

Bottom-Up Parsing
The term "Bottom-Up Parsing" refer to the order in which

nodes in the parse tree are constructed, construction starts at the

leaves and proceeds towards the root. Bottom-Up Parsing can

handle a large class of grammars.

1. Shift-Reduce Parsing: Is a general style of Bottom-up
syntax analysis , it attempts to construct a parse tree for an

input string beginning at leaves and working up towards

the root,(reducing a string w to the start symbol of
grammar).At each reduction step a particular substring

matching the right side of production is replaced by the

symbol on the left of that production.
Example : consider the grammar

S aABe

A Abc b

B d

And the input is abbcde

The implementation Bottom-Up Parsing is

abbcde

aAbcde

aAde

aABe

S

Accept

Handle : Is a substring that matches the right side of a

production.

Stack Implementation of Shift-Reduce Parsing:

A convenient way to implement a shift-reduce parser is to use a

Stack to hold a grammar symbols and an input buffer to hold the

sting w to be parsed. We use $ to mark the bottom of stack and

also the right end of the input string. There are actually four

possible actions:

1. Shift : The next input symbol is Shifted onto the top

of stack.

2. Reduce : Replace the handle with nonterminal.

3. Accept : The parser announces successful

completion of parsing .

4. Error : The parser discovers that syntax error has

occurred and calls an error recovery routine.

Example: Consider the following grammar

E E+E E*E (E) id

And the input string is id + id * id, then the

implementation is :

Action

Stack Input Buffer

$

$id

$E

$E+

$E+id

$E+E

$E+E*

$E+E*id

$E+E*E

$E+E

$E

id+id*id$

+id*id$

+id*id$

id*id$

*id$

*id$

id$

$

$

$

$

Shift

Reduce: Eid

Shift

Shift

Reduce: Eid

Shift(*)

Shift

Reduce: Eid

Reduce: EE*E

Reduce: EE+E

Accept

Conflicts During Shift-Reduce Parsing:

There are context free grammars for which shift-reduce

parsing cannot be used. Ambiguous grammars lead to parsing

conflicts. Can fix by rewriting grammar or by making

appropriate choice of action during parsing. There are two type

of conflicts :

1. Shift/Reduce conflicts: should we shift or reduce? (See

previous example (*))

2. Reduce/Reduce conflicts: which production should we

reduce with? for example:

stmt  id(param)

param  id

expr  id(expr) | id

 Stack Input Buffer Action

$...id(id ,id)...$ Reduce by ??

