WEEK-8

2.4 Floating Point Representation.

- The signed magnitude, one's complement, and two's complement representation that we have just presented deal with integer values only.
- Without modification, these formats are not useful in scientific or business applications that deal with real number values.
- Floating-point representation solves this problem.
- If we are clever programmers, we can perform floating-point calculations using any integer format.
- This is called floating-point emulation, because floating point values aren't stored as such, we just create programs that make it seem as if floating point values are being used.
- Most of today's computers are equipped with specialized hardware that performs floating-point arithmetic with no special programming required.
- Floating-point numbers allow an arbitrary number of decimal places to the right of the decimal point.
- For example: $0.5 \times 0.25=0.125$
- They are often expressed in scientific notation.
- For example:
$0.125=1.25 \times 10-1$
$5,000,000=5.0 \times 10^{\wedge} 6$
- Computers use a form of scientific notation for floating-point representation
- Numbers written in scientific notation have three components:

- Computer representation of a floating-point number consists of three fixed-size fields:

- This is the standard arrangement of these fields.

- The one-bit sign field is the sign of the stored value.
-The size of the exponent field, determines the range of values that can be represented.
The size of the significant determines the precision of the representation.

- The IEEE-754 single precision floating point standard uses an 8-bit exponent and a 23 -bit significant.
- The IEEE-754 double precision standard uses an 11-bit exponent and a 52-bit significant.

For illustrative purposes, we will use a 14-bit model with
a 5-bit exponent and an 8-bit significant.

- The significant of a floating-point number is always preceded by an implied binary point.
- Thus, the significant always contains a fractional binary value.
- The exponent indicates the power of 2 to which the significant is raised.
- Example:
- Express 32 in the simplified 14-bit floating-point model.
- We know that 32 is $2^{\wedge} 5$. So in (binary) scientific notation

$$
32=1.0 \times 2^{\wedge} 5=0.1 \times 2^{\wedge} 6
$$

- Using this information, we put $110=(6)_{10}$ in the exponent field and 1 in the significant as shown.

- Another problem with our system is that we have made no allowances for negative exponents. We have no way to express $0.5=\left(2^{\wedge}-1\right)!$
(Notice that there is no sign in the exponent field!)

All of these problems can be fixed with no changes to our basic model.

- To resolve the problem of synonymous forms, we will establish a rule that the first digit of the significant must be 1 . This results in a unique pattern for each floating-point number.

In the IEEE-754 standard, this 1 is implied meaning that a 1 is assumed after the binary point.
By using an implied 1, we increase the precision of the representation by a power of two. (Why?).

In our simple instructional model, we will use no implied bits.

- To provide for negative exponents, we will use a biased exponent.
- A bias is a number that is approximately midway in the range of values expressible by the exponent. We subtract the bias from the value in the exponent to determine its true value.
- In our case, we have a 5-bit exponent. We will use 16 for our bias. This is called excess-16 representation.
In our model, exponent values less than 16 are negative, representing fractional numbers.
- Example:

Express (32) ${ }_{10}$ in the revised 14-bit floating-point model.

- We know that $32=1.0 \times 2^{\wedge} 5=0.1 \times 2^{\wedge} 6$.
- To use our excess 16 biased exponent, we add 16 to 6, giving

$$
(22)_{10}=(10110)_{2} .
$$

- Graphically:

- Example:
- Express 0.062510 in the revised 14 -bit floating-point model.
- We know that 0.0625 is $2^{\wedge}-4$. So in (binary) scientific notation

$$
0.0625=1.0 \times 2^{\wedge-4}=0.1 \times 2^{\wedge}-3
$$

- To use our excess 16 biased exponent, we add 16 to -3 , giving $(13)_{10}=(01101)_{2}$.
- Example:
- Express -26.62510 in the revised 14-bit floating-point model.
- We find $26.62510=11010.101 \times 2^{\wedge} 0$. Normalizing, we have:

$$
(26.625)_{10}=0.11010101 \times 2^{\wedge} 5 .
$$

- To use our excess 16 biased exponent, we add 16 to 5 , giving

$$
(21)_{10}=(10101)_{2} .
$$

We also need a 1 in the sign bit.

- Floating-point addition and subtraction are done using methods analogous to how we perform calculations using pencil and paper.
- The first thing that we do to express both operands in the same exponential power, then add the numbers, preserving the exponent in the sum.
- If the exponent requires adjustment, we do so at the end of the calculation.
- Example:
- Find the sum of (12) ${ }_{10}$ and (1.25) $)_{10}$ using the 14 -bit floating point model.
-We find

$$
\begin{gathered}
(12)_{10}=0.1100 \times 2^{\wedge} 4 . \text { And }(1.25)_{10}=0.101 \times 2^{\wedge} 1 \\
=0.000101 \times 2^{\wedge} 4.2 .5
\end{gathered}
$$

- Thus, our sum is $0.110101 \times 2^{\wedge} 4$.

- Floating-point multiplication is also carried out in a manner a kind to how we perform multiplication using pencil and paper.
- We multiply the two operands and add their exponents.
- If the exponent requires adjustment, we do so at the end of the calculation.
- Example:
- Find the product of (12) $)_{10}$ and (1.25) ${ }_{10}$ using the 14-bit floating point model.
- We find (12) $)_{10}=0.1100 \times 2^{\wedge} 4$ and $(1.25)_{10}=0.101 \times 2^{\wedge} 1$.
- Thus, our product is
$0.0111100 \times 2^{\wedge} 5=0.1111 \times 2^{\wedge} 4$.

- The normalized product requires an exponent of

$$
(20)_{10}=(10110)_{2} .
$$

- No matter how many bits we use in a floating-point representation, our model must be finite.
- The real number system is, of course, infinite, so our models can give nothing more than an approximation of a real value.
- At some point, every model breaks down, introducing errors into our calculations.
- By using a greater number of bits in our model, we can reduce these errors, but we can never totally eliminate them.

