# Week 7 Hexadecimal Addition

### **Hexadecimal Addition**

### Method:

- 1. In any column of an additional problem, think of the two hexadecimal digits in terms of their decimal values.
- 2. If the sum is 15 or less, bring down the corresponding hexadecimal digit.
- 3. If the sum is greater than 15, then bring down the amount of the sum that exceeds 16 and carry "1" to the next column.

### **Hexadecimal Addition**

Add the following hexadecimal numbers:

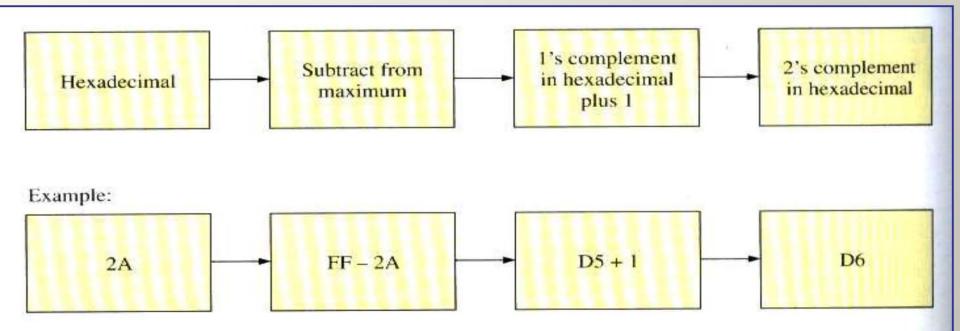
(a) 
$$23_{16} + 16_{16}$$
 (b)  $58_{16} + 22_{16}$  (c)  $2B_{16} + 84_{16}$  (d)  $DF_{16} + AC_{16}$ 

(a) 
$$23_{16}$$
 right column:  $3_{16} + 6_{16} = 3_{10} + 6_{10} = 9_{10} = 9_{16}$   
 $+16_{16}$  left column:  $2_{16} + 1_{16} = 2_{10} + 1_{10} = 3_{10} = 3_{16}$ 

(b) 
$$58_{16}$$
 right column:  $8_{16} + 2_{16} = 8_{10} + 2_{10} = 10_{10} = A_{16}$   
 $+ 22_{16}$  left column:  $5_{16} + 2_{16} = 5_{10} + 2_{10} = 7_{10} = 7_{16}$ 

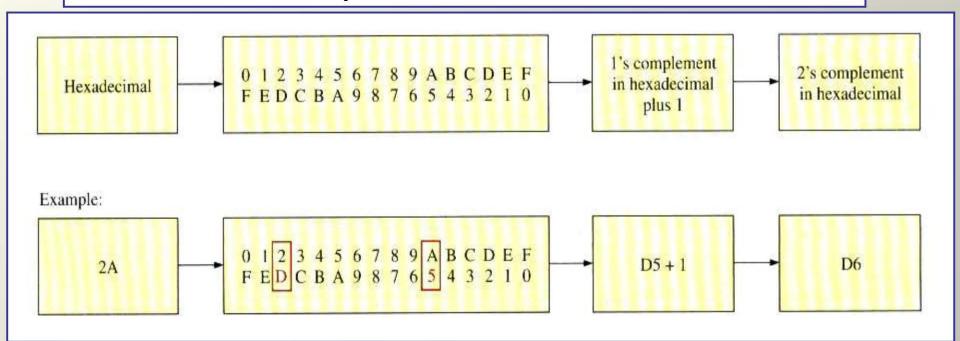
(c) 
$$2B_{16}$$
 right column:  $B_{16} + 4_{16} = 11_{10} + 4_{10} = 15_{10} = F_{16}$   
 $+ 84_{16}$  left column:  $2_{16} + 8_{16} = 2_{10} + 8_{10} = 10_{10} = A_{16}$ 

(d) DF<sub>16</sub> right column: 
$$F_{16} + C_{16} = 15_{10} + 12_{10} = 27_{10}$$
  
 $+ AC_{16}$   $27_{10} - 16_{10} = 11_{10} = B_{16}$  with a 1 carry left column:  $D_{16} + A_{16} + 1_{16} = 13_{10} + 10_{10} + 1_{10} = 24_{10}$   
 $24_{10} - 16_{10} = 8_{10} = 8_{16}$  with a 1 carry  $rv$ 


### Method -1-:

- 1. Convert the hexadecimal number to binary, then:
- 2. Get the 2<sup>nd</sup> complement of the subtrahend and add it to minuend.
- 3. Convert the result into hexadecimal.




### Method -2-

- 1. Get the 2<sup>nd</sup> complement of the subtrahend by Subtracting it from the maximum hexadecimal number and add "1".
- 2. Add the 2<sup>nd</sup> complement to the minuend.



### Method -3-

- 1. Get the 2<sup>nd</sup> complement of the subtrahend by:
  - 1. Write the hexadecimal digits and its reverse directly below it.
  - 2. Find out the 1<sup>st</sup> complement in hexadecimal by taking the associated reversed hexadecimal of the subtrahend.
  - 3. Add the 1 to the 1<sup>st</sup> hexadecimal complement
- 2. Add the 2<sup>nd</sup> complement to the minuend.



