

Intermediate Code Generation (IR)

IR is an internal form of a program created by the

compiler while translating the program from a H.L.L to

L.L.L.(assembly or machine code),from IR the back end of

compiler generates target code.

Although a source program can be translated directly into the

target language, some benefits of using a machine independent

IR are:

1. A compiler for different machine can be created by

attaching a back end for a new machine into an existing

front end.

2. Certain optimization strategies can be more easily

performed on IR than on either original program or L.L.L.

3. An IR represents a more attractive form of target code.

Intermediate Languages:-

1. Syntax Tree and Postfix Notation are tow kinds of

intermediate representations, for example a=b*-c+b*-c

= =

a + a +

* * *

b - b - b -

c c c

Syntax Tree DAG

• A DAG give the same information in syntax tree but in
compact way because common subexpressions are

identified.

• Postfix notation is a linearized representation of a syntax
tree, for example: a b c - * b c - * + =

• Two representation of above syntax tree are:

id b

*

id

-

id

•

•

b

c

=

id

+

•

•

•

a

•

•

*

id

-

id

•

•

b

c

•

0

1

2

3

4

5

6

7

8

9

10

id

-

*

id

id

-

*

+

id

=

.

..

c

1

0

b

c

5

4

3

a

9

..

..

2

6

7

8

..

..

1 2

2. Three-Address Code is a sequence of statements of the

general form :

X= Yop Z // op is binary arithmetic
operation

For example : x + y * z

t1 = y * z

t2 = x + t1

where t1 ,t2 are compiler generated temporary.

Types of three address code statement:-

1. Assignment statements of the form X= Yop Z (where

op is a binary arithmetic or logical operator).

2. Assignment instructions of the form X= op Y (op is

a unary operator).

3. Copy statements of the form X= Y. 4.

Unconditional jump (Goto L).
5. Conditional jump (if X relop Ygoto L).

6. Param X & Call P,N for procedure call and and

return Y, for example :

Param
Param

..

Param

Call

x1 x2

xn

P,n

7. Index assignments of the form X=Y[i] & X[i]=Y.

8. Address & Pointer Assignments

X= &Y

X= * Y

*X= Y

Example : a= b * -c + b * -c

t1 = - c

t2 = b * t1

t3 = - c

t4 = b * t3

t5 = t2 + t4

a = t5

Three address code
For syntax tree

t1 = - c

t2 = b * t1 t5

= t2 + t2

a = t5

Three address code
For DAG

Note: Three-address statements are a kin to assembly code

statements can have symbolic labels and there are statements for

flow of control.

Implementation of Three Address Code :-

In compiler , three-address code can be implement as

records, with fields for operator and operands.

1. Quadruples :- It is a record structure with four

fields:

• OP // operator

• arg1 , arg2 // operands

• result

2. Triples :- To avoid entering temporary into ST , we

might refer to a temporary value by position of the

statement that compute it . So three address can be

represent by record with only three fields:

• OP // operator

• arg1 , arg2 // operands

Example: a = b * -c + b * -c

i. By Quadruples

Position OP arg1

0 - c

1 * b

2 - c

3 * b

4 + t2

5 = t5

ii. By Triples

Position OP

0 -

1 *

2 -3

 *

4

 +

5 =

arg2 result

t1

t1 t2

t3

t3 t4

t4 t5

a

arg1 arg2

c

b (0)

c

b (2)

(1) (3)

a (4)

