Week 5

Complements of Binary Numbers

6- Complements of Binary Numbers

- 1's complements
- 2's complements
- They are important because they permit the representation of negative numbers in computers

6-1

Method : Invert each bit to get the $1^{\text {st }}$ complement

Example -1-

1	0	1	1	0	0	1	0	
\downarrow	Binary number							
\downarrow								
0	1	0	0	1	1	0	1	
	1's complement							

Example -2-: Determine the first complement of the following binary 00011010 - 11110111 - 10001101

6-1 $\quad 2^{\text {nd }}$ Complement

Method -1-:

Example -1-

$\mathbf{2}^{\text {nd }}$ complement $=\mathbf{1}^{\text {st }}$ complement	$\mathbf{+}$
10110010 Binary number 01001101 1's complement $+\quad 1$ Add I $\mathbf{0 1 0 0 1 1 1 0}$ 2's complement	

$2^{\text {nd }}$ complement (cont.) :

Method -2-: Change all the bits to the left of the least significant 1 to gets the $2^{\text {nd }}$ complement

Find the 2 's complement of 10111000 using the alternative method.

7- Signed Numbers

Digital Systems, such as computer, must be able to handle both positive and negative numbers .

A signed binary number consists of both sign (positive or negative) and magnitude (value) information .

The Sign Bit

The left most bit is the sign bit .
" 0 " indicates positive - "1" indicates Negative

- Three methods for sign number representation

1. Signed-magnitude form (rarely used)
2. 1's complement form
3. 2's complement form (most commonly used)

1- Sign -magnitude form:

$+25=00011001$
$-25=10011001$

- A 0 sign bit indicates a positive magnitude
- A 1 sign bit indicates a negative magnitude

2- $1^{\text {st }}$ complement form:
A negative number is the $1^{\text {st }}$ complement of the corresponding positive number
$+25=00011001$
$-25=11100110$
3- $\quad 2^{\text {nd }}$ complement form:
A negative number is the $2^{\text {nd }}$ complement of
$+25=00011001$ the corresponding positive number

Express the decimal number -39 as an 8 -bit number in the sign-magnitude, 1 's complement, and 2's complement forms.

Example:
 Solution First, write the 8-bit number for +39 .

00100111
In the sign-magnitude form, -39 is produced by changing the sign bit to a 1 and leaving the magnitude bits as they are. The number is

10100111

In the I's complement form, -39 is produced by taking the I's complement of +39 (00100111).

11011000

In the 2 's complement form, -39 is produced by taking the 2 's complement of +39 (00100111) as follows:

11011000	I's complement
$-\quad 1$	
11011001	2's complement

Example : express +19,-19 in sign magnitude , $1^{\text {st }}$ complement,$^{\text {nd }}$ complement

8- Decimal value of signed numbers

1-Sign -magnitude method:

1. Convert the magnitude to decimal
2. Check the sign bit

Example : Determine the decimal value of the following sign numbers expressed in signed magnitude :
01110111 , 10010110, 10010101
2-1st complement method :

1. Summing the weights in all bits positions where there are " 1 " and ignoring those positions where there are "0".
$-2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}$
2. Add "1" in case of negative results

Example : Determine the decimal value of the following sign numbers expressed in $1^{\text {st }}$ complement

3- $2^{\text {nd }}$ complement method :

1. Summing the weights in all bits positions where there are " 1 " and ignoring those positions where there are " 0 "
$-2^{7} 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}$
Example : Determine the decimal value of the following sign numbers expressed in $2^{\text {nd }}$ complement

01010110 , 10101010

- Range of Values

2's complement form:

$$
-\left(2^{n-1}\right) \text { to }+\left(2^{n-1}-1\right)
$$