Subtract the following hexadecimal numbers:

(a) 
$$84_{16} - 2A_{16}$$
 (b)  $C3_{16} - 0B_{16}$ 

**(b)** 
$$C3_{16} - 0B_{16}$$

Solution

(a) 
$$2A_{16} = 00101010$$
  
2's complement of  $2A_{16} = 11010110 = D6_{16}$  (using Method 1)

$$\begin{array}{ccc}
84_{16} \\
+ D6_{16} \\
\hline
1/5A_{16}
\end{array}$$
Add

Drop carry, as in 2's complement addition

The difference is  $5A_{16}$ .

**(b)** 
$$0B_{16} = 00001011$$

2's complement of 
$$0B_{16} = 11110101 = F5_{16}$$
 (using Method 1)

$$C3_{16}$$
 $+ F5_{16}$ 
 $\cancel{1}B8_{16}$ 
Add
Drop carry

The difference is **B8**<sub>16</sub>.

# 11- Octal Numbers

The Octal number system has 8 digits.

These are: 0, 1, 2, 3, 4, 5, 6, 7

The Octal system has the base = 8

Binary number can easily be converted to octal by grouping 3 bits at a time and writing the equivalent octal character for each group.

Express 1 001 011 000 001 110<sub>2</sub> in octal:

Group the binary number by 3-bits starting from the right. Thus, 113016<sub>8</sub>

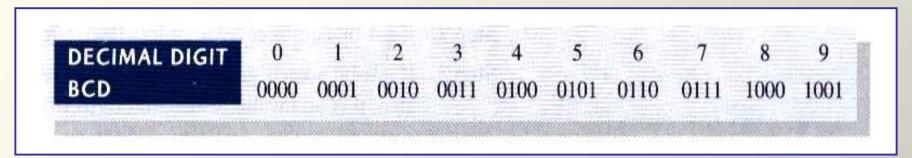
| Decimal | Octal | Binary |
|---------|-------|--------|
| 0       | 0     | 0000   |
| 1       | 1     | 0001   |
| 2       | 2     | 0010   |
| 3       | 3     | 0011   |
| 4       | 4     | 0100   |
| 5       | 5     | 0101   |
| 6       | 6     | 0110   |
| 7       | 7     | 0111   |
| 8       | 10    | 1000   |
| 9       | 11    | 1001   |
| 10      | 12    | 1010   |
| 11      | 13    | 1011   |
| 12      | 14    | 1100   |
| 13      | 15    | 1101   |
| 14      | 16    | 1110   |
| 15      | 17    | 1111   |

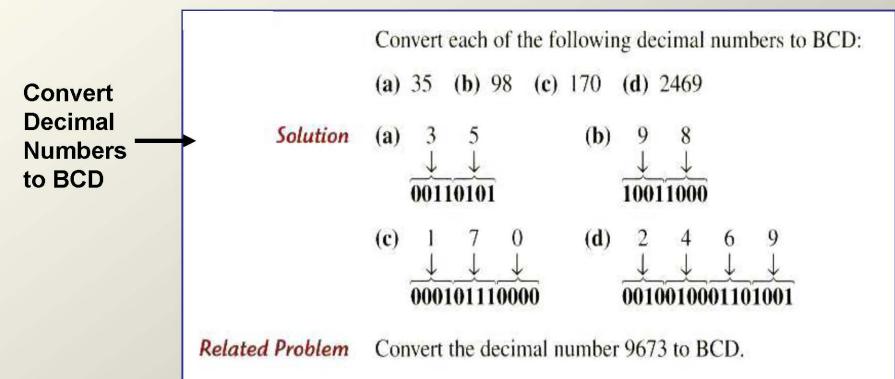
# **Octal Numbers**

The Octal system has the base = 8

Column weights 
$$\begin{cases} 8^3 & 8^2 & 8^1 & 8^0 \\ 512 & 64 & 8 & 1 \end{cases}$$

Express 3702<sub>8</sub> in decimal.


Start by writing the column weights:


$$3(512) + 7(64) + 0(8) + 2(1) = 1986_{10}$$

| v.      |       |        |
|---------|-------|--------|
| Decimal | Octal | Binary |
| 0       | 0     | 0000   |
| 1       | 1     | 0001   |
| 2       | 2     | 0010   |
| 3       | 3     | 0011   |
| 4       | 4     | 0100   |
| 5       | 5     | 0101   |
| 6       | 6     | 0110   |
| 7       | 7     | 0111   |
| 8       | 10    | 1000   |
| 9       | 11    | 1001   |
| 10      | 12    | 1010   |
| 11      | 13    | 1011   |
| 12      | 14    | 1100   |
| 13      | 15    | 1101   |
| 14      | 16    | 1110   |
| 15      | 17    | 1111   |

# 12- Binary Coded Decimal (BCD)

Binary Coded Decimal BCD system is an excellent way to provide an interface between Binary and Decimal System.



