
Introduction

Programming languages :-

Interactions involving humans are most effectively carried out

through the medium of language . language permits the expression of

thoughts and ideas , and without it , communication as we know it
would be very difficult indeed .

In computer programming , programming language serves as

means of communication between the person with a problem and the
computer used to solve it . programming language is a set of symbols ,

words , and rules used to instruct the computer .

A hierarchy of programming languages based on increasing

machine independence include the following :-

1- machine language : is the actual language in which the

computer carries out the instructions of program . otherwise , " it is

the lowest form of computer language , each instruction in

program is represented by numeric cod , and numeric of addresses

are used throughout the program to refer to memory location in the
computer memory .

2- Assembly languages : is a symbolic version of a machine

language ,each operation code is given a symbolic code such a Add

, SUB ,. Moreover , memory location are given symbolic name , such

as PAY , RATE .

3-high - level language :Is a programming language where the

programming not require knowledge of the actual computing
machine to write a program in the language .H.L.L . offer a more

enriched set of language features such as control structures , nested

statements , block 

4- problem-oriented language : It provides for the expression of

problems in a specific application . Examples of such language are

SQL for Database application and COGO for civil engineering

applications .

Advantages of H.L.L over L.L.L include the following :

1- H.L.L are easier to learn then L.L.L

2- A programmer is not required to know how to convert data

from external from to internal within memory .

3- Most H.L.L offer a programmer a variety of control structures

which are not available in L.L.L

4- Programs written in H.L.L are usually more easily debugged

than L.L.L. equivalents.

5- Most H.L.L offer more powerful data structure than L.L.L.

6- Finally ,High level languages are relatively machine-

independent. Consequently certain programs are portable

Translator: High- Level language programs must be translated

automatically to equivalent machine- language programs .

A translator input and then converts a " source program" into an object or

target program . the source program is written in a source language and
the object program belong to an object language .

Source Translator Object

program program

1- If the source program is written in assembly language and the

target program in machine language .the translator is

called " Assembler "

2- If the source language is H.L.L. and the object language is L.L.L.

,then the translator is called " Compiler " .

3- If the source language is L.L.L. and the object language is H.L.L.,
then the translator is called "Decompiler"

Source Object Executing

Compiler Result

program program computer

- The time at which conversion of a source program to an object

program occurs is called " Compile time " .The object program is

executed at " Run time " ,note that the source program and data

are process at different time .

Another kind of translator ,called an " Interpreter " in which

processes an internal form of source program and data at the same

time . that is interpretation of the internal source from occurs at run

time and no object program is generated .

Interpreters

An interpreter is another way of implementing a programming

language. Interpretation shares many aspects with compiling. Lexing,

parsing and type-checking are in an interpreter done just as in a

compiler. But instead of generating code from the syntax tree, the

syntax tree is processed directly to evaluate expressions and execute

statements, and so on. An interpreter may need to process the same

piece of the syntax tree (for example, the body of a loop) many times

and, hence; interpretation is typically slower than executing a compiled

program. But writing an interpreter is often simpler than writing a

compiler and the interpreter is easier to move to a different machine, so

for applications where speed is not of essence, interpreters are often

used.

