WEEK-6

Chapter 2

Data Representation in Computer
 Systems

2.1 Introduction.

- Bit Is the most basic unit of information in a computer.
- It is a state of "on" or "off" in a digital circuit.
- Sometimes these states are "high" or "low" voltage instead of "on" or "off."
- Byte: Is a group of eight bits.
- A byte is the smallest possible addressable unit of computer storage.
- The term, "addressable," means that a particular byte can be retrieved according to its location in memory.
- Word: Is a contiguous group of bytes.
- Words can be any number of bits or bytes.
- Word sizes of 16, 32, or 64 bits are most common.
- In a word-addressable system, a word is the smallest addressable unit of storage.
- A group of four bits is called a nibble.

Bytes, therefore, consist of two nibbles:
a "high-order nibble," and a "low-order nibble".

2.2 Decimal to Binary Conversions.

- Bytes store numbers when the position of each bit represents a power of 2.
- The binary system is also called the base-2 system.
- Our decimal system is the base-10 system. It uses powers of 10 for each position in a number.
- Any integer quantity can be represented exactly using any base (or radix).

Positional Numbering Systems

- The decimal number 947 in powers of 10 is:

$$
9 \times 10^{2}+4 \times 10^{1}+7 \times 10^{0}
$$

- The decimal number 5836.47 in powers of 10 is:

$$
\begin{aligned}
5 & \times 10^{3}+8 \times 10^{2}+3 \times 10^{1}+6 \times 10^{0} \\
& +4 \times 10^{-1}+7 \times 10^{-2}
\end{aligned}
$$

- The binary number 11001 in powers of 2 is:

$$
\begin{aligned}
& 1 \times 2^{4}+1 \times 2^{3}+0 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
= & 16+8+0+0+1=25
\end{aligned}
$$

- When the radix of a number is something other than 10 , the base is denoted by a subscript.

Sometimes, the subscript 10 is added for emphasis:
$(11001)_{2}=(25)_{10}$
$1 \times 2^{\wedge} 4+1 \times 2^{\wedge} 3+0 \times 2^{\wedge} 2+0 \times 2^{\wedge} 1+1 \times 2^{\wedge} 0$

$$
\begin{aligned}
& =16+8+0+0+1 \\
& =25
\end{aligned}
$$

- Because binary numbers are the basis for all data representation in digital computer systems, it is important that you become proficient with this radix system.
- Your knowledge of the binary numbering system will enable you to understand the operation of all computer components as well as the design of instruction set architectures.
- Every integer value can be represented exactly using any radix system.
- You can use either of two methods for radix conversion:
* The subtraction method.
* The division remainder method.
- Another method of converting integers from decimal to some other radix uses division.
- This method is mechanical and easy.
- It employs the idea that successive division by a base is equivalent to successive subtraction by powers of the base.
- Fractional values of other radix systems have nonzero digits to the right of the radix point.
- Numerals to the right of a radix point represent negative powers of the radix:

$$
\begin{aligned}
0.47_{10} & =4 \times 10^{-1}+7 \times 10^{-2} \\
0.11_{2} & =1 \times 2^{-1}+1 \times 2^{-2} \\
& =1 / 2+1 / 4 \\
& =0.5+0.25=0.75
\end{aligned}
$$

- As with whole-number conversions, you can use either of two methods:
a subtraction method and an easy multiplication method.
- We always start with the largest value first, $\mathrm{n}-1$, where n is our radix, and work our way along using larger negative exponents.

- Converting 0.8125 to binary.

- Using the multiplication method to convert the decimal 0.8125 to binary, we multiply by the radix 2 .
- The first product carries into the unit's place.
-Ignoring the value in the unit's place at each step, continue multiplying each fractional part by the radix.

- You are finished when the product is zero, or until you have reached the desired number of binary places.

- Our result, reading from top to bottom is:

$$
(0.8125)_{10}=(0.1101)_{2}
$$

This method also works with any base. Just use the target radix as the multiplier.

- The binary numbering system is the most important radix system for digital computers.
- However, it is difficult to read long strings of binary numbers and even a modestly-sized decimal number becomes a very long binary number.

For example:

$$
\text { (11010100011011) })_{2}=(13595)
$$

- For compactness and ease of reading, binary values are usually expressed using the hexadecimal, or base-16, numbering system.
- The hexadecimal numbering system uses the numerals 0 through 9 and the letters A through F.
- The decimal number 12 is (B) ${ }_{16}$.
- The decimal number 26 is $(1 A)_{16}$.
- It is easy to convert between base 16 and base 2, because $16=$ $2^{\wedge} 4$.
- Thus, to convert from binary to hexadecimal, all we need to do is group the binary digits into groups of four.

A group of four binary digits is called a hextet.

- Using groups of hextets, the binary number
$(11010100011011)_{2}=(13595)_{10}$ in hexadecimal is:

Octal (base 8) values are derived from binary by using groups of three bits $\left(8=2^{\wedge} 3\right)$:

$$
\begin{array}{ccccc}
011 & 010 & 100 & 011 & 011 \\
3 & 2 & 4 & 3 & 3
\end{array}
$$

Octal was very useful when computers used six-bit words

