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Properties of Electric Charges 

A number of simple experiments demonstrate the existence of electric 

forces and charges. For example, after running a comb through your hair 

on a dry day, you will find that the comb attracts bits of paper. The 

attractive force is often strong enough to suspend the paper. The same 

effect occurs when certain materials are rubbed together, such as glass 

rubbed with silk or rubber with fur. 

Another simple experiment is to rub an inflated balloon with wool. The 

balloon then adheres to a wall, often for hours. When materials behave in 

this way, they are said to be electrified, or to have become electrically 

charged. You can easily electrify your body by vigorously rubbing your 

shoes on a wool rug. Evidence of the electric charge on your body can be 

detected by lightly touching (and startling) a friend.  

Under the right conditions, you will see a spark when you touch, and both 

of you will feel a slight tingle. (Experiments such as these work best on a 

dry day because an excessive amount of moisture in the air can cause any 

charge you build up to “leak” from your body to the Earth.) there are two 

kinds of electric charges, which were given the names positive and 

negative 

We identify negative charge as that type possessed by electrons and 

positive charge as that possessed by protons. To verify that there are two 

types of charge, suppose a hard rubber rod that has been rubbed with fur is 

suspended by a sewing thread, as shown in Figure 23.1. When a glass rod 

that has been rubbed with silk is brought near the rubber rod, the two attract 

each other (Fig. 23.1a). On the other hand, if two charged rubber rods (or 

two charged glass rods) are brought near each other, as shown in Figure 

23.1b, the two repel each other. This observation shows that the rubber and 

glass have two different types of charge on them. On the basis of these 

observations, we conclude that charges of the same sign repel one another 

and charges with opposite signs attract one another.  
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In addition to the existence of two types of charge, several other properties 

of charge have been discovered 

 

• Charge is quantized. This means that electric charge comes in discrete 

amounts, and there is a smallest possible amount of charge that an object 

can have. In the SI system, this smallest amount is e ≡ 1.602 × 10−19 C . 

No free particle can have less charge than this, and, therefore, the charge 

on any object—the charge on all objects—must be an integer multiple of 

this amount. All macroscopic, charged objects have charge because 

electrons have either been added or taken away from them, resulting in a 

net charge. 

• The magnitude of the charge is independent of the type. Phrased 

another way, the smallest possible positive charge (to four significant 

figures) is +1.602 × 10−19 C , and the smallest possible negative charge is 

−1.602 × 10−19 C ; these values are exactly equal. This is simply how the 

laws of physics in our universe turned out. 

• Charge is conserved. Charge can neither be created nor destroyed; it can 

only be transferred from place to place, from one object to another. 

Frequently, we speak of two charges “canceling”; this is verbal shorthand. 

It means that if two objects that have equal and opposite charges are 

physically close to each other, then the (oppositely directed) forces they 

apply on some other charged object cancel, for a net force of zero. It is 
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important that you understand that the charges on the objects by no means 

disappear, however. The net charge of the universe is constant. 

• Charge is conserved in closed systems. In principle, if a negative charge 

disappeared from your lab bench and reappeared on the Moon, 

conservation of charge would still hold. However, this never happens. If 

the total charge you have in your local system on your lab bench is 

changing, there will be a measurable flow of charge into or out of the 

system. Again, charges can and do move around, and their effects can and 

do cancel, but the net charge in your local environment (if closed) is 

conserved. The last two items are both referred to as the law of 

conservation of charge 

 

In Summary 

 

H.W 
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Chapter 2

Electric Force & Electric Field

2.1 Electric Force

The electric force between two charges
q1 and q2 can be described by
Coulomb’s Law.

~F12 = Force on q1 exerted by q2

~F12 = 1
4πε0

· q1q2
r2
12
· r̂12

where r̂12 =
~r12

|~r12| is the unit vector which locates particle 1 relative to particle 2.

i.e. ~r12 = ~r1 − ~r2

• q1, q2 are electrical charges in units of Coulomb(C)

• Charge is quantized
Recall 1 electron carries 1.602× 10−19C

• ε0 = Permittivity of free space = 8.85× 10−12C2/Nm2

COULOMB’S LAW:

(1) q1, q2 can be either positive or negative.
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(2) If q1, q2 are of same sign, then the force experienced by q1 is in direction
away from q2, that is, repulsive.

(3) Force on q2 exerted by q1:

~F21 =
1

4πε0

· q2q1

r2
21

· r̂21

BUT:

r12 = r21 = distance between q1, q2

r̂21 =
~r21

r21

=
~r2 − ~r1

r21

=
−~r12

r12

= −r̂12

∴ ~F21 = −~F12 Newton’s 3rd Law

SYSTEM WITH MANY CHARGES:

The total force experienced by charge
q1 is the vector sum of the forces on q1

exerted by other charges.

~F1 = Force experienced by q1

= ~F1,2 + ~F1,3 + ~F1,4 + · · ·+ ~F1,N

PRINCIPLE OF SUPERPOSITION:

~F1 =
N∑

j=2

~F1,j

2.2 The Electric Field

While we need two charges to quantify the electric force, we define the electric
field for any single charge distribution to describe its effect on other charges.
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Total force ~F = ~F1 + ~F2 + · · ·+ ~FN

The electric field is defined as

lim
q0→0

~F

q0

= ~E

(a) E-field due to a single charge qi:

From the definitions of Coulomb’s Law, the
force experienced at location of q0 (point P)

~F0,i =
1

4πε0

· q0qi

r2
0,i

· r̂0,i

where r̂0,i is the unit vector along the direction from charge qi to q0,

r̂0,i = Unit vector from charge qi to point P

= r̂i (radical unit vector from qi)

Recall ~E = lim
q0→0

~F

q0
∴ E-field due to qi at point P:

~Ei =
1

4πε0

· qi

r2
i

· r̂i

where ~ri = Vector pointing from qi to point P,
thus r̂i = Unit vector pointing from qi to point P
Note:

(1) E-field is a vector.

(2) Direction of E-field depends on both position of P and sign of qi.

(b) E-field due to system of charges:

Principle of Superposition:
In a system with N charges, the total E-field due to all charges is the
vector sum of E-field due to individual charges.
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i.e. ~E =
∑

i

~Ei =
1

4πε0

∑

i

qi

r2
i

r̂i

(c) Electric Dipole

System of equal and opposite charges
separated by a distance d.

Figure 2.1: An electric dipole. (Direction of
~d from negative to positive charge)

Electric Dipole Moment

~p = q~d = qdd̂

p = qd

Example: ~E due to dipole along x-axis

Consider point P at distance x along the perpendicular axis of the dipole ~p :

~E = ~E+ + ~E−
↑ ↑

(E-field (E-field
due to +q) due to −q)

Notice: Horizontal E-field components of ~E+ and ~E− cancel out.

