WEEK- 8

2.4 Floating Point Representation.

* The signed magnitude, one’s complement, and two’s complement

representation that we have just presented deal with integer values

only.

* Without modification, these formats are not useful in scientific or
business applications that deal with real number values.

* Floating-point representation solves this problem.

* If we are clever programmers, we can perform floating-point

calculations using any integer format.

 This is called floating-point emulation, because floating point values
aren’'t stored as such, we just create programs that make it

seem as if floating point values are being used.

* Most of today’s computers are equipped with specialized hardware
that performs floating-point arithmetic with no special

programming required.

* Floating-point numbers allow an arbitrary number of decimal places
to the right of the decimal point.
— For example: 0.5 x 0.25 =0.125

» They are often expressed in scientific notation.

— For example:
0.125=1.25x 10-1
5,000,000 = 5.0 x 10”6

» Computers use a form of scientific notation for floating-point
representation

* Numbers written in scientific notation have three components:

» Computer representation of a floating-point number consists of
three fixed-size fields:

* This is the standard arrangement of these fields.

» The one-bit sign field is the sign of the stored value.

*The size of the exponent field, determines the range of values that
can be represented.

The size of the significant determines the precision of the
representation.

* The IEEE-754 single precision floating point standard uses an 8-bit
exponent and a 23-bit significant.
* The IEEE-754 double precision standard uses an 11-bit exponent
and a 52-bit significant.
For illustrative purposes, we will use a 14-bit model with

a 5-bit exponent and an 8-bit significant.

sign

gignificand

» The significant of a floating-point number is always preceded by an
implied binary point.

* Thus, the significant always contains a fractional binary value.

* The exponent indicates the power of 2 to which the significant is

raised.

» Example:

— Express 32 in the simplified 14-bit floating-point model.

* We know that 32 is 275. So in (binary) scientific notation
32=1.0x2"5=0.1x 2"6.

» Using this information, we put 110 = (6)10 in the exponent field and 1

in the significant as shown.

10000000

* Another problem with our system is that we have made no
allowances for negative exponents. We have no way to express
0.5=(2"-1)!
(Notice that there is no sign in the exponent field!)

Sigm

-

Iilnxpgnunt | gignifiecand |

All of these problems can be fixed with no changes to our basic

model.
* To resolve the problem of synonymous forms, we will establish a
rule that the first digit of the significant must be 1. This results in a
unique pattern for each floating-point number.
In the IEEE-754 standard, this 1 is implied meaning that a 1 is
assumed after the binary point.
By using an implied 1, we increase the precision of the

representation by a power of two. (Why?).

In our simple instructional model, we will use no implied bits.

» To provide for negative exponents, we will use a biased exponent.

* A bias is a number that is approximately midway in the range of
values expressible by the exponent. We subtract the bias from the
value in the exponent to determine its true value.
— In our case, we have a 5-bit exponent. We will use 16 for our
bias. This is called excess-16 representation.
In our model, exponent values less than 16 are negative,

representing fractional numbers.

» Example:
Express (32)w0 in the revised 14-bit floating-point model.

* We know that 32 = 1.0 x 2*"5 = 0.1 x 2"6.
» To use our excess 16 biased exponent, we add 16 to 6, giving

(22)10 = (10110).

 Graphically:

[EIEKEEEA EXEXIIIT

» Example:

— Express 0.062510 in the revised 14-bit floating-point model.

* We know that 0.0625 is 2”-4. So in (binary) scientific notation
0.0625=1.0x2"4=0.1 x 2" -3.

* To use our excess 16 biased exponent, we add 16 to -3, giving
(13)10 = (01101)..

» Example:
— Express -26.62510 in the revised 14-bit floating-point model.

* We find 26.62510 = 11010.101 x 2°0. Normalizing, we have:

(26.625)10 = 0.11010101 x 2" 5.

» To use our excess 16 biased exponent, we add 16 to 5, giving

(21)10 = (10101)-.

We also need a 1 in the sign bit.

11010101

» Floating-point addition and subtraction are done using methods
analogous to how we perform calculations using pencil and

paper.

» The first thing that we do to express both operands in the same
exponential power, then add the numbers, preserving the
exponent in the sum.

* If the exponent requires adjustment, we do so at the end of the

calculation.

» Example:
— Find the sum of (12)10 and (1.25):10 using the 14-bit floating
point model.
* We find
(12)10 = 0.1100 x 2" 4. And (1.25)10 =0.101 x 2 *1
=0.000101 x 2" 4.2.5
* Thus, our sumis 0.110101 x 2 *4.

LO100 iloo0000

“4+lc|ioc100 |noo10100

oliLto100 11010100

* Floating-point multiplication is also carried out in a manner a kind to
how we perform multiplication using pencil and paper.

* We multiply the two operands and add their exponents.

* If the exponent requires adjustment, we do so at the end of the

calculation.

» Example:
— Find the product of (12)10 and (1.25)10 using the 14-bit floating

point model.

« We find (12)10 = 0.1100 x 2* 4 and (1.25)10 = 0.101 x 2"1.

* Thus, our product is

0.0111100 x 275 = 0.1111 x 2"4.

ot
l“glﬂ'lﬂﬂ 11000000

X @a}; 10001 |10100000

o|l10101 |01111000

» The normalized product requires an exponent of
(20)10 = (10110)a.

* No matter how many bits we use in a floating-point representation,

our model must be finite.

* The real number system is, of course, infinite, so our models can
give nothing more than an approximation of a real value.

» At some point, every model breaks down, introducing errors into our
calculations.

* By using a greater number of bits in our model, we can reducethese

errors, but we can never totally eliminate them.

