
 Lexical errors

 If no prefix of the input string forms a valid token, a lexical

error has occurred. When this happens, the lexical will usually

report an error. At this point, it may stop reading the input or it

may attempt continued lexical analysis by skipping characters

until a valid prefix is found. The purpose of the latter approach is

to try finding further lexical errors in the same input, so several

of these can be corrected by the user before re-running the

Lexical. Some of these subsequent errors may, however, not be

real errors but may be caused by the lexical not skipping enough

characters (or skipping too many) after the first error is found. If,

for example, the start of a comment is ill-formed, the lexical

may try to interpret the contents of the comment as individual

tokens, and if the end of a comment is ill-formed, the lexical will

read until the end of the next comment (if any) before

continuing, hence skipping too much text.

When the lexical finds an error, the consumer of the

tokens that the lexical produces (e.g., the rest of the compiler)

cannot usually itself produce a valid result. However, the

compiler may try to find other errors in the remaining input,

again allowing the user to find several errors in one edit-compile

cycle. Again, some of the subsequent errors may really be

spurious errors caused by lexical error(s), so the user will have to

guess at the validity of every error message except the first, as

only the first error message is guaranteed to be a real error.

Nevertheless, such error recovery has, when the input is so large

that restarting the lexical from the start of input incurs a

considerable time overhead, proven to be an aid in productivity

by locating more errors in less time. Less commonly, the lexical

may work interactively with a text editor and restart from the

point at which an error was spotted after the user has tried to _x

the error.

General view about errors

One of the important tasks that a compiler must perform is

the detection of and recovery from errors. Recovery from errors

is important, because the compiler will be scanning and

compiling the entire program, perhaps in the presence of errors;

so as many errors as possible need to be detected.

Every phase of a compilation expects the input to be in a

particular format, and whenever that input is not in the required

format, an error is returned. When detecting an error, a compiler

scans some of the tokens that are ahead of the error's point of

occurrence. The fewer the number of tokens that must be

scanned ahead of the point of error occurrence, the better the

compiler's error-detection capability. For example, consider the

following statement:

if a = b then x: = y +z;

The error in the above statement will be detected in the syntactic

analysis phase, but not before the syntax analyzer sees the token

"then"; but the first token, itself, is in error. After detecting an

error, the first thing that a compiler is supposed to do is to report

the error by producing a suitable diagnostic. A good error

diagnostic should possess the following properties.

1. The message should be produced in terms of the original

source program rather than in terms of some internal

representation of the source program. For example, the message

should be produced along with the line numbers of the source

program.

2. The error message should be easy to

understand by the user.

3. The error message should be specific and should localize

the problem. For example, an error message should read, "x is

not declared in function fun," and not just, "missing

declaration".

4. The message should not be redundant; that is, the same

message should not be produced again and again.

Therefore, a compiler should report errors by generating

messages with the above properties. The errors captured by the

compiler can be classified as either syntactic errors or semantic

errors. Syntactic errors are those errors that are detected in the

lexical or syntactic analysis phase by the compiler. Semantic

errors are those errors detected by the compiler.

Recovery From Lexical Phase Errors

The lexical analyzer detects an error when it discovers that

an input's prefix

does not fit the specification of any token class. After detecting an error,

the lexical analyzer can invoke an error recovery routine. This can entail

a variety of remedial actions.

The simplest possible error recovery is to skip the erroneous

characters until the lexical analyzer finds another token. But this is likely

to cause the parser to read a deletion error, which can cause severe

difficulties in the syntax analysis and remaining phases. One way the

parser can help the lexical analyzer can improve its ability to recover

from errors is to make its list of legitimate tokens (in the current

context) available to the error recovery routine. The error-recovery

routine can then decide whether a remaining input's prefix matches one

of these tokens closely enough to be treated as that token.

lexical generators

A lexical generator will typically use a notation for regular

expressions similar to the one described earlier , but may require

alphabet characters to be quoted to distinguish them from the symbols

used to build regular expressions.

The input to the lexical generator will normally contain a list of

regular expressions that each denote a token. Each of these regular

expressions has an associated action. The action describes what is

passed on to the consumer (e.g., the parser), typically an element from a

token data type, which describes the type of token (NUM, ID, etc.) and

sometimes additional information such as the value of a number token,

the name of an identifier token and, perhaps, the position of the token in

the input file. The information needed to construct such values is

typically provided by

Normally, the lexical generator requires white-space and comments to

be defined by regular expressions. The actions for these regular

expressions are typically empty, meaning that white-space and comments

are just ignored.

An action can be more than just returning a token. If, for example,

a language has a large number of keywords, then a DFA that recognizes

all of these individually can be fairly large. In such cases, the keywords

are not described as separate regular expressions in the lexical definition

but instead treated as special cases of the identifier token. The action for

identifiers will then look the name up in a table of keywords and return

the appropriate token type (or an identifier token if the name is not a

keyword).

A similar strategy can be used if the language allows identifiers to

shadow keywords. Another use of non-trivial lexical actions is for

nested comments. In principle, a regular expression (or finite

automaton) cannot recognize arbitrarily nested comments, but by using

a global counter, the actions for comment tokens can keep track of the

nesting level. If escape sequences (for defining, e.g., control characters)

are allowed in string

constants, the actions for string tokens will, typically, translate the string

containing these sequences into a string where they have been

substituted by the characters they represent.

