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1 The Real And Complex Number Systems

1.1 The Real Number System

R : The set of real numbers

Q : The set of rational numbers (Numbers in the form m
n

where m, n are
integers, n 6= 0)

Z : The set of integers, {0, 1,−1, 2,−2, 3,−3, . . .}

N : The set of natural numbers, {1, 2, 3, 4, . . .}

Proofs:

1) Direct Proofs

2) Indirect Proofs

a) Proof by Contraposition

b) Proof by Contradiction

1.1 Example (Direct Proof). If f is differentiable at x = c then f is con-
tinuous at x = c.

Proof. Hypothesis: f is differentiable at x = c, i.e.

lim
x→c

f(x)− f(c)

x− c
= f ′(c) exists and it is a number.

Claim: f is continuous at c, i.e. limx→c f(x) = f(c).

lim
x→c

f(x) = lim
x→c

(
f(x)− f(c)

x− c
(x− c) + f(c)

)
= lim

x→c

f(x)− f(c)

x− c︸ ︷︷ ︸
f ′(c)

lim
x→c

(x− c)︸ ︷︷ ︸
0

+ lim
x→c

f(c)︸ ︷︷ ︸
f(c)

= f(c)

1.2 Example (Indirect Proof: Proof by Contraposition). Let n be an integer.
If n2 is even︸ ︷︷ ︸

p

then n is even︸ ︷︷ ︸
q

.

If p then q: p ⇒ q. This is equivalent to: If not q then not p, i.e. ∼ q ⇒∼ p.
If n is odd then n2 is odd.
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Proof. Assume n is odd then n = 2k + 1 for some integer k. Then

n2 = 4k2 + 4k + 1 = 2(2k2 + 2k︸ ︷︷ ︸
an integer

) + 1

So n2 is odd.

1.3 Example (Indirect Proof: Proof by Contradiction). Show that
√

2 is
not a rational number.

Proof. If c2 = 2︸ ︷︷ ︸
p

then c is not rational︸ ︷︷ ︸
q

. We assume p and ∼ q, proceed and

get a contradiction. So assume c2 = 2 and c is rational. Then c = m
n

where

m, n ∈ Z, n 6= 0 and m, n have no common factors. We have c2 = m2

n2 then
m2 = 2n2. So m2 is even and m is even. Then m = 2k for some integer k.
We get 4k2 = 2n2 or 2k2 = n2. Then n2 is even and n is even. Then n = 2`
for some integer `. So m and n have a common factor. A contradiction.

Some Symbols And Notation

• p ⇒ q : if p then q (p implies q)

• p ⇔ q : if p then q and if q then p (p iff q)

• 3 : such that

• ∴ : therefore, so

• ∀ : for all, for every

• ∃ : for some, there exists

1.4 Example. Consider the following two statements:

(1) ∀x ∈ R ∃y ∈ R, y < x

(2) ∃y ∈ R ∀x ∈ R, y < x −→ not true

(1) says, given any real number x we can find a real number y (depending
on x) such that y is smaller than x.

(2) says, there is a real number y that is smaller than every real number x.
This is false.
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1.5 Example. Let A = {p : p ∈ Q, p > 0, p2 < 2} and B = {p : p ∈ Q, p >
0, p2 > 2}.
Claim: A has no largest element and B has no smallest element.

Proof. Given any p ∈ Q, p > 0, let q = p − p2−2
p+2

= 2p+2
p+2

. Then q ∈ Q and

q > 0. Let p ∈ A, i.e. p2 < 2. Then show q ∈ A and p < q.

p2 − 2 < 0 so q = p− p2 − 2

p + 2
> p

q2 − 2 =

(
2p + 2

p + 2

)2

− 2 =
4p2 + 4 + 8p− 2p2 − 8− 8p

p2 + 4 + 4p
=

2(p2 − 2)

(p + 2)2
< 0

So q2 < 2. Then we have q ∈ A and A has no largest element.

Properties of R
1) R has two operations + and · with respect to which it is a field.

