# Week 4 Number Systems Arithmetic Operations Codes

# Logic Circuits Course AIU-IE

Ch. 2
Number Systems
Arithmetic Operations
Codes

# **Key Terms of lecture-1**

- Analog
- Digital
- Binary
- Bit
- Pulse
- Clock
- Timing diagram
- Serial
- Parallel
- Logic
- Input
- Output

- Gate
- NOT
- Inverter
- AND
- OR
- Integrated Circuits ICs

# **Number Systems**

- 1. Decimal Numbers
- 2. Binary Numbers
- 3. Binary to Decimal Conversion
- 4. Decimal to Binary Conversion
- 5. Binary Arithmetic
- 6. 1st and 2nd Complement
- 7. Representing Signed Numbers
- 8. Evaluation of Signed numbers
- 9. Arithmetic Operation with Signed Numbers
- 10. Hexadecimal Numbers
- 11. Octal Numbers
- 12. Binary Coded Decimal
- 13. Digital Codes
- 14. Floating point Binary Numbers

#### 1-Decimal Numbers

The decimal number system has ten digits.

These are: 0,1,2,3,4,5,6,7,8,9.

The decimal number system has the base = 10

$$10^2 \ 10^1 \ 10^0.10^{-1} \ 10^{-2} \ 10^{-3}$$
... Decimal point

$$47 = (4 \times 10^{1}) + (7 \times 10^{0})$$
  
=  $(4 \times 10) + (7 \times 1) = 40 + 7$ 

$$568.23 = (5 \times 10^{2}) + (6 \times 10^{1}) + (8 \times 10^{0}) + (2 \times 10^{-1}) + (3 \times 10^{-2})$$

$$= (5 \times 100) + (6 \times 10) + (8 \times 1) + (2 \times 0.1) + (3 \times 0.01)$$

$$= 500 + 60 + 8 + 0.2 + 0.03$$

# 2- Binary Numbers

The binary number system has two digits:
 0 and 1

 The binary numbering system has a base of 2 with each position weighted by a factor of 2:

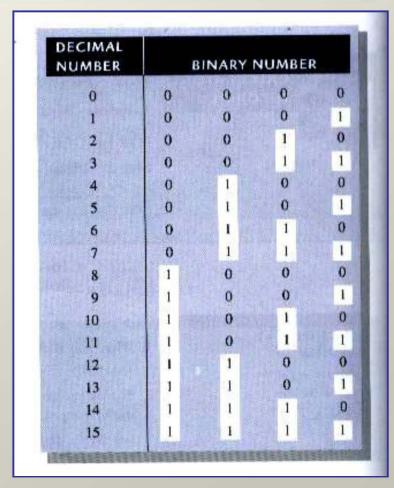
| POSITIVE POWERS OF TWO (WHOLE NUMBERS) |     |                |                       |    |                       |                |                       |    | NEGATIVE POWERS OF TWO (FRACTIONAL NUMBER) |      |       |        |         |                 |
|----------------------------------------|-----|----------------|-----------------------|----|-----------------------|----------------|-----------------------|----|--------------------------------------------|------|-------|--------|---------|-----------------|
| 2 <sup>8</sup>                         | 27  | 2 <sup>6</sup> | <b>2</b> <sup>5</sup> | 24 | <b>2</b> <sup>3</sup> | 2 <sup>2</sup> | <b>2</b> <sup>1</sup> | 2º | 2-1                                        | 2-2  | 2-3   | 2-4    | 2-5     | 2 <sup>-6</sup> |
| 256                                    | 128 | 64             | 32                    | 16 | 8                     | 4              | 2                     | 1  | 1/2                                        | 1/4  | 1/8   | 1/16   | 1/32    | 1/64            |
|                                        |     |                |                       |    |                       |                |                       |    | 0.5                                        | 0.25 | 0.125 | 0.0625 | 0.03125 | 0.015625        |

### **Binary Numbers**

The binary number system has two digits (bits).

These are : 0 , 1.

The binary number system has the base = 2




$$2^{n-1} \cdot \cdot \cdot \cdot 2^3 \cdot 2^2 \cdot 2^1 \cdot 2^0 \cdot 2^{-1} \cdot 2^{-2} \cdot \cdot \cdot \cdot 2^{-n}$$

Binary point



The weight of a bit increases from right to left in a binary whole number



# 3- Binary to Decimal Conversion

Method: Add the weights of all "1"s in a binary number to get the decimal values

#### Example -1-

Weight: 
$$2^6 \ 2^5 \ 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0$$
  
Binary number:  $1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1$   
 $1101101 = 2^6 + 2^5 + 2^3 + 2^2 + 2^0$   
 $= 64 + 32 + 8 + 4 + 1 = 109$ 

