

What is a compiler?

In order to reduce the complexity of designing and building

computers, nearly all of these are made to execute relatively

simple commands (but do so very quickly).

A program for a computer must be built by combining these

very simple commands into a program in what is called

machine language. Since this is a tedious and error- prone

process most programming is, instead, done using a high-level

programming language. This language can be very different

from the machine language that the computer can execute, so

some means of bridging the gap is required. This is where the

compiler comes in.

A compiler translates (or compiles) a program written in a

high-level programming language(source Language) that is

suitable for human programmers into the low-level machine

language(target language) that is required by computers. During

this process, the compiler will also attempt to spot and report

obvious programmer mistakes.

Compiled programs usually run faster than interpreter

ones because the overhead of understanding and translating

has already been done .However ,Interpreters are frequent

easier to write than Compilers , and can more easily support

interactive debugging of program .

• Compared to machine language, the notation used by

programming languages is closer to the way humans think

about problems.

• The compiler can spot some obvious

programming mistakes.

Compilation

Compilation refers to the compiler's process of translating

a high-level language program into a low-level language

program. This process is very complex; hence, from the logical

as well as an implementation point of view, it is customary to

partition the compilation process into several phases, which are

nothing more than logically cohesive operations that input one

representation of a source program and output another

representation. A typical compilation, broken down into phases,

is shown in the figure

1. Lexical Analyzer: whose purpose is to separate the

incoming source code into small pieces (tokens) , each

representing a single atomic unit of language, for instance

"keywords", "Constant "," Variable name" and "Operators".

2. Syntax Analyzer : whose purpose is to combine the tokens

into well-formed expressions (statements) and program and it

check the syntax error

3. Semantic Analyzer: whose function is to determine the

meaning of the source program.

4. Intermediate Code Generator: at this point an internal

form of a program is usually created. For example:

(+,a,b,t1)

Y=(a+b)*(c+b) (+,c,d,t2)

(*,t1,t2,t3)

5.Code Optimizer :Its purpose is to produce a more efficient

object program (Run faster or take less space or both)

6.Code Generator: Finally, the transformed intermediate

representation is translated into the target language.

The grouping of phases : the phases of compiler are

collection into :

1. Front-End :It consists of those phases that depend on the

source language and are largely independent of the target

machine ,those include : (lexical analysis ,syntax analysis

, semantic analysis, and intermediate code generation)

2. Back-End : Includes those phases of compiler that depend

on the target machine and not depend on the source language .

these include:(code optimization phase and code generation

phase)

Why learn about compilers?

Few people will ever be required to write a compiler for a

general-purpose language like C, Pascal or SML. So why do

most computer science institutions offer compiler courses and

often make these mandatory?

Some typical reason are:

1. It is considered a topic that you should know in order to be

"well-cultured" in computer science.

2. A good craftsman should know his tools, and compilers are

important tools for programmers and computer scientists.

3. The techniques used for constructing a compiler are useful

for other purposes as well.

4. There is a good chance that a programmer or computer

scientist will need to write a compiler or interpreter for a domain-

specific language.

