
DesignDatabase

Database design is the process of producing a detailed data model of a

database, this data model which can then be used to create a database.

The term database design can be used to describe many different parts of

the design , it can be thought of as the logical design of the base data

structures used to store the data. In the relational model these are the

tables and views.

The Design Process

The design process consists of the following steps:

1. Determine the purpose of your database - This helps prepare you for

the remaining steps.

2. Find and organize the information required - Gather all of the types of

information you might want to record in the database, such as product

name and order number.

3. Divide the information into tables - Divide your information items into

major entities or subjects, such as Products or Orders. Each subject then

becomes a table.

4. Turn information items into columns - Decide what information you

want to store in each table. Each item becomes a field, and is displayed as

a column in the table. For example, an Employees table might include

fields such as Last Name and Hire Date.

5. Specify primary keys - Choose each table’s primary key. The primary

key is a column that is used to uniquely identify each row. An example

might be Product ID or Order ID.

6. Set up the table relationships - Look at each table and decide how the

data in one table is related to the data in other tables. Add fields to tables

or create new tables to clarify the relationships, as necessary.

7. Refine your design - Analyze your design for errors. Create the tables

and add a few records of sample data. See if you can get the results you

want from your tables. Make adjustments to the design, as needed.

8. Apply the normalization rules - Apply the data normalization rules to

see if your tables are structured correctly. Make adjustments to the tables,

as needed.

Database Cardinality

In data modeling, the cardinality of one data table with respect to another

data table is a critical aspect of database design. Relationships between

data tables define cardinality when explaining how each table links to

another.

In the relational model, tables can be related as any of:

 many-to-many

 many-to-one (rev. one-to-many)

 one-to-one

This is said to be the cardinality of a given table in relation to another.

For example, considering a database designed to keep track of hospital

records. Such a database could have many tables like:

 a Doctor table full of doctor information

 a Patient table with patient information

 and a Department table with an entry for each department of the

hospital.

In that model

 There is a many-to-many relationship between the records in the

doctor table and records in the patient table (Doctors have many

patients, and a patient could have several doctors);

 a one-to-many relation between the department table and the

doctor table (each doctor works for one department, but one

department could have many doctors).

 one-to-one relationship is mostly used to split a table in two in

order to optimize access or limit the visibility of some information.

In the hospital example, such a relationship could be used to keep

apart doctor's personal or administrative information.

Example: A chemical factory producing chemical materials, each

material identified by a name and a formula.

The supplier, identified by his name and his ID, purchase from the factory

by an order. The order has date, amount and total.

Example 1 : A chemical factory producing chemical materials , each

material identified by a name and a formula .

The supplier , identified by his name and his ID , purchase from the

factory by an order . The order has date , amount and total.

To draw the ER model

Each supplier can have any material , and any material can go to any

supplier . The relation is of type many-to-many , as shown in figure

below

Weak Entity

An entity may not have sufficient attributes to form a primary key. Such

an entity is termed a

weak entity . An entity that has a primary key is termed a strong entity.

Consider the relationship Have which links a student with his activates as

shown in figure below

 Each student have many activities

If more details is needed about all the activities the student have (history)

, another entity will be added as shown if figure below

 Activity History entity

This new entity have S-ID and A-ID as a foreign keys to recognize each

record belong to what student and what activity. This mean for each

activity a student have, he/she can carry it many times.

Figure below shows how the new entity, Activity History, is linked with

activity entity

Linking the three entities

In the Activity History, there is no primary key, so it is a weak entity.

The weak entity to be meaningful, it must be part of a one-to-many

relationship.

The weak entity is depends on the strong entity , that means if the strong

entity is delete then the weak entity must be deleted.

In the example of figure above if the activity is deleted then all the history

for that activity must be deleted.

But if the history is deleted , the activity no need to be deleted.

The DOMINANT entity is the strong entity.

The SUBORDINATE entity is the weak entity.

The weak entity in the ER diagram is indicated by a double outline box,

and the corresponding relationship by a double outline diamond.

 More Designs Considerations

In this section , we consider how a database designer may select from the

wide range of alternatives . Among the decision to be made are the

following:

• weather to use an attribute or an entity to represent an object :

consider the entity employee with attribute employee-name .

if we want to add telephone number to the employee:

case 1 : another attribute ,telephone-number , is added to the entity.

Case2 : the telephone can be consider as an entity in its own with an

attribute :

Telephone-number and location, ant the two entities are connected with

some relation.

In the first case every employee has one telephone number.

In the second case , each employee has several telephone numbers

• weather a real world concept is expressed by an entity or by a

relationship .

For example a playing can be modeled as an entity, or it can be a relation

between

player and game, with playing-time attribute.

If every game is played by one player then playing is better be a

relationship as in figure below

If several players playing the same game then we must replicate the

playing information (time) for each player, and the problems of repetition

and updating are arise.

Playing is a relationship

If the information of the playing is updated then this update must be done

to each player.

Playing can be an entity rather than a relation. In this case there will be

only one existence of the playing information, and the player and the

games is connected with the playing by keys as shown in figure below

 Playing is an entity

