at the hex code,
guess its color. To see what color it corresponds to, move the mouse over the hex
«code. Moving the mouse out of the hex code’s table cell will display the color name.

#000000 Blue W#FFOOFF #808080
#008000 #00FF00 #800000 #000080
#808000 #800080 #FF0000 #cococo
WOOPFEP #008080 WEEFFOO WEPFFPF

Fig. 13.6 | HTML5 document to demonstrate mouseover and
mouseout. (Part 6 of 6.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

12

<

Performance Tip 13.1

Preloading images used in rollover effects prevents a
delay the first time an image is displayed.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

// Fig 13.7: mouseoverout.js

1

2 // Events mouseover and mouseout.

3 imagel = new Image();

4 imagel.src = "headingl.png";

5 image2 = new Image();

6 1image2.src = "heading2.png";

7

8 function mouseOver(e)

9 {

10 // swap the image when the mouse moves over it

11 if (e.target.getAttribute("id" == "heading")

12

13 e.target.setAttribute("src", image2.getAttribute("src"));
14 } // end if

15

16 // if the element is an 1i, assign its id to its color
17 // to change the hex code's text to the corresponding color
18 if (e.target.tagName.toLowerCase() == "1i")

19 {

20 e.target.setAttribute("style",

21 "color: " + e.target.getAttribute("id"));

22 } // end if

23 } // end function mouseOver
Fig. 13.7 | Processing the mouseover and mouseout events. (Part |
of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

24

25 function mouseOut(e)

26

27 // put the original image back when the mouse moves away
28 if (e.target.getAttribute("id") == "heading")

29 {

30 e.target.setAttribute("src", imagel.getAttribute("src"));
31 } // end if

32

33 // if the element is an 1i, assign its id to innerHTML
34 // to display the color name

35 if (e.target.tagName.tolLowerCase() == "1i")

36 {

37 e.target.innerHTML = e.target.getAttribute("id");
38 } // end if

39 } // end function mouseOut

40

41 document.addEventListener("mouseover', mouseOver, false);
42 document.addEventListener("mouseout”, mouseOut, false);

Fig. 13.7 | Processing the mouseover and mouseout events. (Part 2
of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

13.5 Form Processing with focus and ok

blur

» focus event fires when an element gains
focus
= i.e., when the user clicks a form field or uses the
Tab key to move between form elements
» bTlur fires when an element loses focus
= i.e., when another control gains the focus

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<

I <!DOCTYPE html>

2

3 <!l-- Fig. 13.8: focusblur.html -->

4 <!-- Demonstrating the focus and blur events. -->

5 <html>

6 <head>

7 <meta charset = "utf-8">

8 <title>A Form Using focus and blur</title>

9 <link rel = "stylesheet” type = "text/css" href = "style.css">
10 <script src = "focusblur.js"></script>

11 </head>

12 <body>

13 <form id = "myForm" action = ">

14 <p><label class = "fixed” for = "name">Name:</label>
15 <input type = "text" id = “name”

16 placeholder = "Enter name"></p>

17 <p><label class = "fixed" for = "email">E-mail:</label>
18 <input type = "email” 1id = "email”

19 placeholder = "Enter e-mail address's</p>

20 <p><label>Click here if you like this site

21 <input type = "checkbox" id = "like"></label></p>
22 <p><label for = "comments'>Any comments?</p>

23 <textarea id = "comments”

24 placeholder = "Enter comments here'></textarea>

Fig. 13.8 | Demonstrating the focus and b1ur events. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

25 <p><input id = "submit” type = "submit’>
26 <input id = "reset” type = "reset'></p>
27 </ form>
28 <p id = "helpText"></p>
29 </body>
30 </html>
a) The blue
message at the () AForm Using focus and b
bottom of the page file o B
instructs the user ¢ [Ofe | © B ¥ pEA
to enter a name Name: I |
when the Name: E-mail
field has the focus. Click here i you lke this site [
Any comments?

Enter your name in this input box. ——————————— help text in blue

Fig. 13.8 | Demonstrating the focus and bTur events. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<

b) The message
changes () AForm Using focus and bl

depending on C | ©files), 75| © = B & aQ
which feld has el Goe yE
focus—this Name:
window shows E-mail
the help text for Click here i you Hke this ke 7
the comments Ay 5
textarea.
I
4
Submit | | Reset
Enter any comments here that you'd like us to read.