∴ Net E-field points along the axis oppo-
site to the dipole moment vector.
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Magnitude of E-field = 2E+ cos θ

∴ E = 2
(

E+ or E− magnitude!︷ ︸︸ ︷
1

4πε0

· q

r2

)
cos θ

But r =

√(d

2

)2
+ x2

cos θ =
d/2

r

∴ E =
1

4πε0

· p

[x2 + (d
2
)2]

3
2

(p = qd)

Special case: When x À d

[x2 + (
d

2
)2]

3
2 = x3[1 + (

d

2x
)2]

3
2

• Binomial Approximation:

(1 + y)n ≈ 1 + ny if y ¿ 1

E-field of dipole +
1

4πε0

· p

x3
∼ 1

x3

• Compare with
1

r2
E-field for single charge

• Result also valid for point P along any axis with respect to dipole

2.3 Continuous Charge Distribution

E-field at point P due to dq:

d ~E =
1

4πε0

· dq

r2
· r̂
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∴ E-field due to charge distribution:

~E =

ˆ

V olume

d~E =

ˆ

V olume

1

4πε0

· dq

r2
· r̂

(1) In many cases, we can take advantage of the symmetry of the system to
simplify the integral.

(2) To write down the small charge element dq:

1-D dq = λ ds λ = linear charge density ds = small length element
2-D dq = σ dA σ = surface charge density dA = small area element
3-D dq = ρ dV ρ = volume charge density dV = small volume element

Example 1: Uniform line of charge

charge per
unit length
= λ

(1) Symmetry considered: The E-field from +z and −z directions cancel along
z-direction, ∴ Only horizontal E-field components need to be considered.

(2) For each element of length dz, charge dq = λdz
∴ Horizontal E-field at point P due to element dz =

|d ~E| cos θ =
1

4πε0

· λdz

r2
︸ ︷︷ ︸

dEdz

cos θ

∴ E-field due to entire line charge at point P

E =

L/2ˆ

−L/2

1

4πε0

· λdz

r2
cos θ

= 2

L/2ˆ

0

λ

4πε0

· dz

r2
cos θ
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To calculate this integral:

• First, notice that x is fixed, but z, r, θ all varies.

• Change of variable (from z to θ)

(1)
z = x tan θ ∴ dz = x sec2 θ dθ
x = r cos θ ∴ r2 = x2 sec2 θ

(2) When
z = 0 , θ = 0◦

z = L/2 θ = θ0 where tan θ0 =
L/2

x

E = 2 · λ

4πε0

θ0ˆ

0

x sec2 θ dθ

x2 sec2 θ
· cos θ

= 2 · λ

4πε0

θ0ˆ

0

1

x
· cos θ dθ

= 2 · λ

4πε0

· 1

x
· (sin θ)

∣∣∣
θ0

0

= 2 · λ

4πε0

· 1

x
· sin θ0

= 2 · λ

4πε0

· 1

x
· L/2√

x2 + (L
2
)2

E =
1

4πε0

· λL

x
√

x2 + (L
2
)2

along x-direction

Important limiting cases:

1. x À L : E +
1

4πε0

· λL

x2

But λL = Total charge on rod
∴ System behave like a point charge

2. L À x : E +
1

4πε0

· λL

x · L
2

Ex =
λ

2πε0x

ELECTRIC FIELD DUE TO INFINITELY LONG LINE OF CHARGE
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Example 2: Ring of Charge

E-field at a height z above a ring of
charge of radius R

(1) Symmetry considered: For every charge element dq considered, there exists

dq′ where the horizontal ~E field components cancel.
⇒ Overall E-field lies along z-direction.

(2) For each element of length dz, charge

dq = λ · ds
↑ ↑

Linear Circular
charge density length element

dq = λ · R dφ, where φ is the angle
measured on the ring plane

∴ Net E-field along z-axis due to dq:

dE =
1

4πε0

· dq

r2
· cos θ
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Total E-field =

ˆ
dE

=

ˆ 2π

0

1

4πε0

· λR dφ

r2
· cos θ (cos θ =

z

r
)

Note: Here in this case, θ, R and r are fixed as φ varies! BUT we want to
convert r, θ to R, z.

E =
1

4πε0

· λRz

r3

ˆ 2π

0

dφ

E =
1

4πε0

· λ(2πR)z

(z2 + R2)3/2
along z-axis

BUT: λ(2πR) = total charge on the ring

Example 3: E-field from a disk of surface charge density σ

We find the E-field of a disk by
integrating concentric rings of
charges.
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Total charge of ring

dq = σ · (2πr dr︸ ︷︷ ︸
Area of the ring

)

Recall from Example 2:

E-field from ring: dE =
1

4πε0

· dq z

(z2 + r2)3/2

∴ E =
1

4πε0

ˆ R

0

2πσr dr · z
(z2 + r2)3/2

=
1

4πε0

ˆ R

0

2πσz
r dr

(z2 + r2)3/2

• Change of variable:

u = z2 + r2 ⇒ (z2 + r2)3/2 = u3/2

⇒ du = 2r dr ⇒ r dr = 1
2
du

• Change of integration limit:

{
r = 0 , u = z2

r = R , u = z2 + R2

∴ E =
1

4πε0

· 2πσz

ˆ z2+R2

z2

1

2
u−3/2du

BUT:

ˆ
u−3/2du =

u−1/2

−1/2
= −2u−1/2

∴ E =
1

2ε0

σz (−u−1/2)
∣∣∣
z2+R2

z2

=
1

2ε0

σz

( −1√
z2 + R2

+
1

z

)

E =
σ

2ε0

[
1− z√

z2 + R2

]
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VERY IMPORTANT LIMITING CASE:

If R À z, that is if we have an infinite sheet of charge with charge den-
sity σ:

E =
σ

2ε0

[
1− z√

z2 + R2

]

' σ

2ε0

[
1− z

R

]

E ≈ σ

2ε0

E-field is normal to the charged surface
Figure 2.2: E-field due to an infi-
nite sheet of charge, charge den-
sity = σ

Q: What’s the E-field belows the charged sheet?

2.4 Electric Field Lines

To visualize the electric field, we can use a graphical tool called the electric
field lines.

Conventions:

1. The start on position charges and end on negative charges.

2. Direction of E-field at any point is given by tangent of E-field line.

3. Magnitude of E-field at any point is proportional to number of E-field lines
per unit area perpendicular to the lines.
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2.5 Point Charge in E-field

When we place a charge q in an E-field ~E, the force experienced by the charge is

~F = q ~E = m~a

Applications: Ink-jet printer, TV cathoderay tube.

Example:

Ink particle has mass m, charge q (q < 0 here)

Assume that mass of inkdrop is small, what’s the deflection y of the charge?

Solution:

First, the charge carried by the inkdrop is negtive, i.e. q < 0.

Note: q ~E points in opposite direction of ~E.

Horizontal motion: Net force = 0

∴ L = vt (2.1)
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Vertical motion: |q ~E| À |m~g|, q is negative,

∴ Net force = −qE = ma (Newton’s 2nd Law)

∴ a = −qE

m
(2.2)

Vertical distance travelled:

y =
1

2
at2

2.6 Dipole in E-field

Consider the force exerted on the dipole in an external E-field:

Assumption: E-field from dipole doesn’t affect the external E-field.

• Dipole moment:

~p = q~d

• Force due to the E-field on +ve
and −ve charge are equal and
opposite in direction. Total ex-
ternal force on dipole = 0.

BUT: There is an external torque on
the center of the dipole.

