

Code Optimization

Compilers should produce target code that is as good as can be

written by hand. This goal is achieved by program

transformations that are called " Optimization " . Compilers that

apply code improving transformations are called " Optimizing

Compilers ".

Code optimization attempts to increase program efficiency by

restructuring code to simplify instruction sequences and take

advantage of machine specific features:-

• Run Faster , or

• Less Space , or

• Both (Run Faster & Less Space).
The transformations that are provided by an optimizing compiler
should have several properties:-

1. A transformation must preserve the meaning of

program. That is , an optimizer must not change the

output produce by program for an given input, such

as division by zero.

2. A transformation must speed up programs by a

measurable amount.

Source Intermediate
Front End Code

Code Representation Generation

Target

Code

High-Level Mid-Level Low-Level

Optimization Optimization Optimization

Places for Optimization

This lecture concentrates on the transformation of intermediate

code (Mid-Optimization or Independent Optimization),this

optimization using the following organization:-

Front End

Optimizer

Code

Generation

Control Data

Flow Flow Transformations

Analysis Analysis

Organization of the Optimizer

This organization has the following advantages :-

1. The operations needed to implement high-level constructs

are made explicit in the intermediate code.

2. The intermediate code can be independent of the target

machine, so the optimizer does not have to change much if

the code generator is replaced by one for different
machine

Basic Blocks:-

The code is typically divided into a sequence of "Basic

Blocks". A Basic Block is a sequence of straight-line code, with

no branches " In " or " Out " except a branch "In" at the top of
block and a branch "Out" at the bottom of block.

• Set of Basic Block : The following steps are used to set
the Basic Block:

1. Determine the Block beginning:

i- The First instruction

ii- Target of conditional & unconditional

Jumps.

iii- Instruction follow Jumps.

Compilers Anbar University - Computer College
Principle ,Techniques, and Tools

2. Determine the Basic Blocks:

i-There is Basic Block for each Block beginning.

ii-The Basic Block consist of the Block beginning

and runs until the next Block beginning or

program end.

Example\\

1) i=0 2)

t=0

3) t=t+1

4) i=i+1

5) if I < 10 then goto 3

6) x=t

B1

B2

B3

1) i=0 2)

t=0

3) t=t+1

4) i=i+1

5) if I < 10 then goto 3

6) x=t

Basic Blocks

B1

1) i=0 2)

t=0

3) t=t+1

B2 4) i=i+1

5) if I < 10 then goto B2

6) x=t
B3

Control Flow

Data - Flow Analysis (DFA)

In order to do code optimization a compiler needs to

collect information about program as a whole and to distribute

this information to each block in the flow graph. DFA provides

information about how the execution of a program may

manipulate its data , and it provides information for global

optimization .

There are many DFA that can provide useful information

for optimizing transformations. One data-flow analysis
determines how definitions and uses are related to each other,

another estimates what value variables might have at a given

point, and so on. Most of these DFAs can be described by data
flow equations derived from nodes in the flow graph.

Reaching Definitions Analysis: All definitions of that variable,

which reach the beginning of the block, as follow:

1. Gen[B] : contains all definitions d:v= e , in block B that v

is not defined after d in B.

2. Kill[B] : if v is assigned in B , then Kill[B] contains all

definitions d:v= e,in block different from B.

3. In[B] : the set of definitions reaching the beginning of B.

In[B] =  Out[H] where H  Pred[B]

4. Out[B] : the set of definitions reaching the end of B.

Out[B] = Gen[B]  (In[B] - Kill[B])

Example

B2 d4 : b=

d1 : a=

d2 : b=

d3 : c=

d8 : a=

B1

B5

d5 : c=

d6 : b=

d7 : c=

B3

B4

Block Gen Kill

B1 d1d2d3 d4d5d6d7d8

B2 d4 d2d6

B3 d5 d3d7

B4 d6d7 d2d3d4d5

B5 d8 d1

In Out

• d1d2d3
d1d2d3 d1d3d4

d1d2d3d6d7 d1d2d5d6

d1d2d5d6 d1d6d7

d1d2d3d4d5d6 d2d3d4d5d6d8

Loop Information: The simple iterative loop which causes the

repetitive execution of one or more basic blocks becomes the

prime area in which optimization will be considered .Here we

determine all the loops in program and limit headers &

preheaders for every loop, for example:

B1

B2

B3

Loop No.

1

2

3

Header

B2

B2

B3

Preheader

B1

B1

B2

Blocks

2-3-4-5-2

2-2

3-3

B4
Loop Information

B5 B6

Flow Graph

