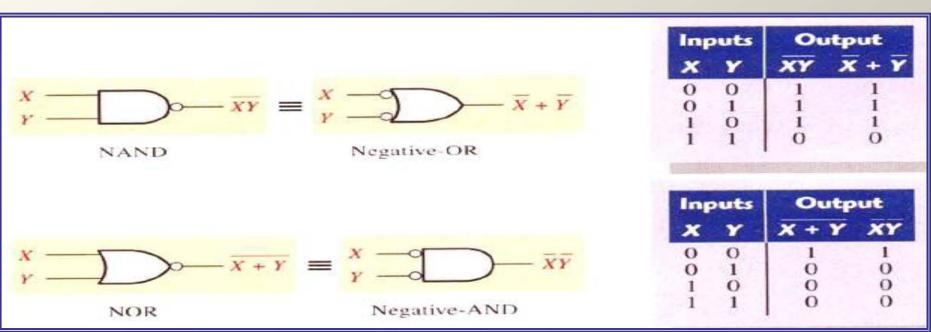
Week 12 DeMorgan's Theorems

3- DeMorgan's Theorems

- 1. The complement of a product of variables is equal to the sum of the complements of the variables. $\overline{\overline{XY}} = \overline{\overline{X}} + \overline{\overline{Y}}$
- 2. The complement of a sum of variables is equal to the product of the complement of the variables. $\overline{X + Y} = \overline{XY}$

Remember: "Break the bar, change the sign"



Example: application of DeMorgan's theorems and Boolean algebra to the specific expression

$$\overline{A + B\overline{C}} + D(\overline{E + F})$$

Step 1. Let $A + B\overline{C} = X$ and $D(E + \overline{F}) = Y$.

Step 2. Since X + Y = XY,

$$(A + BC) + (D(E + F)) = (A + BC)(D(E + F))$$

Step 3. Use rule 9 ($\overline{A} = A$) to cancel the double bars over the left term (this is not part of DeMorgan's theorem).

$$(\overline{A + B\overline{C}})(\overline{D(E + \overline{F})}) = (A + B\overline{C})(\overline{D(E + \overline{F})})$$

Step 4. Applying DeMorgan's theorem to the second term,

$$(A + B\overline{C})(\overline{D(E + F)}) = (A + B\overline{C})(\overline{D} + (\overline{E + F}))$$

Step 5. Use the rule $9(\overline{A} = A)$ to cancel the double bars over the $E + \overline{F}$ part of the term.

$$(A + B\overline{C})(\overline{D} + \overline{E + F}) = (A + B\overline{C})(\overline{D} + E + \overline{F})$$

Apply DeMorgan's theorems to each of the following expressions:

(a)
$$(A + B + C)D$$

(b)
$$ABC + DEF$$

(c)
$$A\overline{B} + \overline{C}D + EF$$

Solution

(a) Let A + B + C = X and D = Y. The expression (A + B + C)D is of the form $\overline{XY} = \overline{X} + \overline{Y}$ and can be rewritten as

$$\overline{(A+B+C)D} = \overline{A+B+C+D}$$

Next, apply DeMorgan's theorem to the term $\overline{A + B + C}$.

$$A + B + C + D = \overline{ABC} + \overline{D}$$

(b) Let ABC = X and DEF = Y. The expression $\overline{ABC} + \overline{DEF}$ is of the form $\overline{X + Y} = \overline{X}\overline{Y}$ and can be rewritten as

$$ABC + DEF = (ABC)(DEF)$$

Next, apply DeMorgan's theorem to each of the terms ABC and \overline{DEF} .

$$(\overline{ABC})(\overline{DEF}) = (\overline{A} + \overline{B} + \overline{C})(\overline{D} + \overline{E} + \overline{F})$$

(c) Let $\overrightarrow{AB} = X$, $\overrightarrow{CD} = Y$, and $\overrightarrow{EF} = Z$. The expression $\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{EF}$ is of the form $\overrightarrow{X} + \overrightarrow{Y} + \overrightarrow{Z} = \overrightarrow{X}\overrightarrow{Y}\overrightarrow{Z}$ and can be rewritten as

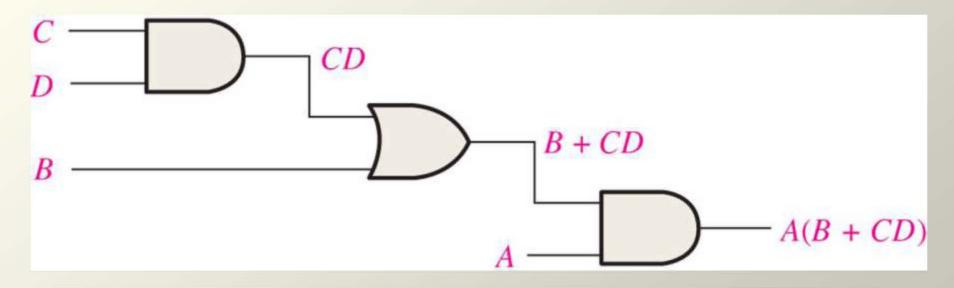
$$A\overline{B} + \overline{C}D + EF = (A\overline{B})(\overline{C}D)(\overline{E}F)$$

Next, apply DeMorgan's theorem to each of the terms AB, CD, and \overline{EF} .

$$(\overrightarrow{AB})(\overrightarrow{CD})(\overrightarrow{EF}) = (\overrightarrow{A} + B)(C + \overrightarrow{D})(\overrightarrow{E} + \overrightarrow{F})$$