Reminder:

Force ~F exerts at point P.
The force exerts a torque
~τ = ~r × ~F on point P with
respect to point O.

Direction of the torque vector ~τ is determined from the right-hand rule.
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Reference: Halliday Vol.1 Chap 9.1 (Pg.175) torque
Chap 11.7 (Pg.243) work done

Net torque ~τ

• direction: clockwise
torque

• magnitude:

τ = τ+ve + τ−ve

= F · d

2
sin θ + F · d

2
sin θ

= qE · d sin θ

= pE sin θ

~τ = ~p× ~E

Energy Consideration:

When the dipole ~p rotates dθ, the E-field does work.

Work done by external E-field on the dipole:

dW = −τ dθ

Negative sign here because torque by E-field acts to decrease θ.

BUT: Because E-field is a conservative force field 1 2 , we can define a
potential energy (U) for the system, so that

dU = −dW

∴ For the dipole in external E-field:

dU = −dW = pE sin θ dθ

∴ U(θ) =

ˆ
dU =

ˆ
pE sin θ dθ

= −pE cos θ + U0

1more to come in Chap.4 of notes
2ref. Halliday Vol.1 Pg.257, Chap 12.1
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set U(θ = 90◦) = 0,
∴ 0 = −pE cos 90◦ + U0

∴ U0 = 0

∴ Potential energy:

U = −pE cos θ = −~p · ~E
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Electric Flux and Gauss’ Law

3.1 Electric Flux

Latin: flux = ”to flow”

Graphically:
Electric flux ΦE represents the number of E-field lines
crossing a surface.

Mathematically:

Reminder: Vector of the area ~A is perpendicular to the area A.

For non-uniform E-field & surface, direction of the area vector ~A is not
uniform.

d ~A = Area vector for
small area element
dA
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∴ Electric flux dΦE = ~E · d ~A

Electric flux of ~E through surface S: ΦE =

ˆ

S

~E · d ~A

ˆ

S

= Surface integral over surface S

= Integration of integral over all area elements on surface S

Example:

~E =
1

4πε0

· −2q

r2
r̂ =

−q

2πε0R2
r̂

For a hemisphere, d ~A = dA r̂

ΦE =

ˆ

S

−q

2πε0R2
r̂ · (dA r̂) (∵ r̂ · r̂ = 1)

= − q

2πε0R2

ˆ

S

dA

︸ ︷︷ ︸
2πR2

=
−q

ε0

For a closed surface:

Recall: Direction of area vector d ~A
goes from inside to outside of closed
surface S.
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Electric flux over closed surface S: ΦE =

˛

S

~E · d ~A

˛

S

= Surface integral over closed surface S

Example:

Electric flux of charge q over closed
spherical surface of radius R.

~E =
1

4πε0

· q
r2

r̂ =
q

4πε0R2
r̂ at the surface

Again, d ~A = dA · r̂

∴ ΦE =

˛

S

~E︷ ︸︸ ︷
q

4πε0R2
r̂ ·

d ~A︷ ︸︸ ︷
dA r̂

=
q

4πε0R2

˛

S

dA

︸ ︷︷ ︸
Total surface area of S = 4πR2

ΦE =
q

ε0

IMPORTANT POINT:
If we remove the spherical symmetry of closed surface S, the total number of

E-field lines crossing the surface remains the same.
∴ The electric flux ΦE
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ΦE =

˛

S

~E · d ~A =

˛

S′

~E · d ~A =
q

ε0

3.2 Gauss’ Law

ΦE =

˛

S

~E · d ~A =
q

ε0

for any closed surface S

And q is the net electric charge enclosed in closed surface S.

• Gauss’ Law is valid for all charge distributions and all closed surfaces.
(Gaussian surfaces)

• Coulomb’s Law can be derived from Gauss’ Law.

• For system with high order of symmetry, E-field can be easily determined if
we construct Gaussian surfaces with the same symmetry and applies Gauss’
Law

3.3 E-field Calculation with Gauss’ Law

(A) Infinite line of charge

Linear charge density: λ
Cylindrical symmetry.
E-field directs radially outward from the
rod.
Construct a Gaussian surface S in the
shape of a cylinder, making up of a
curved surface S1, and the top and
bottom circles S2, S3.

Gauss’ Law:

˛

S

~E · d ~A =
Total charge

ε0

=
λL

ε0
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˛

S

~E · d ~A =

ˆ

S1

~E · d ~A

︸ ︷︷ ︸
~E‖d ~A

+

ˆ

S2

~E · d ~A +

ˆ

S3

~E · d ~A

︸ ︷︷ ︸
= 0 ∵ ~E⊥d ~A

∴ E

ˆ

S1

dA

︸ ︷︷ ︸
Total area of surface S1

=
λL

ε0

E(2πrL) =
λL

ε0

∴ E =
λ

2πε0r
(Compare with Chapter 2 note)

~E =
λ

2πε0r
r̂

(B) Infinite sheet of charge

Uniform surface charge density:
σ
Planar symmetry.
E-field directs perpendicular to
the sheet of charge.
Construct Gaussian surface S in
the shape of a cylinder (pill
box) of cross-sectional area A.

Gauss’ Law:

˛

S

~E · d ~A =
Aσ

ε0

ˆ

S1

~E · d ~A = 0 ∵ ~E ⊥ d ~A over whole surface S1

ˆ

S2

~E · d ~A +

ˆ

S3

~E · d ~A = 2EA ( ~E ‖ d ~A2, ~E ‖ d ~A3)
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Note: For S2, both ~E and d ~A2 point up

For S3, both ~E and d ~A3 point down

∴ 2EA =
Aσ

ε0

⇒ E =
σ

2ε0

(Compare with Chapter 2 note)

(C) Uniformly charged sphere
Total charge = Q
Spherical symmetry.

(a) For r > R:

Consider a spherical Gaussian surface S of
radius r:

~E ‖ d ~A ‖ r̂

Gauss’ Law:

˛

S

~E · d ~A =
Q

ε0

˛

S

E · dA =
Q

ε0

E

˛

S

dA

︸ ︷︷ ︸
surface area of S = 4πr2

=
Q

ε0

∴ ~E =
Q

4πε0r2
r̂ ; for r > R

(b) For r < R:

Consider a spherical Gaussian surface S ′ of
radius r < R, then total charge included q is
proportional to the volume included by S ′

∴
q

Q
=

Volume enclosed by S ′

Total volume of sphere
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q

Q
=

4/3 πr3

4/3 πR3
⇒ q =

r3

R3
Q

Gauss’ Law:

˛

S′
~E · d ~A =

q

ε0

E

˛

S′
dA

︸ ︷︷ ︸
surface area of S ′ = 4πr2

=
r3

R3

1

ε0

·Q

∴ ~E =
1

4πε0

· Q

R3
r r̂ ; for r ≤ R

3.4 Gauss’ Law and Conductors

For isolated conductors, charges are free
to move until all charges lie outside the
surface of the conductor. Also, the E-
field at the surface of a conductor is per-
pendicular to its surface. (Why?)

