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2.3 Signed Integer Representations.
• The conversions we have so far presented have involved only

positive numbers.

• To represent negative values, computer systems allocate the high-

order bit to indicate the sign of a value.

– The high-order bit is the leftmost bit in a byte. It is also called

the most significant bit.

• The remaining bits contain the value of the number.

• There are three ways in which signed binary numbers may be

expressed:

– Signed magnitude,
– One’s complement
– Two’s complement.

• In an 8-bit word, signed magnitude representation places the

absolute value of the number in the 7 bits to the right of the

sign bit.

• For example, in 8-bit signed magnitude, positive 3 is: 00000011

• Negative 3 is: 10000011

• Computers perform arithmetic operations on signed magnitude

numbers in much the same way as humans carry out pencil

and paper arithmetic.

– Humans often ignore the signs of the operands while

performing a calculation, applying the appropriate sign after the

calculation is complete.

• Binary addition is as easy as it gets. You need to know only four

rules:



0 + 0 = 0                     0 + 1 = 1

1 + 0 = 1                     1 + 1 = 10

• The simplicity of this system makes it possible for digital circuits to

carry out arithmetic operations.

Let’s see how the addition rules work with signed
magnitude numbers.
• Example:

Using signed magnitude binary arithmetic, find the sum of 75 and 46.

• First, convert 75 and 46 to binary, and arrange as a sum, but

separate the (positive) sign bits from the magnitude bits.

• Just as in decimal arithmetic, we find the sum starting with the

rightmost bit and work left.

• In the second bit, we have a carry, so we note it above the third bit.

• The third and fourth bits also give us carries.



• Once we have worked our way through all eight bits, we are done.

In this example, we were careful to pick two values whose
sum    would fit into seven bits. If that is not the case, we have a
problem.
• Example:

– Using signed magnitude binary arithmetic, find the sum of

107 and 46.

• We see that the carry from the seventh bit overflows and is

discarded, giving us the erroneous result: 107 + 46 = 25.

• The signs in signed magnitude representation work just like the

signs in pencil and paper arithmetic.

– Example: Using signed magnitude binary arithmetic, find the sum of

- 46 and - 25.



• Because the signs are the same, all we do is add the numbers and

supply the negative sign when we are done.d Integer
• Mixed sign addition (or subtraction) is done the same way.

– Example: Using signed magnitude binary arithmetic, find the

sum of 46 and - 25.

• The sign of the result gets the sign of the number that is larger.

– Note the “borrows” from the second and sixth bits.

• Signed magnitude representation is easy for people to

understand, but it requires complicated computer hardware.

• Another disadvantage of signed magnitude is that it allows two

different representations for zero: positive zero and negative

zero.

• For these reasons (among others) computers systems employ

complement systems for numeric value representation.

• In complement systems, negative values are represented by

some difference between a number and its base.

• In diminished radix complement systems, a negative value is

given by the difference between the absolute value of a

number and one less than its base.



• In the binary system, this gives us one’s complement. It

amounts to little more than flipping the bits of a binary number.

• For example:

In 8-bit one’s complement positive 3 is: 00000011

Negative 3 is: 11111100

– In one’s complement, as with signed magnitude, a 1 in the

high order bit indicates negative values.

• Complement systems are useful because they eliminate the need

for special circuitry for subtraction. The difference of two values is

found by adding the minuend to the complement of the

subtrahend.2
• With one’s complement addition, the carry bit is “carried around”

and added to the sum.

– Example: Using one’s complement binary arithmetic; find the sum

of 48 and – 19.

We note that 19 in one’s complement is 00010011, so -19 in one’s

complement is: 11101100.

• Although the “end carry around” adds some complexity, one’s

complement is simpler to implement than signed magnitude.

• But it still has the disadvantage of having two different

representations for zero: positive zero and negative zero.



• Two’s complement solves this problem.

• Two’s complement is the radix complement of the binary numbering

system.

• To express a value in two’s complemented:

– If the number is positive, just convert it to binary and you’re

done.

– If the number is negative, find the one’s complement of the

number and then add 1.

• Example:

In 8-bit one’s complement, positive 3 is: 00000011

– Negative 3 in one’s complement is: 11111100

– Adding 1 gives us -3 in two’s complement form: 11111101.

• With two’s complement arithmetic, all we do is adding our two

binary numbers. Just discard any carries emitting from the high

order bit.

We note that 19 in one’s complement is: 00010011.

So -19 in one’s complement is: 11101100.

And -19 in two’s complement is: 11101101.



• Example-1:

Using two’s complement binary arithmetic, find the sum of 57 and

47.

Example 2:

Using two’s complement binary arithmetic, find the sum of - 57 and

- 47.



Example3:

Using two’s complement binary arithmetic, find the sum of 57 and

- 47.

Example-4:

Using two’s complement binary arithmetic, find the sum of - 57

and 47.