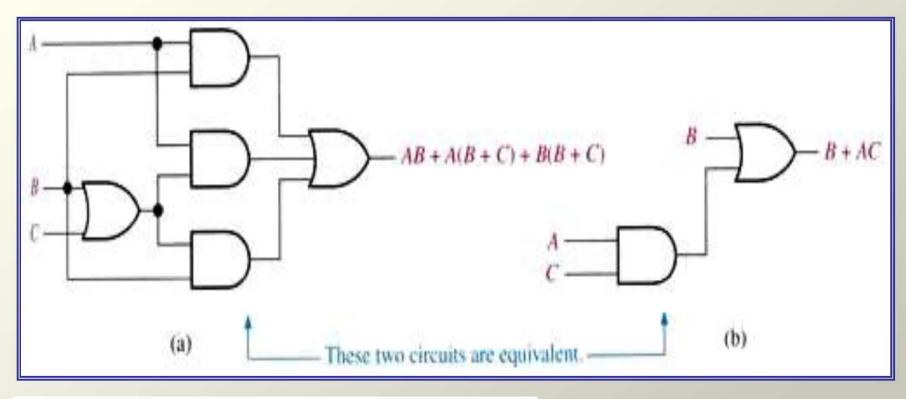
4- Boolean Expression for a Logic Circuit

To derive the Boolean expression for a given combinational logic circuit, begin at the left most inputs and work toward the final output, writing the expression for each gate.



5- Simplification using Boolean Algebra

Implementation of the Boolean expression : AB + A(B+C) + B(B+C) = B+AC



$$AB + A(B+C) + B(B+C) =$$
 $AB + AB + AC + BB + BC =$
 $AB + AC + B + BC = AB + AC + B(1+c) =$
 $AB + AC + B = B(A+1) + AC$
 $B + AC$

Simplify the following Boolean expression: $[A\overline{B}(C + BD) + \overline{A}\overline{B}]C$

Solution Ste

Step 1. Apply the distributive law to the terms within the brackets.

$$(A\overline{B}C + A\overline{B}BD + \overline{A}\overline{B})C$$

Step 2. Apply rule 8 ($\overline{BB} = 0$) to the second term within the parentheses.

$$(A\overline{B}C + A \cdot 0 \cdot D + \overline{A}\overline{B})C$$

Step 3. Apply rule $3 (A \cdot 0 \cdot D = 0)$ to the second term within the parentheses.

$$(A\overline{B}C + 0 + \overline{A}\overline{B})C$$

Step 4. Apply rule 1(drop the 0) within the parentheses. $(A\overline{B}C + \overline{A}\overline{B})C$

Step 5. Apply the distributive law. $\overrightarrow{ABCC} + \overrightarrow{ABC}$

Step 6. Apply rule 7 (CC = C) to the first term. $A\overline{B}C + \overline{A}\overline{B}C$

Step 7. Factor out \overline{BC} . $\overline{BC}(A + \overline{A})$

Step 8. Apply rule 6 $(A + \overline{A} = 1)$. $\overline{BC} \cdot 1$

Step 9. Apply rule 4 (drop the 1). \overline{BC}

Simplify the following Boolean expression: $\overline{ABC} + A\overline{BC} + \overline{ABC} + A\overline{BC} + ABC$

Solution Step 1. Factor BC out of the first and last terms. $BC(\overline{A} + A) + A\overline{B}C + \overline{A}B\overline{C} + A\overline{B}C$

- **Step 2.** Apply rule 6 $(\overline{A} + A = 1)$ to the term in parentheses, $BC \cdot 1 + A\overline{B}(\overline{C} + C) + \overline{A}\overline{B}\overline{C}$
- Step 3. Apply rule 4 (drop the 1) to the first term and rule 6 ($\overline{C} + C = 1$) to the term in parentheses.

$$BC + A\overline{B} \cdot 1 + \overline{A}\overline{B}\overline{C}$$

- **Step 4.** Apply rule 4 (drop the 1) to the second term. $BC + A\overline{B} + \overline{A}\overline{B}\overline{C}$
- Step 5. Factor \overline{B} from the second and third terms. $BC + \overline{B}(A + \overline{A}\overline{C})$
- **Step 6.** Apply rule 11 $(A + \overline{AC} = A + \overline{C})$ to the term in parentheses. $BC + \overline{B}(A + \overline{C})$
- Step 7. Use the distributive and commutative laws to get the following expression: BC + AB + BC

Simplify the following Boolean expression: $\overline{AB + AC} + \overline{ABC}$

Solution Step 1. Apply DeMorgan's theorem to the first term. $(\overline{AB})(\overline{AC}) + \overline{ABC}$

Step 2. Apply DeMorgan's theorem to each term in parentheses.

$$(\overline{A} + \overline{B})(\overline{A} + \overline{C}) + \overline{A}\overline{B}C$$

Step 3. Apply the distributive law to the two terms in parentheses.

$$\overline{AA} + \overline{AC} + \overline{AB} + \overline{BC} + \overline{ABC}$$

Step 4. Apply rule $7(\overline{AA} = \overline{A})$ to the first term, and apply rule $10[\overline{AB} + \overline{ABC} = \overline{AB}]$ to the third and last terms.

$$\overline{A} + \overline{A}\overline{C} + \overline{A}\overline{B} + \overline{B}\overline{C}$$

Step 5. Apply rule $10 [\overline{A} + \overline{A}\overline{C} = \overline{A}(1 + \overline{C}) = \overline{A}]$ to the first and second terms.

$$\overline{A} + \overline{A}\overline{B} + \overline{B}\overline{C}$$

Step 6. Apply rule $10[\overline{A} + \overline{A}\overline{B} = \overline{A}(1 + \overline{B}) = \overline{A}]$ to the first and second terms.

$$\overline{A} + \overline{B}\overline{C}$$