Consider Gaussian surface S of shape of cylinder:

˛

S

~E · d ~A =
σA

ε0
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BUT

ˆ

S1

~E · d ~A = 0 ( ∵ ~E ⊥ d ~A )
ˆ

S3

~E · d ~A = 0 ( ∵ ~E = 0 inside conductor )

ˆ

S2

~E · d ~A = E

ˆ

S2

dA

︸ ︷︷ ︸
Area of S2

( ∵ ~E ‖ d ~A )

= EA

∴ Gauss’ Law ⇒ EA =
σA

ε0

∴ On conductor’s surface E =
σ

ε0

BUT, there’s no charge inside conductors.

∴ Inside conductors E = 0 Always!

Notice: Surface charge density on a conductor’s surface is not uniform.

Example: Conductor with a charge inside
Note: This is not an isolated system (because of the charge inside).

Example:
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I. Charge sprayed on a conductor sphere:

First, we know that charges all move
to the surface of conductors.

(i) For r < R:
Consider Gaussian surface S2

˛

S2

~E · d ~A = 0 ( ∵ no charge inside )

⇒ E = 0 everywhere.

(ii) For r ≥ R:
Consider Gaussian surface S1:

˛

S1

~E · d ~A =
Q

ε0

E

˛

S1

d ~A

︸ ︷︷ ︸
4πr2

=
Q

ε0

(

For a conductor︷ ︸︸ ︷
~E ‖ d ~A ‖ r̂︸︷︷︸

Spherically symmetric

)

E =
Q

4πε0r2

II. Conductor sphere with hole inside:



3.4. GAUSS’ LAW AND CONDUCTORS 34

Consider Gaussian surface S1: Total
charge included = 0

∴ E-field = 0 inside

The E-field is identical to the case of a
solid conductor!!

III. A long hollow cylindrical conductor:

Example:
Inside hollow cylinder ( +2q )

{
Inner radius a
Outer radius b

Outside hollow cylinder ( −3q )

{
Inner radius c
Outer radius d

Question: Find the charge on each surface of the conductor.

For the inside hollow cylinder, charges distribute only on the sur-
face.
∴ Inner radius a surface, charge = 0
and Outer radius b surface, charge = +2q

For the outside hollow cylinder, charges do not distribute only on
outside.
∵ It’s not an isolated system. (There are charges inside!)

Consider Gaussian surface S ′ inside the conductor:
E-field always = 0

∴ Need charge −2q on radius c surface to balance the charge of inner
cylinder.
So charge on radius d surface = −q. (Why?)

IV. Large sheets of charge:
Total charge Q on sheet of area A,
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∴ Surface charge density σ =
Q

A

By principle of superposition

Region A: E = 0 E = 0

Region B: E =
Q

ε0A
E =

Q

ε0A
Region C: E = 0 E = 0



Chapter 4

Electric Potential

4.1 Potential Energy and Conservative Forces

(Read Halliday Vol.1 Chap.12)
Electric force is a conservative force

Work done by the electric force ~F as a
charge moves an infinitesimal distance d~s
along Path A = dW

Note: d~s is in the tangent direction of the curve of Path A.

dW = ~F · d~s

∴ Total work done W by force ~F in moving the particle from Point 1 to Point 2

W =

ˆ 2

1

~F · d~s
Path A

ˆ 2

1

= Path Integral

Path A
= Integration over Path A from Point 1 to Point 2.
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DEFINITION: A force is conservative if the work done on a particle by
the force is independent of the path taken.

∴ For conservative forces,

ˆ 2

1

~F · d~s =

ˆ 2

1

~F · d~s
Path A Path B

Let’s consider a path starting at point
1 to 2 through Path A and from 2 to 1
through Path C

Work done =

ˆ 2

1

~F · d~s +

ˆ 1

2

~F · d~s
Path A Path C

=

ˆ 2

1

~F · d~s −
ˆ 2

1

~F · d~s
Path A Path B

DEFINITION: The work done by a conservative force on a particle when it
moves around a closed path returning to its initial position is zero.

MATHEMATICALLY, ~∇× ~F = 0 everywhere for conservative force ~F

Conclusion: Since the work done by a conservative force ~F is path-independent,
we can define a quantity, potential energy, that depends only on the
position of the particle.

Convention: We define potential energy U such that

dU = −W = −
ˆ

~F · d~s

∴ For particle moving from 1 to 2
ˆ 2

1

dU = U2 − U1 = −
ˆ 2

1

~F · d~s

where U1, U2 are potential energy at position 1, 2.
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Example:

Suppose charge q2

moves from point 1
to 2.

From definition: U2 − U1 = −
ˆ 2

1

~F · d~r

= −
ˆ r2

r1

F dr ( ∵ ~F ‖ d~r )

= −
ˆ r2

r1

1

4πε0

q1q2

r2
dr

( ∵
ˆ

dr

r2
= −1

r
+ C ) =

1

4πε0

q1q2

r

∣∣∣∣∣
r2

r1

−∆W = ∆U =
1

4πε0

q1q2

(
1

r2

− 1

r1

)

Note:

(1) This result is generally true for 2-Dimension or 3-D motion.

(2) If q2 moves away from q1,
then r2 > r1, we have

• If q1, q2 are of same sign,
then ∆U < 0, ∆W > 0
(∆W = Work done by electric repulsive force)

• If q1, q2 are of different sign,
then ∆U > 0, ∆W < 0
(∆W = Work done by electric attractive force)

(3) If q2 moves towards q1,
then r2 < r1, we have

• If q1, q2 are of same sign,
then ∆U 0, ∆W 0

• If q1, q2 are of different sign,
then ∆U 0, ∆W 0
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(4) Note: It is the difference in potential energy that is important.

REFERENCE POINT: U(r = ∞) = 0

∴ U∞ − U1 =
1

4πε0

q1q2

(
1

r2

− 1

r1

)

↓
∞

U(r) =
1

4πε0

· q1q2

r

If q1, q2 same sign, then U(r) > 0 for all r
If q1, q2 opposite sign, then U(r) < 0 for all r

(5) Conservation of Mechanical Energy:
For a system of charges with no external force,

E = K + U = Constant
↙ ↘

(Kinetic Energy) (Potential Energy)

or ∆E = ∆K + ∆U = 0

Potential Energy of A System of Charges

Example: P.E. of 3 charges q1, q2, q3

Start: q1, q2, q3 all at r = ∞, U = 0

Step1: Move q1 from ∞ to its position ⇒ U = 0

Step2:

Move q2 from ∞ to new position ⇒

U =
1

4πε0

q1q2

r12

Step3:

Move q3 from ∞ to new position ⇒ Total P.E.

U =
1

4πε0

[
q1q2

r12

+
q1q3

r13

+
q2q3

r23

]

Step4: What if there are 4 charges?
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4.2 Electric Potential

Consider a charge q at center, we consider its effect on test charge q0

DEFINITION: We define electric potential V so that

∆V =
∆U

q0

=
−∆W

q0

( ∴ V is the P.E. per unit charge)

• Similarly, we take V (r = ∞) = 0.

• Electric Potential is a scalar.

• Unit: V olt(V ) = Joules/Coulomb

• For a single point charge:

V (r) =
1

4πε0

· q

r

• Energy Unit: ∆U = q∆V

electron− V olt(eV ) = 1.6× 10−19

︸ ︷︷ ︸
charge of electron

J

Potential For A System of Charges

For a total of N point charges, the po-
tential V at any point P can be derived
from the principle of superposition.

