Week 11 Boolean Algebra and Logic Simplification

Logic Circuits Course AIU-IE

Ch. 4

Boolean Algebra and Logic Simplification

Boolean Algebra and Logic Simplification

- 1. Boolean Operations and Expressions
- 2. Laws and Rules of Boolean Algebra
- 3. DeMorgan's Theorem
- 4. Boolean Expression for a Logic Circuit
- 5. Simplification Using Boolean Algebra
- 6. Standard Forms of Boolean Expressions
- 7. Boolean Expressions and Truth Tables
- 8. The Karnaugh Map
- 9. Karnaugh Map SOP Minimization
- **10. Karnaugh Map POS Minimization**

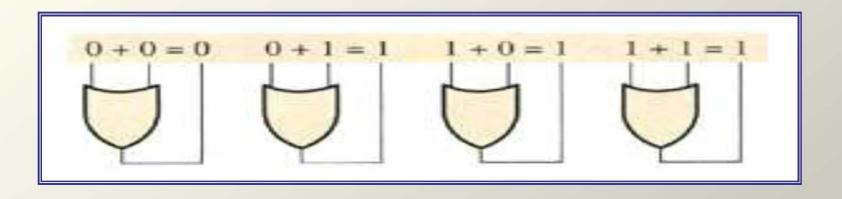
<u>Boolean algebra:</u>

- Boolean Algebra is the mathematics of digital systems.
- Variable, complement, and literal are terms used in Boolean algebra.
- A variable is a symbol (usually an italic uppercase letter) used to represent a logical quantity. Any single variable can have a "1" or a "0" value.
- The complement is the inverse of a variable and is indicated by a bar over the variable.
- A literal is a variable or the complement of variable.

the complement of A is \overline{A} . If A = 1, then $\overline{A} = 0$. "not A" or "A bar" If A = 0, then $\overline{A} = 1$.

Boolean addition :

Boolean addition is equivalent to the OR operation and the basic rules are illustrated with their relation to the OR gate as follows:



- In Boolean algebra, a sum term is a sum of literals.
- In logic circuits, a sum term is produced by an OR operation with no AND operations involved . Examples :

$$A + B, A + \overline{B}, A + B + \overline{C}, \text{ and } \overline{A} + B + C + \overline{D}.$$

EXAMPLE

Determine the values of A, B, C, and D that make the sum term $A + \overline{B} + C + \overline{D}$ equal to 0.

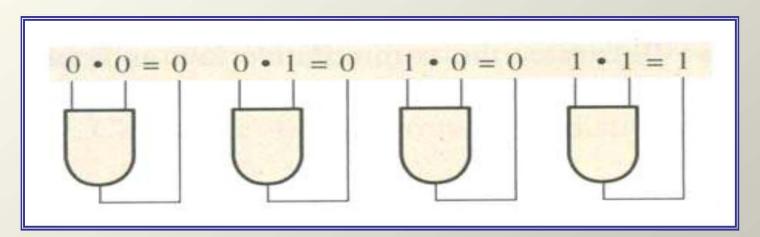
SOLUTION :

For the sum term to be 0, each of the literals in the term must be 0. Therefore, A = 0, B = 1 so that $\overline{B} = 0$, C = 0, and D = 1 so that $\overline{D} = 0$.

$$A + \overline{B} + C + \overline{D} = 0 + \overline{1} + 0 + \overline{1} = 0 + 0 + 0 + 0 = 0$$

Boolean multiplication:

Boolean Multiplication is equivalent to the AND operation and the basic rules are illustrated with their relation to the AND gate as follows:



- In Boolean algebra, a product term is the product of literals.
- In logic circuits, a product term is produced by an AND operation with no OR operations involved.

Example :

Determine the values of A, B, C, and D that make the product term ABCD equal to 1.

Solution :

For the product term to be 1, each of the literals in the term must be 1. Therefore, A = 1, B = 0 so that $\overline{B} = 1$, C = 1, and D = 0 so that $\overline{D} = 1$.

$$\overline{ABCD} = 1 \cdot \overline{0} \cdot 1 \cdot \overline{0} = 1 \cdot 1 \cdot 1 \cdot 1 = 1$$

Determine the values of A and B that make the product term A B equal to 1.