(i) ∀x, y ∈ R, x + y ∈ R

(ii) ∀x, y ∈ R, x + y = y + x (commutativity of +)

(iii) ∀x, y, z ∈ R, x + (y + z) = (x + y) + z (associativity of +)

(iv) ∃ an element (0 element) such that ∀x ∈ R, x + 0 = x

(v) ∀x ∈ R ∃ an element −x ∈ R such that x + (−x) = 0

(vi) ∀x, y ∈ R, x · y ∈ R

(vii) ∀x, y ∈ R, x · y = y · x

(viii) ∀x, y, z ∈ R, x · (y · z) = (x · y) · z

(ix) ∃ an element 1 6= 0 in R such that ∀x ∈ R, x · 1 = x

(x) ∀x 6= 0 in R there is an element 1
x

in R such that x · 1
x

= 1

(xi) ∀x, y, z ∈ R, x · (y + z) = x · y + x · z

1.6 Remark. Note that Q with + and · is also a field.

2) R is an ordered field, i.e. there is a relation < with the following properties

(i) ∀x, y ∈ R one and only one of the following is true:

x < y, x = y, y < x (Trichotomy Law)
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(ii) ∀x, y, z ∈ R, x < y and y < z ⇒ x < z (Transitive Law)

(iii) ∀x, y, z ∈ R, x < y ⇒ x + z < y + z

(iv) 0 < x and 0 < y ⇒ 0 < x · y

1.7 Remark. Note that Q is also an ordered field.

3) R is complete.

1.8 Definition. Let E ⊂ R. We say E is bounded above if there is an element
b ∈ R such that ∀x ∈ E we have x ≤ b. b is called an upper bound for E.

1.9 Example. E = {p : p ∈ Q, p > 0, p2 < 2}. Then b = 3
2
, b = 2, b = 5,

b = 100, b =
√

2 are all upper bounds for E.

1.10 Example. E = N = {1, 2, 3, 4, . . .} is not bounded above.

1.11 Remark. Bounded below and lower bound are defined analogously.

1.12 Definition. Let E ⊂ R be bounded above. A number b ∈ R is called
a least upper bound (lub) or supremum (sup) of E if

(i) b is an upper bound for E

and

(ii) if b′ any upper bound for E, then b ≤ b′

1.13 Remark. sup E need not be a member of E. If sup E is in E then it
is called the maximum element.

Completeness Property (or Least Upper Bound Property) of R:
Every non-empty set E ⊂ R that is bounded above has a least upper bound
in R.

1.14 Remark. Q does not have LUB property.

Proof. Let E = {p : p ∈ Q, p > 0, p2 < 2} is a non-empty subset of Q that
is bounded above but it has no least upper bound in Q. Assume b ∈ Q is a
least upper bound of E. Since p = 1 ∈ E and p ≤ b we have 1 ≤ b. We have
two possibilities:
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(i) b ∈ E

(ii) b /∈ E

If b ∈ E, then ∃q ∈ E such that b < q. Then b cannot be an upper bound.
So b /∈ E. Since b ∈ Q and 0 < b, we have that b2 < 2 is not true. By
trichotomy law, we have either b2 = 2 or 2 < b2. If b ∈ Q, b2 = 2 cannot be
true. So 2 < b2.

Let F = {p : p ∈ Q, p > 0, 2 < p2}. Then b ∈ F and there is an element
q in F such that q < b. Show q is an upper bound for E. Let p ∈ E be an
arbitrary element. Then p > 0 and p2 < 2. Also q ∈ F so q > 0 and 2 < q2.

p2 < 2 and 2 < q2 ⇒ p2 < q2 ⇒ p < q

So q is bigger than every p ∈ E, i.e. q is an upper bound for E. Then b ≤ q.
Also q < b. Contradiction.

1.15 Remark. Analogously we have greatest lower bound (glb) or infimum
(inf) and the Greatest Lower Bound Property.

1.16 Theorem.

(a) (Archimedian Property) For every x, y ∈ R, x > 0, there is n ∈ N
(depending on x, y) such that nx > y.

(b) (Q is dense in R) For every x, y ∈ R with x < y, ∃p ∈ Q such that
x < p < y.

Proof.