Recall that potential due to q1 at

point P: V1 =
1

4πε0

· q1

r1

∴ Total potential at point P due to N charges:

V = V1 + V2 + · · ·+ VN (principle of superposition)

=
1

4πε0

[
q1

r1

+
q2

r2

+ · · ·+ qN

rN

]
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V =
1

4πε0

N∑

i=1

qi

ri

Note: For ~E, ~F , we have a sum of vectors
For V, U , we have a sum of scalars

Example: Potential of an electric dipole

Consider the potential of
point P at distance x > d

2

from dipole.

V =
1

4πε0

[
+q

x− d
2

+
−q

x + d
2

]

Special Limiting Case: x À d

1

x∓ d
2

=
1

x
· 1

1∓ d
2x

' 1

x

[
1± d

2x

]

∴ V =
1

4πε0

· q

x

[
1 +

d

2x
− (1− d

2x
)

]

V =
p

4πε0x2
(Recall p = qd)

For a point charge E ∝ 1

r2
V ∝ 1

r

For a dipole E ∝ 1

r3
V ∝ 1

r2

For a quadrupole E ∝ 1

r4
V ∝ 1

r3

Electric Potential of Continuous Charge Distribution

For any charge distribution, we write the electri-
cal potential dV due to infinitesimal charge dq:

dV =
1

4πε0

· dq

r
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∴ V =

ˆ

charge
distribution

1

4πε0

· dq

r

Similar to the previous examples on E-field, for the case of uniform charge
distribution:

1-D ⇒ long rod ⇒ dq = λ dx
2-D ⇒ charge sheet ⇒ dq = σ dA
3-D ⇒ uniformly charged body ⇒ dq = ρ dV

Example (1): Uniformly-charged ring

Length of the infinitesimal ring element
= ds = Rdθ

∴ charge dq = λ ds

= λR dθ

dV =
1

4πε0

· dq

r
=

1

4πε0

· λR dθ√
R2 + z2

The integration is around the entire ring.

∴ V =

ˆ

ring

dV

=

ˆ 2π

0

1

4πε0

· λR dθ√
R2 + z2

=
λR

4πε0

√
R2 + z2

ˆ 2π

0

dθ

︸ ︷︷ ︸
2π

Total charge on the
ring = λ · (2πR) V =

Q

4πε0

√
R2 + z2

LIMITING CASE: z À R ⇒ V =
Q

4πε0

√
z2

=
Q

4πε0|z|
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Example (2): Uniformly-charged disk

Using the principle of superpo-
sition, we will find the potential
of a disk of uniform charge den-
sity by integrating the potential of
concentric rings.

∴ dV =
1

4πε0

ˆ

disk

dq

r

Ring of radius x: dq = σ dA = σ (2πxdx)

∴ V =

ˆ R

0

1

4πε0

· σ2πx dx√
x2 + z2

=
σ

4ε0

ˆ R

0

d(x2 + z2)

(x2 + z2)1/2

V =
σ

2ε0

(
√

z2 + R2 −
√

z2)

=
σ

2ε0

(
√

z2 + R2 − |z|)
Recall:

|x| =
{

+x; x ≥ 0
−x; x < 0

Limiting Case:

(1) If |z| À R

√
z2 + R2 =

√
z2

(
1 +

R2

z2

)

= |z| ·
(
1 +

R2

z2

) 1
2 ( (1 + x)n ≈ 1 + nx if x ¿ 1 )

' |z| ·
(
1 +

R2

2z2

)
(
|z|
z2

=
1

|z| )

∴ At large z, V ' σ

2ε0

· R2

2|z| =
Q

4πε0|z| (like a point charge)

where Q = total charge on disk = σ · πR2
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(2) If |z| ¿ R

√
z2 + R2 = R ·

(
1 +

z2

R2

) 1
2

' R
(
1 +

z2

2R2

)

∴ V ' σ

2ε0

[
R− |z|+ z2

2R

]

At z = 0, V =
σR

2ε0

; Let’s call this V0

∴ V (z) =
σR

2ε0

[
1− |z|

R
+

z2

2R2

]

V (z) = V0

[
1− |z|

R
+

z2

2R2

]

The key here is that it is the difference between potentials of two points
that is important.
⇒ A convenience reference point to compare in this example is the
potential of the charged disk.
∴ The important quantity here is

V (z)− V0 = −|z|
R

V0 +
½

½
½½z2

2R2
V0

neglected as z ¿ R

V (z)− V0 = −V0

R
|z|
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4.3 Relation Between Electric Field E and Elec-

tric Potential V

(A) To get V from ~E:
Recall our definition of the potential V:

∆V =
∆U

q0

= −W12

q0

where ∆U is the change in P.E.; W12 is the work done in bringing charge
q0 from point 1 to 2.

∴ ∆V = V2 − V1 =
− ´ 2

1
~F · d~s

q0

However, the definition of E-field: ~F = q0
~E

∴ ∆V = V2 − V1 = −
ˆ 2

1

~E · d~s

Note: The integral on the right hand side of the above can be calculated
along any path from point 1 to 2. (Path-Independent)

Convention: V∞ = 0 ⇒ VP = −
ˆ P

∞
~E · d~s

(B) To get ~E from V :

Again, use the definition of V :

∆U = q0∆V = −W︸ ︷︷ ︸
Work done

However,

W = q0
~E︸︷︷︸

Electric force

· ∆~s

= q0 Es ∆s

where Es is the E-field component along
the path ∆~s.

∴ q0∆V = −q0Es∆s
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∴ Es = −∆V

∆s

For infinitesimal ∆s,

∴ Es = −dV

ds

Note: (1) Therefore the E-field component along any direction is the neg-
tive derivative of the potential along the same direction.

(2) If d~s ⊥ ~E, then ∆V = 0

(3) ∆V is biggest/smallest if d~s ‖ ~E

Generally, for a potential V (x, y, z), the relation between ~E(x, y, z) and V
is

Ex = −∂V

∂x
Ey = −∂V

∂y
Ez = −∂V

∂z

∂

∂x
,

∂

∂y
,

∂

∂z
are partial derivatives

For
∂

∂x
V (x, y, z), everything y, z are treated like a constant and we only

take derivative with respect to x.

Example: If V (x, y, z) = x2y − z

∂V

∂x
=

∂V

∂y
=

∂V

∂z
=

For other co-ordinate systems

(1) Cylindrical:

V (r, θ, z)





Er = −∂V

∂r

Eθ = −1

r
· ∂V

∂θ

Ez = −∂V

∂z
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(2) Spherical:

V (r, θ, φ)





Er = −∂V

∂r

Eθ = −1

r
· ∂V

∂θ

Eφ = − 1

r sin θ
· ∂V

∂φ

Note: Calculating V involves summation of scalars, which is easier than
adding vectors for calculating E-field.
∴ To find the E-field of a general charge system, we first calculate
V , and then derive ~E from the partial derivative.

