
WEEK-12



3.6.3 The Instruction Set Architecture.
MARIE has a very simple, yet powerful, instruction set. The

instruction set architecture (ISA) of a machine specifies the

instructions that the computer can perform and the format for each

instruction. The ISA is essentially an interface between the software

and the hardware. Some ISAs include hundreds of instructions.

We mentioned previously that each instruction for MARIE

consists of 16 bits. The most significant 4 bits, bits 12–15, make up

the opcode that specifies the instruction to be executed (which allows

for a total of 16 instructions). The least significant 12 bits, bits 0–11,

form an address, which allows for a maximum memory size of 2^12–1.

• The MARIE ISA consists of only thirteen instructions.

This is the format of a MARIE instruction:

• The fundamental MARIE instructions are:



• This is a bit pattern for a LOAD instruction as it would appear in the

IR:

• We see that the opcode is 1 and the address from which to load the

data is   000000000011

• This is a bit pattern for a SKIPCOND instruction as it would appear

in the IR:



• We see that the opcode is 8 and bits 11 and 10 are 10, meaning

that the next instruction will be skipped if the value in the AC is

greater than zero.

3.6.4 Register Transfer Notation.
We have seen that digital systems consist of many

components, including arithmetic logic units, registers, memory,

decoders, and control units. These units are interconnected by buses

to allow information to flow through the system. The instruction set

presented for MARIE in the preceding sections constitutes a set of

machine level instructions used by these components to execute a

program. Each instruction appears to be very simplistic; however, if

you examine what actually happens at the component level, each

instruction involves multiple operations.

For example, the Load instruction loads the contents of the given

memory location into the AC register. But, if we observe what is

happening at the component level, we see that multiple “mini-

instructions” are being executed. First, the address from the

instruction must be loaded into the MAR. Then the data in memory at

this location must be loaded into the MBR. Then the MBR must be

loaded into the AC. These mini-instructions are called micro

operations and specify the elementary operations that can be

performed on data stored in registers.

The symbolic notation used to describe the behavior of micro

operations is called register transfer notation (RTN) or register
transfer language (RTL). We use the notation M[X] to indicate the

actual data stored at location X in memory, and ← to indicate a



transfer of information. In reality, a transfer from one register to

another always involves a transfer onto the bus from the source

register, and then a transfer off the bus into the destination register.

However, for the sake of clarity, we do not include these bus

transfers, assuming that you understand that the bus must be used

for data transfer.

We now present the register transfer notation for each of the

instructions in the ISA for MARIE.

 Load X.

Recall that this instruction loads the contents of memory

location X into the AC. However, the address X must first be placed

into the MAR. Then the data at location M[MAR] (or address X) is

moved into the MBR. Finally, this data is placed in the AC.

MAR← X
MBR← M[MAR]

AC← MBR

Because the IR must use the bus to copy the value of X into the

MAR, before the data at location X can be placed into the MBR, this

operation requires two bus cycles. Therefore, these two operations

are on separate lines to indicate they cannot occur during the same

cycle. However, because we have a special connection between the

MBR and the AC, the transfer of the data from the MBR to the AC

can occur immediately after the data is put into the MBR, without

waiting for the bus.



 Store X.
This instruction stores the contents of the AC in memory location X:

MAR← X
MBR← AC

M [MAR] ← MBR

 Add X.
The data value stored at address X is added to the AC. This can be

accomplished as follows:

MAR← X
MBR← M [MAR]
AC← AC + MBR

 Subt. X.
Similar to Add, this instruction subtracts the value stored at address X

from the accumulator and places the result back in the AC:

MAR← X
MBR← M [MAR]
AC← AC – MBR

 Input.
Any input from the input device is first routed into the InREG. Then

the data is transferred into the AC.

AC← InREG



 Output.
This instruction causes the contents of the AC to be placed into the

OutREG, where it is eventually sent to the output device.

OutREG← AC

 Halt.
No operations are performed on registers; the machine simply ceases

execution.

 Skipcond.
Recall that this instruction uses the bits in positions 10 and 11

in the address field to determine what comparison to perform on the

AC. Depending on this bit combination, the AC is checked to see

whether it is negative, equal to zero, or greater than zero. If the given

condition is true, then the next instruction is skipped. This is

performed by incrementing the PC register by 1.

if IR[11–10] = 00 then {if bits 10 and 11 in the IR are both 0}
If AC < 0 then PC ← PC+1
else If IR[11–10] = 01 then {if bit 11 = 0 and bit 10 = 1}
If AC = 0 then PC ← PC + 1
else If IR[11–10] = 10 then {if bit 11 = 1 and bit 10 = 0}
If AC > 0 then PC ← PC + 1

If the bits in positions ten and eleven are both ones, an error

condition results. However, an additional condition could also be

defined using these bit values.



 Jump X.
This instruction causes an unconditional branch to the given address

X. Therefore to execute this instruction, X must be loaded into the

PC.

PC← X
In reality the lower or least significant 12 bits of the instruction register

(or IR[11–0]) reflect the value of X. So this transfer is more accurately

depicted as:

PC← IR [11–0]
However, we feel that the notation PC ← X is easier to understand

and relate to the actual instructions, so we use this instead.

Register transfer notation is a symbolic means of expressing what is

happening in the system when a given instruction is executing. RTN

is sensitive to the data path, in that if multiple micro operations must

share the bus, they must be executed in a sequential fashion, one

following the other.