2- Laws and Rules of Boolean Algebra

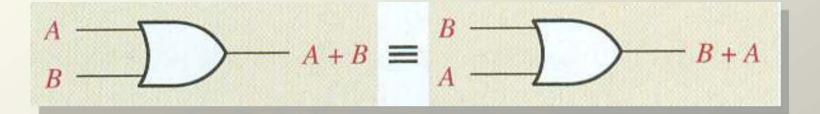
2-1 Laws Boolean Algebra

- Commutative Laws
- Associative Laws
- Distributive Law

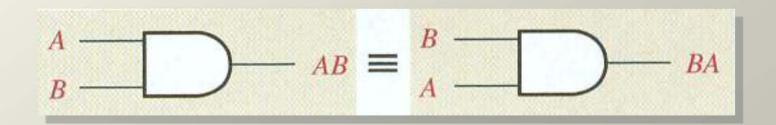
1- Laws Boolean Algebra

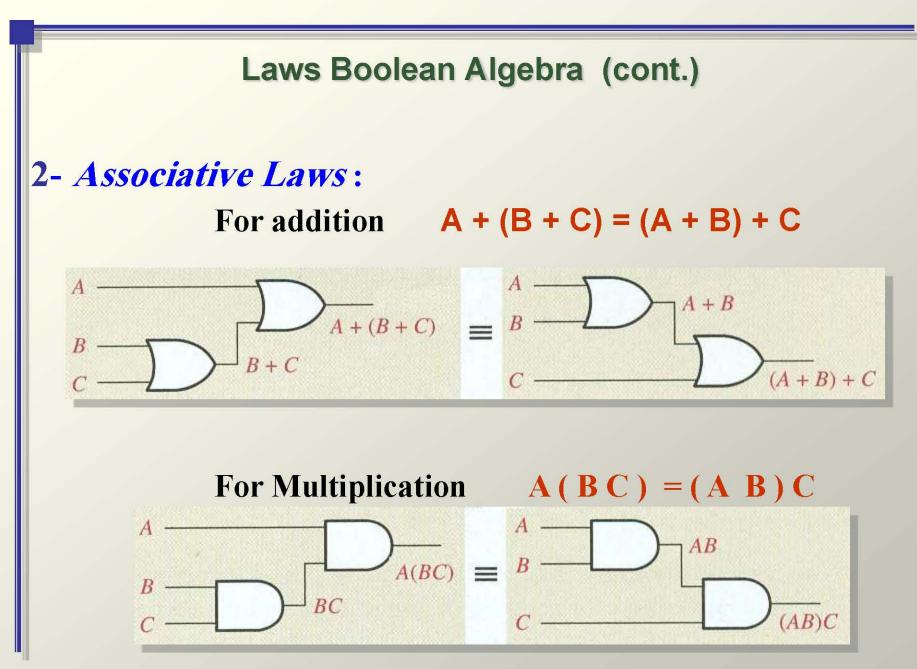
1- Commutative Laws :

For addition A + B = B + A



For Multiplication A B = B A

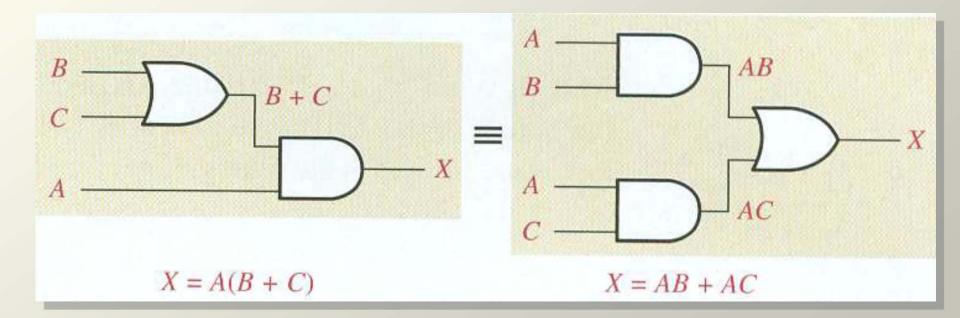




Laws Boolean Algebra (cont.)