Example: Uniformly charged disk
From potential calculations:

V =
σ

2ε0

(
√

R2 + z2 − |z| ) for a point along
the z-axis

For z > 0, |z| = z

∴ Ez = −∂V

∂z
=

σ

2ε0

[
1− z√

R2 + z2

] (Compare with
Chap.2 notes)

Example: Uniform electric field
(e.g. Uniformly charged +ve and −ve plates)

Consider a path going from the −ve
plate to the +ve plate
Potential at point P, VP can be deduced
from definition.

i.e. VP − V− = −
ˆ s

0

~E · d~s (V− = Potential of
−ve plate)

= −
ˆ s

0

(−E ds) ∵ ~E, d~s pointing
opposite directions

= E

ˆ s

0

ds = Es

Convenient reference: V− = 0

∴ VP = E · s
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4.4 Equipotential Surfaces

Equipotential surface is a surface on which the potential is constant.
⇒ (∆V = 0)

V (r) =
1

4πε0

· +q

r
= const

⇒ r = const

⇒ Equipotential surfaces are
circles/spherical surfaces

Note: (1) A charge can move freely on an equipotential surface without any
work done.

(2) The electric field lines must be perpendicular to the equipotential
surfaces. (Why?)
On an equipotential surface, V = constant
⇒ ∆V = 0 ⇒ ~E ·d~l = 0, where d~l is tangent to equipotential surface
∴ ~E must be perpendicular to equipotential surfaces.

Example: Uniformly charged surface (infinite)

Recall V = V0 − σ

2ε0

|z|
↑

Potential at z = 0
Equipotential surface means

V = const ⇒ V0 − σ

2ε0

|z| = C

⇒ |z| = constant
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Example: Isolated spherical charged conductors

Recall:

(1) E-field inside = 0

(2) charge distributed on the
outside of conductors.

(i) Inside conductor:

E = 0 ⇒ ∆V = 0 everywhere in conductor

⇒ V = constant everywhere in conductor

⇒ The entire conductor is at the same potential

(ii) Outside conductor:

V =
Q

4πε0r

∵ Spherically symmetric (Just like a point charge.)
BUT not true for conductors of arbitrary shape.

Example: Connected conducting spheres

Two conductors con-
nected can be seen as a
single conductor



4.4. EQUIPOTENTIAL SURFACES 50

∴ Potential everywhere is identical.

Potential of radius R1 sphere V1 =
q1

4πε0R1

Potential of radius R2 sphere V2 =
q2

4πε0R2

V1 = V2

⇒ q1

R1

=
q2

R2

⇒ q1

q2

=
R1

R2

Surface charge density

σ1 =
q1

4πR2
1︸ ︷︷ ︸

Surface area of radius R1 sphere

∴
σ1

σ2

=
q1

q2

· R2
2

R2
1

=
R2

R1

∴ If R1 < R2, then σ1 > σ2

And the surface electric field E1 > E2

For arbitrary shape conductor:

At every point on the conductor,
we fit a circle. The radius of this
circle is the radius of curvature.

Note: Charge distribution on a conductor does not have to be uniform.
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Capacitance and DC Circuits

5.1 Capacitors

A capacitor is a system of two conductors that carries equal and opposite
charges. A capacitor stores charge and energy in the form of electro-static field.

We define capacitance as

C =
Q

V
Unit: Farad(F)

where

Q = Charge on one plate

V = Potential difference between the plates

Note: The C of a capacitor is a constant that depends only on its shape and
material.
i.e. If we increase V for a capacitor, we can increase Q stored.

5.2 Calculating Capacitance

5.2.1 Parallel-Plate Capacitor
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(1) Recall from Chapter 3 note,

| ~E| = σ

ε0

=
Q

ε0A

(2) Recall from Chapter 4 note,

∆V = V+ − V− = −
ˆ +

−
~E · d~s

Again, notice that this integral is independent of the path taken.
∴ We can take the path that is parallel to the ~E-field.

∴ ∆V =

ˆ −

+

~E · d~s

=

ˆ −

+

E · ds

=
Q

ε0A

ˆ −

+

ds

︸ ︷︷ ︸
Length of path taken

=
Q

ε0A
· d

(3) ∴ C =
Q

∆V
=

ε0A

d

5.2.2 Cylindrical Capacitor

Consider two concentric cylindrical wire
of innner and outer radii r1 and r2 re-
spectively. The length of the capacitor
is L where r1 < r2 ¿ L.



5.2. CALCULATING CAPACITANCE 53

(1) Using Gauss’ Law, we determine that the E-field between the conductors
is (cf. Chap3 note)

~E =
1

2πε0

· λ

r
r̂ =

1

2πε0

· Q

Lr
r̂

where λ is charge per unit length

(2)

∆V =

ˆ −

+

~E · d~s

Again, we choose the path of integration so that d~s ‖ r̂ ‖ ~E

∴ ∆V =

ˆ r2

r1

E dr =
Q

2πε0L

ˆ r2

r1

dr

r︸ ︷︷ ︸
ln(

r2
r1

)

∴ C =
Q

∆V
= 2πε0

L

ln(r2/r1)

5.2.3 Spherical Capacitor

For the space between the two conductors,

E =
1

4πε0

· Q

r2
; r1 < r < r2

∆V =

ˆ −

+

~E · d~s

Choose d~s ‖ r̂ =

ˆ r2

r1

1

4πε0

· Q

r2
dr

=
Q

4πε0

[
1

r1

− 1

r2

]

C = 4πε0

[
r1r2

r2 − r1

]
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5.3 Capacitors in Combination

(a) Capacitors in Parallel

In this case, it’s the potential difference
V = Va − Vb that is the same across the
capacitor.

BUT: Charge on each capacitor different

Total charge Q = Q1 + Q2

= C1V + C2V

Q = (C1 + C2)︸ ︷︷ ︸
Equivalent capacitance

V

∴ For capacitors in parallel: C = C1 + C2

(b) Capacitors in Series

The charge across capacitors are
the same.

BUT: Potential difference (P.D.) across capacitors different

∆V1 = Va − Vc =
Q

C1

P.D. across C1

∆V2 = Vc − Vb =
Q

C2

P.D. across C2

∴ Potential difference

∆V = Va − Vb

= ∆V1 + ∆V2

∆V = Q (
1

C1

+
1

C2

) =
Q

C

where C is the Equivalent Capacitance

∴
1

C
=

1

C1

+
1

C2
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5.4 Energy Storage in Capacitor

In charging a capacitor, positive charge
is being moved from the negative plate
to the positive plate.
⇒ NEEDS WORK DONE!

Suppose we move charge dq from −ve to +ve plate, change in potential energy

dU = ∆V · dq =
q

C
dq

Suppose we keep putting in a total charge Q to the capacitor, the total potential
energy

U =

ˆ
dU =

ˆ Q

0

q

C
dq

∴ U =
Q2

2C
=

1

2
C∆V 2

(∵ Q=C∆V )

The energy stored in the capacitor is stored in the electric field between the
plates.

Note : In a parallel-plate capacitor, the E-field is constant between the plates.

