
Lexical Analyzer

The analysis of source program during compilation is often

complex . The construction of compiler can often be made easier if

the analysis of source program is separated into two parts , with one

part identifying the low - level language constructs , such as

variable names , keyword , labels , and operations , and the

second part determine the syntactic organization of the program .

So, when it scans the source program, it will be able to return a

suitable token whenever it encounters a token lexeme. (Lexeme

refers to the sequence of characters in the source program that is

matched by language's character patterns that specify identifiers,

operators, keywords, delimiters, punctuation symbols, and so

forth.) Therefore, the lexical analyzer design must:

1. Specify the token of the language, and

2. Suitably recognize the tokens.

We cannot specify the language tokens by enumerating each and

every identifier, operator, keyword, delimiter, and punctuation

symbol; our specification would end up spanning several pages—

and perhaps never end, especially for those languages that do not

limit the number of characters that an identifier can have.

Therefore, token specification should be generated by specifying

the rules that govern the way that the language's alphabet

symbols can be combined, so that the result of the combination

will be a token of that language's identifiers, operators, and

keywords. This requires the use of suitable language-specific

notation.

Lexical Analyzer : the job of the lexical analyzer , or scanner , is

to read the source program ,one character at a time and produce as

output a stream of tokens . the tokens produced by the scanner

serve as input the next phase , parser . Thus , the lexical analyzers

job is the translate the source program into a form more

conductive the recognition by the parser .

Tokens : are used to represent low - level program units such as:-

- Identifiers , such as sum , value , and X .

- Numeric literals , such as 123 and 1.35e02 .

- Operators , such as +,*,&&, < = , and % .

- Keywords , such as if , else and returns.

- Many other language symbols .

There are many ways we could represent the tokens of a

programming language . one possibility is to use a 2- duple of the

form < token - class, value > .

For example :-

- The identifiers sum and value may be represented as :

< ident , " sum " >

< ident , " value" >

- The numeric literals 123 and 1.35E02 may be represented

as :

< numericliteal , " 123" >

< numericliteral , " 1.35E02" >

- The operators > = and + may be represented as :

< relop , " >= " >

< addop , " + " >

- The scanner may take the expression x = 2+ f(3) , and

produce the following stream of tokens :

< ident , " x " > < lparent , " (" >

< assign - op , " = " > < numlit , " 3 " >

< numlit , " 2 " > < rporent, ") " >

< addop , " + " > < semicolon , " ; " >

< ident ," f ">

Interaction of Scanner with Parser :

Using only parser can become costly in terms of time and

memory requirements .The complexity and time can be

reduced by using a scanner .

The separation of scanner and parser can have other

advantages, scanning characters is typically slow in compilers

and separating it from parsing particular emphasis can be given

to making the process efficient .

Therefore, The scanner usually interacts with the parser in one

of

two ways :-

1- The scanner may process the source program in separate

pass before parsing begins . Thus the tokens are stored in

file or large table .

2- The second way involves an interaction between the

parser and scanner , the scanner called by the parser

whenever the next token in the source program is required .

The latter approach is the preferred method of operation ,

since an internal form of the complete source program does not

need to be constructed and stored in memory before parsing can

begin .

Note : The lexical analyzer may also perform certain secondary

tasks at the user interface : such task is stripping out from source

program comments and white space in the form of bank , tab and

new line characters.

Lexical Errors : the lexical phase can detect errors where the

characters remaining in the input do not form any token of the

language for example if the string " fi " is encountered in ' C '

program :-

fi (A = = f(x)) ...

A lexical analyzer cannot tell whether " fi " is misspelling of the

keyword " if " or an undeclared function identifier since " fi " is a

valid identifier , the lexical must return the token for an identifier

and let some other phase of compiler handle any error. The

possible error - recovery actions are :

1.

2.

3.

4.

Deleting an extraneous character .

Inserting a missing character .

Replacing an incorrect character by a correct char .

Transposing two adjacent characters .

Finally , the scanner breaks the source program into tokens .

the type of token is usually represented in the form of unique internal

representation number or constant. For example, a variable name may

be represented by 1 ,a constant by 2 , a label by 3 and so on .

The scanner then returns the internal type of token and some time the

location in the table where the tokens are stored . Not all tokens may be

associated with location , while variable name and constant are stored in

table , operators , for example , may not be .

