

Code Generation

In computer science, code generation is the process by

which a compiler's code generator converts some internal
representation of source code into a form(e.g., machine

code)that can be readily executed by a machine.

Issues in the Design of a Code Generator:-

1. Input to the Code Generator :The input to the code

generator consists of the intermediate representation of the

source program(Optimized IR),together with information

in ST that is used to determine the Run Time Addresses of

the data objects denoted by the names in IR. Finally, the

code generation phase can therefore proceed on the

assumption that its input is free of the errors.

2. Target Programs : The output of the code generator is the

target program. The output code must be Correct and of

high Quality, meaning that it should make effective use of

the resources of the target machine. Like the IR ,this

output may take on a variety of forms:

a. Absolute Machine Language // Producing this form

as output has the advantage that it can placed in a

fixed location in memory and immediately executed.

A small program can be compiled and executed

quickly.

b. Relocatable Machine Language // This form of the

output allows subprograms to be compiled

separately. A set of relocatable object modules can
be linked together and loaded for execution by

linking-loader.

3. Memory Management : Mapping names in the source

program to addresses of data objects in run time memory.

This process is done cooperatively by the Front-end &

code generator.

4. Major tasks in code generation : In addition to the basic
conversion from IR into a linear sequence of machine

instructions, a typical code generator tries to optimize the

generated code in some way. The generator may try to use

faster instructions, use fewer instructions ,exploit available

registers ,and avoid redundant computations. Tasks which

are typically part of a compiler's code generation phase

include:

i. Instruction selection: Is a compiler optimization

that transforms an internal representation of program

into the final compiled code(either Binary or

Assembly).The quality of the generated code is

determined by its Speed & Size. For example, the three

address code (x=y+z) can be translated into:

MOV y,R0

ADD z,R0

MOV R0,x

If three-address code is :

a=b+c

d=a+e

then the target code is :

MOV b,R0

ADD c,R0

MOV R0,a

MOV a,R0

ADD e,R0

MOV R0,d

Finally, A target machine with "Rich" instruction set
may be provide several ways of implementing a given

operation. For example, if the target machine has an

"increment" instruction (INC) ,then the IR a=a+1
may be implemented by the single instruction (INC a)

rather than by a more obvious sequence :

MOV a,R0

ADD #1,R0

MOV R0,a

ii. Instruction Scheduling : In which order to put

those instructions. Scheduling is a speed optimization.

The order in which computations are performed can

effect the efficiency of the target code, because some

computation orders require fewer registers to hold

intermediate results than others.

iii. Register Allocation : Is the process of

multiplexing a large number of target program
variables onto a small number of CPU registers. The

goal is to keep as many operands as possible in

registers to maximize the execution speed of software
programs (instructions involving register operands

are usually shorter and faster than those involving

operands in memory).

Hitch your Wagon to a Star

References

1. A.Aho,R.Sethi,J.D.Ullman," Compilers- Principles, Techniques and
Tools"Addison-Weseley,2007

2.

3.

4.

J.Tremblay,P.G.Sorenson,"The Theory and Practice of Compiler
Writing ",McGRAW-HILL,1985

W.M.Waite,L.R.Carter,"An Introduction to Compiler
Construction",Harper Collins,New york,1993

A.W.Appel,"Modern Compiler Implementation in ML"

,CambridgeUniversity Press,1998

5. Internet Papers