3- Distributive Law :

 $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A}\mathbf{B}+\mathbf{A}\mathbf{C}$

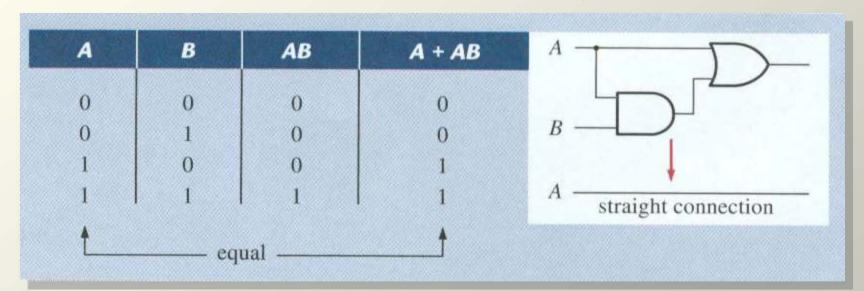


2- Rules of Boolean Algebra

1. $A + 0 = A$	7. $A \cdot A = A$
2. $A + 1 = 1$	8. $A \cdot \overline{A} = 0$
3. $A \cdot 0 = 0$	9. $\overline{\overline{A}} = A$
4. $A \cdot 1 = A$	10. $A + AB = A$
5. $A + A = A$	11. $A + \overline{A}B = A + B$
6. $A + \overline{A} = 1$	12. $(A + B)(A + C) = A + BC$

Rules of Boolean Algebra (cont.)

Rule 10: A + AB = A >>> A(1+B)= A

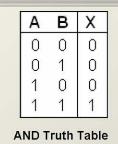


Α	В	Х	А	в	Х
0	0	0	0	0	0
0	1	0	0	1	1
1	0	0	1	0	1
1	1	1	1	1	1

AND Truth Table OR Truth Table

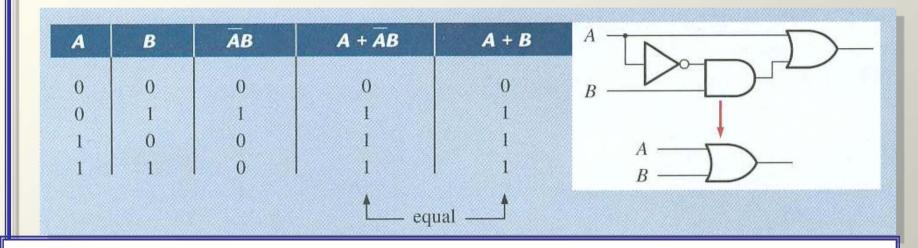
Rules of Boolean Algebra (cont.)

• Rule 11: $A + \overline{AB} = A + B$



А	В	Х
0	0	0
Ō	1	1
1	0	1
1	1	1

OR Truth Table



RULE 11: $A + \overline{AB} = A + B$ This rule can be proved as follows:

$$A + \overline{AB} = (A + AB) + \overline{AB}$$
$$= (AA + AB) + \overline{AB}$$
$$= AA + AB + A\overline{A} + \overline{AB}$$
$$= (A + \overline{A})(A + B)$$
$$= 1 \cdot (A + B)$$
$$= A + B$$

Rule 10: A = A + ABRule 7: A = AARule 8: adding $A\overline{A} = 0$ Factoring Rule 6: $A + \overline{A} = 1$ Rule 4: drop the 1

A	B	C	A + B	A + C	(A+B)(A+C)	ВС	A + BC	AT
0	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	
0	1	0	1	0	0	0	0	c—
0	1	1	1	1	1	1	1	
1	0	0	1	1	1	0	1	
1	0	1	1	1	1	0	1	
1	1	0	1	1	1	0	1	

Rule 12. (A + B)(A + C) = A + BC This rule can be proved as follows:

$$(A + B)(A + C) = AA + AC + AB + BC$$

$$= A + AC + AB + BC$$

$$= A(1 + C) + AB + BC$$

$$= A \cdot 1 + AB + BC$$

$$= A(1 + B) + BC$$

$$= A(1 + B) + BC$$

$$= A \cdot 1 + BC$$

$$= A \cdot 1 + BC$$

$$= A \cdot 1 + BC$$

$$= A +$$