∴ We can consider the E-field energy

density u =
Total energy stored

Total volume with E-field

∴ u =
U

Ad︸︷︷︸
Rectangular volume

Recall 



C =
ε0A

d

E =
∆V

d
⇒ ∆V = Ed

∴ u =
1

2
(

C︷ ︸︸ ︷
ε0A

d
) · (

(∆V )2︷︸︸︷
Ed )2 ·

1
V olume︷︸︸︷

1

Ad
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u =
1

2
ε0E

2 Energy per unit volume
of the electrostatic field

↑
can be generally applied

Example : Changing capacitance

(1) Isolated Capacitor:
Charge on the capacitor plates remains constant.

BUT: Cnew =
ε0A

2d
=

1

2
Cold

∴ Unew =
Q2

2Cnew

=
Q2

2Cold/2
= 2Uold

∴ In pulling the plates apart, work done W > 0

Summary :
Q → Q C → C/2

(V = Q
C

) ⇒ V → 2V E → E (E = V
d
)

1
2
ε0E

2 = u → u U → 2U (U = u · volume)

(2) Capacitor connected to a battery:
Potential difference between capacitor plates remains constant.

Unew =
1

2
Cnew∆V 2 =

1

2
· 1

2
Cold∆V 2 =

1

2
Uold

∴ In pulling the plates apart, work done by battery < 0

Summary :

Q → Q/2 C → C/2
V → V E → E/2
u → u/4 U → U/2
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5.5 Dielectric Constant

We first recall the case for a conductor being placed in an external E-field E0.

In a conductor, charges are free to move
inside so that the internal E-field E ′ set
up by these charges

E ′ = −E0

so that E-field inside conductor = 0.

Generally, for dielectric, the atoms and
molecules behave like a dipole in an E-field.

Or, we can envision this so that in the absence of E-field, the direction of dipole
in the dielectric are randomly distributed.
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The aligned dipoles will generate an induced E-field E ′, where |E ′| < |E0|.
We can observe the aligned dipoles in the form of induced surface charge.

Dielectric Constant : When a dielectric is placed in an external E-field E0,
the E-field inside a dielectric is induced.
E-field in dielectric

E =
1

Ke

E0

Ke = dielectric constant ≥ 1

Example :

Vacuum Ke = 1
Porcelain Ke = 6.5
Water Ke ∼ 80
Perfect conductor Ke = ∞
Air Ke = 1.00059

5.6 Capacitor with Dielectric

Case I :

Again, the charge remains constant after dielectric is inserted.

BUT: Enew =
1

Ke

Eold

∴ ∆V = Ed ⇒ ∆Vnew =
1

Ke

∆Vold

∴ C =
Q

∆V
⇒ Cnew = Ke Cold

For a parallel-plate capacitor with dielectric:

C =
Keε0A

d
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We can also write C =
εA

d
in general with

ε = Ke ε0 (called permittivity of dielectric)

(Recall ε0 = Permittivity of free space)

Energy stored U =
Q2

2C
;

∴ Unew =
1

Ke

Uold < Uold

∴ Work done in inserting dielectric < 0

Case II : Capacitor connected to a battery

Voltage across capacitor plates remains constant after insertion of dielec-
tric.
In both scenarios, the E-field inside capacitor remains constant
(∵ E = V/d)

BUT: How can E-field remain constant?
ANSWER: By having extra charge on capacitor plates.

Recall: For conductors,

E =
σ

ε0

(Chapter 3 note)

⇒ E =
Q

ε0A
(σ = charge per unit area = Q/A)

After insertion of dielectric:

E ′ =
E

Ke

=
Q′

Keε0A

But E-field remains constant!

∴ E ′ = E ⇒ Q′

Keε0A
=

Q

ε0A

⇒ Q′ = KeQ > Q
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∴ Capacitor C = Q/V ⇒ C ′ → KeC
Energy stored U = 1

2
CV 2 ⇒ U ′ → KeU

(i.e. Unew > Uold)

∴ Work done to insert dielectric > 0

5.7 Gauss’ Law in Dielectric

The Gauss’ Law we’ve learned is applicable in vacuum only. Let’s use the capac-
itor as an example to examine Gauss’ Law in dielectric.

Free charge
on plates

±Q ±Q

Induced charge
on dielectric

0 ∓Q′

Gauss’ Law Gauss’ Law:˛

S

~E · d ~A =
Q

ε0

˛

S

~E ′ · d ~A =
Q−Q′

ε0

⇒ E0 =
Q

ε0A
(1) ∴ E ′ =

Q−Q′

ε0A
(2)

However, we define E ′ =
E0

Ke

(3)

From (1), (2), (3) ∴
Q

Keε0A
=

Q

ε0A
− Q′

ε0A

∴ Induced charge density σ′ =
Q′

A
= σ

(
1− 1

Ke

)
< σ

where σ is free charge density.

Recall Gauss’ Law in Dielectric:

ε0

˛

S

~E ′ · d ~A = Q − Q′

↑ ↑ ↑
E-field in dielectric free charge induced charge
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⇒ ε0

˛

S

~E ′ · d ~A = Q−Q
[
1− 1

Ke

]

⇒ ε0

˛

S

~E ′ · d ~A =
Q

Ke

˛

S

Ke
~E ′ · d ~A =

Q

ε0

Gauss’ Law
in dielectric

Note :

(1) This goes back to the Gauss’ Law in vacuum with E =
E0

Ke

for dielectric

(2) Only free charges need to be considered, even for dielectric where there
are induced charges.

(3) Another way to write: ˛

S

~E · d ~A =
Q

ε

where ~E is E-field in dielectric, ε = Keε0 is Permittivity

Energy stored with dielectric:

Total energy stored: U =
1

2
CV 2

With dielectric, recall C =
Keε0A

d

V = Ed

∴ Energy stored per unit volume:

ue =
U

Ad
=

1

2
Keε0E

2

and udielectric = Keuvacuum

∴ More energy is stored per unit volume in dielectric than in vacuum.

5.8 Ohm’s Law and Resistance

ELECTRIC CURRENT is defined as the flow of electric charge through a
cross-sectional area.
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i =
dQ

dt
Unit: Ampere (A)
= C/second

Convention :

(1) Direction of current is the direction of flow of positive charge.

(2) Current is NOT a vector, but the current density is a vector.

~j = charge flow per unit time per unit area

i =

ˆ
~j · d ~A

Drift Velocity :

Consider a current i flowing through
a cross-sectional area A:

∴ In time ∆t, total charges passing through segment:

∆Q = q A(Vd∆t)︸ ︷︷ ︸
Volume of charge
passing through

n

where q is charge of the current carrier, n is density of charge carrier
per unit volume

∴ Current: i =
∆Q

∆t
= nqAvd

Current Density: ~j = nq~vd

Note : For metal, the charge carriers are the free electrons inside.
∴ ~j = −ne~vd for metals
∴ Inside metals, ~j and ~vd are in opposite direction.

We define a general property, conductivity (σ), of a material as:

~j = σ ~E
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Note : In general, σ is NOT a constant number, but rather a function of position
and applied E-field.

A more commonly used property, resistivity (ρ), is defined as ρ =
1

σ

∴ ~E = ρ~j

Unit of ρ : Ohm-meter (Ωm)
where Ohm (Ω) = Volt/Ampere

OHM’S LAW:
Ohmic materials have resistivity that are independent of the applied electric field.
i.e. metals (in not too high E-field)

Example :

Consider a resistor (ohmic material) of
length L and cross-sectional area A.