Fig. 13.8 | Demonstrating the focus and b1ur events. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

I // Fig. 13.9: focusblur.js

2 // Demonstrating the focus and blur events.

3 wvar helpArray = ["Enter your name in this input box.",

4 "Enter your e-mail address in the format user@domain.",

5 "Check this box if you 1iked our site.",

6 "Enter any comments here that you'd 1ike us to read.",

7 "This button submits the form to the server-side script."”,
8 "This button clears the form.", "" 1;

9 wvar helpText;

10

Il // initialize helpTextDiv and register event handlers
12 function init(Q)

13

14 helpText = document.getElementById("helpText" };

15

16 // register listeners

17 registerListeners(document.getElementById("name™), 0);
18 registerListeners(document.getElementById("email™), 1);
19 registerListeners(document.getElementById("l1ike"), 2);
20 registerListeners(document.getElementById("comments™), 3);
21 registerListeners(document.getElementById("submit"), 4);
22 registerListeners(document.getElementById("reset”), 5);
23 } // end function init

24

Fig. 13.9 | Demonstrating the focus and b1ur events. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

25 // utility function to help register events
26 function registerListeners(object, messageNumber)

27

28 object.addEventListener("focus",

29 function() { helpText.innerHTML = helpArray[messageNumber]; },
30 false);

31 object.addEventListener("blur",

32 function() { helpText.innerHTML = helpArray[6]; }, false);
33 } // end function registerListener

34

35 window.addEventListener("load”, init, false);

Fig. 13.9 | Demonstrating the focus and bTur events. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

13.6 More Form Processing with submi@
and reset

» submit and reset events fire when a form is submitted or
reset, respectively

» The anonymous function executes in response to the user’s
submitting the form by clicking the Submit button or pressing
the Enter key.

» confirm method asks the users a question, presenting them

with an OK button and a Cancel button
= |If the user clicks OK, confirm returns true; otherwise, confirm returns false

» By returning either true or false, event handlers dictate
whether the default action for the event is taken

» If an event handler returns true or does not return a value,
the default action is taken once the event handler finishes
executing

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<

1 // Fig. 13.10: focusblur.js

2 // Demonstrating the focus and blur events.

3 wvar helpArray = ["Enter your name in this input box.",

4 "Enter your e-mail address in the format user@domain.",

5 "Check this box if you 1iked our site.",

6 "Enter any comments here that you'd 1ike us to read.",

T "This button submits the form to the server-side script.",
8 "This button clears the form.", ""];

9 var helpText;

10

Il // initialize helpTextDiv and register event handlers
12 function init()

13 {

14 helpText = document.getElementById("helpText”);

15

16 // register listeners

17 registerListeners(document.getElementById("name”™), 0);
18 registerListeners(document.getElementById("email™), 1);
19 registerListeners(document.getElementById("1ike"), 2);
20 registerListeners(document.getElementById("comments™), 3);
21 registerListeners(document.getElementById("submit"), 4);
22 registerListeners(document.getElementById("reset”), 5);
23

24 var myForm = document.getElementById("myForm™);

Fig. 13.10 | Demonstrating the focus and blur events. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

25 myForm.addEventListener("submit"”,

26 function()

27 {

28 return confirm("Are you sure you want to submit?");
29 }, // end anonymous function

30 false);

31 myForm.addEventListener("reset”,

32 function()

33

34 return confirm("Are you sure you want to reset?");
35 }, // end anonymous function

36 false);

37 } // end function init

38

39 // utility function to help register events
40 function registerListeners(object, messageNumber)

41

42 object.addEventListener("focus",

43 function() { helpText.innerHTML = helpArray[messageNumber]1; },
44 false);

45 object.addEventListener("blur",

46 function() { helpText.innerHTML = helpArray[6 1; }, false);
47 Y} // end function registerListener

48

49 window.addEventListener("load”, init, false);

Fig. 13.10 | Demonstrating the focus and b1ur events. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

(©) A Form Using focus and b
c Ofileyyve| & @@ = & GE A

Name: Harvey

E-mail deitel@deitel com

Click here if you like this site /!

Any comments?