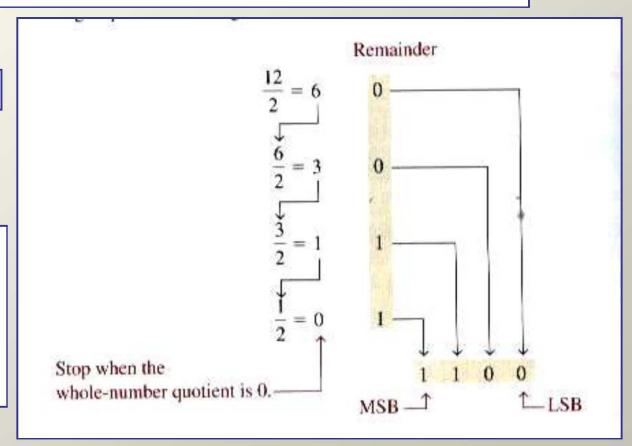
#### Example -2-

Weight: 
$$2^{-1}$$
  $2^{-2}$   $2^{-3}$   $2^{-4}$   
Binary number:  $0 \cdot 1$   $0$   $1$   $1$   
 $0.1011 = 2^{-1} + 2^{-3} + 2^{-4}$   
 $= 0.5 + 0.125 + 0.0625 = 0.6875$ 

Example -3-: convert the following binary numbers into decimal number:

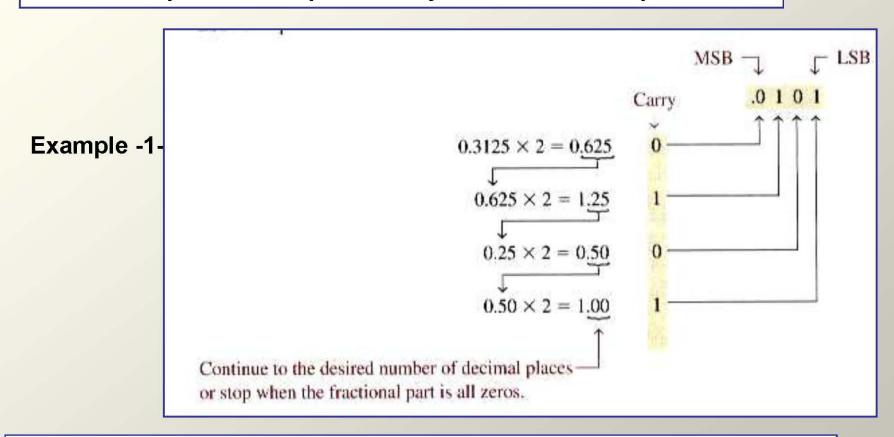
10101110

11.011101


# 4- Decimal to Binary Conversion

Method: To get the binary number for a given decimal number, divide decimal number by 2 until the quotient is 0. Remainders form the binary number.

Example -1-


Example -2-: convert the following decimal numbers into binary:

19 - 45

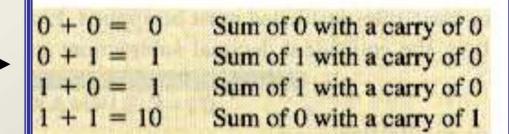


# **Convert Decimal Fraction to Binary**

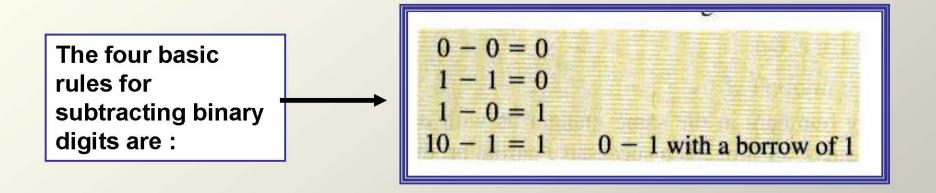
Method: Repeated multiplication by 2 until fractional part is zero



Example -2-: convert the following decimal numbers into binary:


0.375 0.559

# 5- Binary Arithmetic

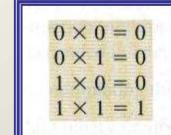

- Binary addition
- Binary subtraction
- Binary multiplication
- Binary division

#### 5-1 Binary Addition:

The four basic rules for adding binary digits are :



#### 5-2 Binary Subtraction:




Example -1- Perform the following binary subtraction:

1101 – 0100 , 1001 - 0111

#### 5-3 Binary Multiplication:

The four basic rules for multiplying binary digits are :

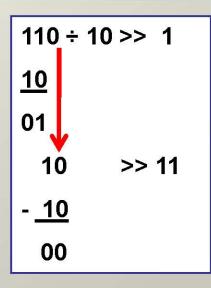


**Example -1- Perform the following binary multiplication:** 

1101 - 0100

1001 - 0111

#### 5-4 Binary Division:


Division in Binary follows the same procedure as division in decimal .

$$110 \div 11 = 10$$

$$6 \div 3 = 2$$

$$110 \div 10 = 11$$

$$6 \div 2 = 3$$