∴ Electric field inside conductor:

∆V =

ˆ
~E · d~s = E · L ⇒ E =

∆V

L

Current density: j =
i

A

∴ ρ =
E

j

ρ =
∆V

L
· 1

i/A

∆V

i
= R = ρ

L

A

where R is the resistance of the conductor.

Note: ∆V = iR is NOT a statement of Ohm’s Law. It’s just a definition for
resistance.
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ENERGY IN CURRENT:

Assuming a charge ∆Q enters
with potential V1 and leaves with
potential V2 :

∴ Potential energy lost in the wire:

∆U = ∆QV2 −∆QV1

∆U = ∆Q(V2 − V1)

∴ Rate of energy lost per unit time

∆U

∆t
=

∆Q

∆t
(V2 − V1)

Joule’s heating P = i ·∆V =
Power dissipated
in conductor

For a resistor R, P = i2R =
∆V 2

R

5.9 DC Circuits

A battery is a device that supplies electrical energy to maintain a current in a
circuit.

In moving from point 1 to 2, elec-
tric potential energy increase by
∆U = ∆Q(V2 − V1) = Work done by E

Define E = Work done/charge = V2 − V1



5.9. DC CIRCUITS 65

Example :

Va = Vc

Vb = Vd

}
assuming(1) perfect conducting wires.

By Definition: Vc − Vd = iR

Va − Vb = E

∴ E = iR ⇒ i =
E
R

Also, we have assumed(2) zero resistance inside battery.

Resistance in combination :

Potential differece (P.D.)

Va − Vb = (Va − Vc) + (Vc − Vb)

= iR1 + iR2

∴ Equivalent Resistance

R = R1 + R2 for resistors in series
1

R
=

1

R1

+
1

R2

for resistors in parallel
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Example :

For real battery, there is an
internal resistance that
we cannot ignore.

∴ E = i(R + r)

i =
E

R + r

Joule’s heating in resistor R :

P = i · (P.D. across resistor R)

= i2R

P =
E2R

(R + r)2

Question: What is the value of R to obtain maximum Joule’s heating?

Answer: We want to find R to maximize P.

dP

dR
=

E2

(R + r)2
− E2 2R

(R + r)3

Setting
dP

dR
= 0 ⇒ E2

(R + r)3
[(R + r)− 2R] = 0

⇒ r −R = 0

⇒ R = r
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ANALYSIS OF COMPLEX CIRCUITS:

KIRCHOFF’S LAWS:

(1) First Law (Junction Rule):
Total current entering a junction equal to the total current leaving the
junction.

(2) Second Law (Loop Rule):
The sum of potential differences around a complete circuit loop is zero.

Convention :

(i)

Va > Vb ⇒ Potential difference = −iR

i.e. Potential drops across resistors

(ii)

Vb > Va ⇒ Potential difference = +E

i.e. Potential rises across the negative plate of the battery.

Example :
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By junction rule:
i1 = i2 + i3 (5.1)

By loop rule:

Loop A ⇒ 2E0 − i1R− i2R + E0 − i1R = 0 (5.2)

Loop B ⇒ −i3R− E0 − i3R− E0 + i2R = 0 (5.3)

Loop C ⇒ 2E0 − i1R− i3R− E0 − i3R− i1R = 0 (5.4)

BUT: (5.4) = (5.2) + (5.3)
General rule: Need only 3 equations for 3 current

i1 = i2 + i3 (5.1)

3E0 − 2i1R− i2R = 0 (5.2)

−2E0 + i2R− 2i3R = 0 (5.3)

Substitute (5.1) into (5.2) :

3E0 − 2(i2 + i3)R− i2R = 0

⇒ 3E0 − 3i2R− 2i3R = 0 (5.4)

Subtract (5.3) from (5.4), i.e. (5.4)−(5.3)

3E0 − (−2E0)− 3i2R− i2R = 0

⇒ i2 =
5

4
· E0

R

Substitute i2 into (5.3) :

−2E0 +
(5

4
· E0

R

)
R− 2i3R = 0
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⇒ i3 = −3

8
· E0

R

Substitute i2, i3 into (5.1) :

i1 =
(5

4
− 3

8

) E0

R
=

7

8
· E0

R

Note: A negative current means that it is flowing in opposite direction from the
one assumed.

5.10 RC Circuits

(A) Charging a capacitor with battery:

Using the loop rule:

+E0 − iR︸︷︷︸
P.D.
across R

− Q

C︸︷︷︸
P.D.
across C

= 0

Note: Direction of i is chosen so that the current represents the rate at
which the charge on the capacitor is increasing.

∴ E = R

i︷︸︸︷
dQ

dt
+

Q

C
1st order
differential eqn.

⇒ dQ

EC −Q
=

dt

RC

Integrate both sides and use the initial condition:
t = 0, Q on capacitor = 0

ˆ Q

0

dQ

EC −Q
=

ˆ t

0

dt

RC
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− ln(EC −Q)
∣∣∣
Q

0
=

t

RC

∣∣∣
t

0

⇒ − ln(EC −Q) + ln(EC) =
t

RC

⇒ ln
( 1

1− Q
EC

)
=

t

RC

⇒ 1

1− Q
EC

= et/RC

⇒ Q

EC
= 1− e−t/RC

⇒ Q(t) = EC(1− e−t/RC)

Note: (1) At t = 0 , Q(t = 0) = EC(1− 1) = 0

(2) As t →∞ , Q(t →∞) = EC(1− 0) = EC
= Final charge on capacitor (Q0)

(3) Current:

i =
dQ

dt

= EC
( 1

RC

)
e−t/RC

i(t) =
E
R

e−t/RC





i(t = 0) =
E
R

= Initial current = i0

i(t →∞) = 0

(4) At time = 0, the capacitor acts like short circuit when there is
zero charge on the capacitor.

(5) As time → ∞, the capacitor is fully charged and current = 0, it
acts like a open circuit.
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(6) τc = RC is called the time constant. It’s the time it takes for
the charge to reach (1− 1

e
) Q0 ' 0.63Q0

(B) Discharging a charged capacitor:

Note: Direction of i is chosen so that the current represents the rate at
which the charge on the capacitor is decreasing.

∴ i = −dQ

dt

Loop Rule:
Vc − iR = 0

⇒ Q

C
+

dQ

dt
R = 0

⇒ dQ

dt
= − 1

RC
Q

Integrate both sides and use the initial condition:
t = 0, Q on capacitor = Q0

ˆ Q

Q0

dQ

Q
= − 1

RC

ˆ t

0

dt

⇒ ln Q− ln Q0 = − t

RC

⇒ ln
( Q

Q0

)
= − t

RC

⇒ Q

Q0

= e−t/RC

⇒ Q(t) = Q0 e−t/RC

(i = −dQ

dt
) ⇒ i(t) =

Q0

RC
e−t/RC

(At t = 0) ⇒ i(t = 0) =
1

R
· Q0

C︸︷︷︸
Initial P.D. across capacitor

i0 =
V0

R
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At t = RC = τ Q(t = RC) =
1

e
Q0 ' 0.37Q0