Informative, Resource Centers are
helpful!|

Submyt | Reset

Enter any comments here that you'd like us to read

Fig. 13.10 | Demonstrating the focus and bTur events. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<
13.7 Event Bubbling

» Event bubbling

= The process whereby events fired on child elements
“bubble” up to their parent elements

= When an event is fired on an element, it is first
delivered to the element’s event handler (if any),
then to the parent element’s event handler (if any)

v If you intend to handle an event in a child
element alone, you should cancel the
bubbling of the event in the child element’s
event-handling code by using the
cancelBubble property of the event object

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

19

<

I <!DOCTYPE html>

2

3 <!-- Fig. 13.11: bubbling.html -->

4 <!-- Canceling event bubbling. -->

5 <html>

6 <head>

7 <meta charset="utf-8">

8 <title>Event Bubbling</title>

9 <script src = "bubbling.js">

10 </head>

1 <body>

12 <p id = "bubble">Bubbling enabled.</p>
13 <p id = "noBubble">Bubbling disabled.</p>
14 </body>

15 </html>

Fig. 13.11 | Canceling event bubbling. (Part | of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

a) User clicks the first
paragraph, for which (©) Event Bubbling

ling i led.
bubbling is enabled. pe C O files//Cbook: ¥z | € @ =2 & ‘gu Q

] »

BubblingJenabled.

]

Bubbling disabled. -

b Pargaph's e

handler causes an
alert. This will bubble.

1

handler causes
another alert, You clicked in the document.

because the event [7] Prevent this page from creating additional dialogs.
bubbles up to the

document.

Fig. 13.11 | Canceling event bubbling. (Part 2 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

d) User clicks the
second paragraph,
for which bubbling is
disabled.

e) Paragraph’s event
handler causes an
alert. The
document’s event
handler is not called.

<

() Event Bubbling

€« C ©file///C/oook Yy & @8 =2 @& V= IR

Bubbling enabled.

Bubbling flisabled. -

m

Javascript Alert

This will not bubble.

-

Fig. 13.11 | Canceling event bubbling. (Part 3 of 3.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

Common Programming Error 13.1

Forgetting to cancel event bubbling when necessary may
cause unexpected results in your scripts.

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

21

<

1 // Fig. 13.12: bubbling.js

2 // Canceling event bubbling.

3 function documentClick()

4 {

5 alert("You clicked in the document.");
6 } // end function documentClick

7

8 function bubble(e)

9 {

10 alert("This will bubble." J;

1 e.cancelBubble = false;

12 } // end function bubble

13

14 function noBubble(e)

15 {

16 alert("This will not bubble.");
17 e.cancelBubble = true;

18 } // end function noBubble

19

Fig. 13.12 | Canceling event bubbling. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

<>

20 function registerEvents()

21

22 document.addEventListener("click”, documentClick, false);
23 document.getElementById("bubble”).addEventListener(

24 "click", bubble, false);

25 document.getElementById("noBubble"”).addEventListener(

26 "click”, noBubble, false);

27 } // end function registerEvents

28

29 window.addEventListener("load”, registerEvents, false);

Fig. 13.12 | Canceling event bubbling. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

=
13.8 More Events

» The following slide lists some common events
and their descriptions. The actual DOM event
names begin with "on", but we show the
names you use with addEventListener here.

©1992-2012 by Pearson Education, Inc.
All Rights Reserved.

<>

Event Description

abort Fires when image transfer has been interrupred by user.

change Fires when a new choice is made in a select element, or when a
text input is changed and the element loses focus.

click Fires when the user clicks the mouse.

dblclick Fires when the user double clicks the mouse.

focus Fires when a form element gets the focus.

keydown Fires when the user pushes down a key.

keypress Fires when the user presses then releases a key.

keyup Fires when the user releases a key.

Toad Fires when an element and all its children have loaded.

mousedown Fires when a mouse button is pressed.

mousemove Fires when the mouse moves.

mouseout Fires when the mouse leaves an element.

mouseover Fires when the mouse enters an element.

Fig. 13.13 | Common events. (Part | of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

23

<>

Description

mouseup
reset

resize

select

submit

unload

Fires when a mouse button is released.
Fires when a form resets (i.e., the user clicks a reset button).

Fires when the size of an object changes (i.e., the user resizes a
window or frame).

Fires when a text selection begins (applies to input or tex-
tarea).

Fires when a form is submirred.

Fires when a page is about to unload.

Fig. 13.13 | Common events. (Part 2 of 2.)

©1992-2012 by Pearson Education, Inc. All
Rights Reserved.

24

