
Symbol Table (ST)

A symbol table is a data structure containing a record for each

identifier, with fields for attributes of the identifier. The data structure

allows us to find the record for each identifier quickly and to store or

retrieve data from that record quickly.

When an identifier in source program is detected by the lexical

analyzer, the identifier is entered into ST. however, the attributes of an

identifier cannot be determined during lexical analysis, the remaining

phases enter information about identifier into ST and then use this

information in various ways.

For efficiency, our choice of the implementation data structure for the

symbol table and the organization its contents should be stress a

minimal cost when adding new entries or accessing the information on

existing entries. Also, if the symbol table can grow dynamically as

necessary, then it is more useful for a compiler.

 We need an empty symbol table, in which no name is

defined.

 We need to be able to bind a name to an object. In case the name

is already

defined in the symbol table, the new binding takes precedence

over the old.

 We need to be able to look up a name in a symbol table to find the

object the name is bound to. If the name is not defined in the symbol

table, we need to be told that.

 We need to be able to enter a new scope.

 We need to be able to exit a scope, reestablishing the symbol table

to what it was before the scope was entered.

Symbol Table Contents :-

A symbol table is most often conceptualized as series of

rows, each row containing a list of attributes values that are associated

with a particular variable. The kinds of attributes appearing in ST are

dependent to some degree on the nature of language for which compiler

is written. For example, a language may be typeless, and therefore the

type attribute need not appear in ST .The following list of attribute are

not necessary for all compilers, however, each should be considered for

a particular compiler:-

1- Variable Name: A variable's name most always reside in

the ST. major problem in ST organization can be the variability in

the length of identifier names. For languages such as BASIC with

its one - and two - character names and FORTRAN with names up

to six characters in length, this problem is minimal and can

usually be handled by storing the complete identifier in a fixed -

size maximum length fields. While there are many ways of

handling the storage of variable names, two popular approaches

will be outlined, one which facilitates quick table access and

another which supports the efficient storage of variable names.

The provide quick access, yet sufficiently large, maximum

variable name length. A length of sixteen or greater is very likely

adequate, the complete identifier can then be stored in a fixed -

length fields in

ST, in this approach, table access is fast but the storage of short

variable names is inefficient.

A second approach is to place a string Descriptor in the name filed

of the table. The descriptor contains (position and length) subfields.

The pointer subfield indicates the position of the first character of the

name in a general string area, and the length subfield describes the

number of characters in the name. therefore, this approach results in

slow table access, but the savings in storage can be considerable.

2- Object Time Address:- The relative location for values of

variable at run time.

3- Type:- This fields is stored in ST when compiling

language having either implicit or explicit data type. For typeless

language such as "BASIC" this attribute is excluded. "

FORTRAN" provides an example of what mean by implicit data

typing. Variables which are not declared to be particular type are

assigned default types implicitly (variables with names starting with

I, J, K, L, M, or N are integer, all other variable are real).

4- Dimension of array or Number of parameters for a

procedure.

5- Source line number at which the variable is declared.

6- Source line number at which the variable is referenced.

7- Link filed for listing in alphabetical order.

Operation on ST:-

The two operations that are most commonly performed on

ST are: Insertion & Lookup (Retrieval) .For language in which

explicit declaration of all variables is mandatory, an insertion is

required when processing a declaration. If ST is Ordered, then

insertion may also involve a lookup operation to find allocations at

which the variable's attributes are to be placed. In such a situation an

insertion is

at least as expensive as retrieval. If the ST is not ordered, the insertion

is simplified but the retrieval is expensive.

Retrieval operations are performed for all references to variables

which don't involve declaration statements.

The retrieved information is used for semantic checking and code

generation. Retrieval operations for variables which have not been

previously declared are detected at this stage and appropriate error

messages can be emitted. Some recovery from such semantic errors

can be achieved by posting a warning message and incorporation

the nondeclared variable in ST.

When a programming language permits implicit declarations of

variable reference must be treated as an initial reference, since there

is no way of knowing a priori of the variable's attributes have been

entered in ST. Hence any variable reference generates a lookup

operation followed by an insertion if the variable's name is not found

in ST.

For block - structured languages, two additional operations

are required: Set & Reset.

The Set operation is invoked when the beginning of a block is

recognized during compilation. The complementary operation, the

Reset operation is applied when the end of block is encountered.

Upon block entry, the set operation establishes a new sub table

(within the ST) in which the attributes for the variables declared in

the new block can be stored. Because an new sub table is established

for each block, the duplicated variable- name problem can be resolve.

Upon block exit the reset operation removes the sub table entries for

the variables of the completed block.

ST Organizations:-

The primary measure which is used to determine the

complexity of a ST operation is the average length of search. This

measure is the average number of comparisons required to Retrieve a

ST record in a particular table organization, the

name of variable for which an insertion or lookup operation is to be

performed will be referred to as the search argument.

1- Unordered ST: The simplest method of organization ST,

is to add the attribute entries to the table in the order in which the

variable are declared. In an insertion operation no comparisons are

required.

2- Ordered ST : In this and following organization, we

described ST organization in which the table position of a

variable's set of attributes is based on the variable's name. An

insertion operation must be accompanied by lookup procedure

which determines where in ST the variables attribute should be

placed. The insertion of new of attributes may generate some

additional overhead primarily because other sets of attributes may

have to be moved in order to a chive the insertion.

3- Tree - structured ST :The time to performed an insertion

operation can be reduced by using a tree - structured type of storage

organization.