(a) Assume it is not true. So there are x, y ∈ R such that x > 0 for which
there is no n ∈ N such that nx > y. So for all n ∈ N we have nx ≤ y.
Let E = {nx : n ∈ N} = {x, 2x, 3x, . . .}. Then y is an upper bound
for E and E 6= ∅. So E has a least upper bound, say α ∈ R. Since
x > 0, α − x < α. Then α − x is not an upper bound for E. So there
is an element of E, say mx (where m ∈ N) such that α − x < mx.
Then α < (m + 1)x. This element of E is bigger than α = sup E.
Contradiction.
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(b) Let x, y ∈ R be such that x < y. Then y − x > 0. By part (a),
∃n ∈ N such that n(y − x) > 1, i.e. ny > 1 + nx. In (a), replace
y by nx and x by 1 > 0. So ∃m1 ∈ N such that m1 > nx. Let
A = {m : m ∈ Z, nx < m}. Then A 6= ∅ since m1 ∈ A. Since A
is non-empty set of integers which is bounded below, A has a smallest
element m0. Then nx < m0 and m0 ∈ Z. m0 − 1 /∈ A. So we have
nx ≥ m0− 1. So m0− 1 ≤ nx < m0. Then nx < m0, m0 ≤ 1 + nx and
1 + nx < ny. So nx < m0 < ny. If we divide this by n > 0, we get
x < m0

n
< y. m0

n
is a rational number.

Uniqueness of Least Upper Bound: Assume E ⊂ R is non-empty and
bounded above. Then E has only one least upper bound.

Proof. Assume b, b′ are two least upper bounds for E.

(i) b = sup E and b′ is an upper bound for E ⇒ b ≤ b′

(ii) b′ = sup E and b is an upper bound for E ⇒ b′ ≤ b

Then b = b′.

1.17 Fact. Let E ⊂ R be non-empty and bounded above and let α ∈ R.
Then

α = sup E ⇔ (i) ∀x ∈ E, x ≤ α

and

(ii) Given any ε > 0, ∃y ∈ E such that α− ε < y

1.2 Extended Real Numbers

In the set of extended real numbers we consider the set R ∪ {−∞, +∞}.
Preserve the order of R and ∀x ∈ R, set −∞ < +∞. This way every non-
empty subset E of R ∪ {−∞, +∞} has a least upper bound and greatest
lower bound in R ∪ {−∞, +∞}. For example, if E = N, then sup E = +∞.
Also for x ∈ R, we define the following

x +∞ = +∞, x + (−∞) = −∞,
x

+∞
=

x

−∞
= 0

If x > 0, we define x · (+∞) = +∞ and x · (−∞) = −∞
If x < 0, we define x · (+∞) = −∞ and x · (−∞) = +∞
0 · (∓∞) is undefined.

8



1.3 The Complex Field

Let C denote the set of all ordered pairs (a, b) where a, b ∈ R. We say

(a, b) = (c, d) ⇔ a = c and b = d

Let x = (a, b), y = (c, d) ∈ C. We define

x + y = (a + c, b + d) and x · y = (ac− bd, ad + bc)

Under these operations C becomes a field with (0, 0), (1, 0) being the zero
element and multiplicative unit.

Define φ : R → C by φ(a) = (a, 0). Then

φ(a + c) = φ(a + c, 0) = (a, 0) + (c, 0) = φ(a) + φ(c)

φ(ac) = (ac, 0) = (a, 0)(c, 0) = φ(a) · φ(c)

φ is 1-1 (one-to-one), i.e. if a 6= a′ then φ(a) 6= φ(a′). This way we can
identify R with the subset {(a, 0) : a ∈ R} by means of φ.

Let i = (0, 1). Then i2 = (0, 1) · (0, 1) = (−1, 0) = φ(−1). Also if (a, b) ∈ C,
then

φ(a) + iφ(b) = (a, 0) + (0, 1)(b, 0) = (a, 0) + (0, b) = (a, b)

If we identify φ(a) with a then we identify (a, b) with a + ib. So C is the set
of all imaginary numbers in the form a + ib where a, b ∈ R and i2 = −1.

If z = x + iy ∈ C, x, y ∈ R we define

z = x− iy (Conjugate of z)

x = Re z (Real Part of z)

y = Im z (Imaginary Part of z)

If z, w ∈ C, we have

z + w = z + w, zw = z · w, Re z =
z + z

2
, Im z =

z − z

2i

Since zz = x2 +y2 ≥ 0, we define the modulus of z as |z| =
√

zz =
√

x2 + y2.

1.18 Proposition. Let z, w ∈ C. Then

(a) z 6= 0 ⇒ |z| > 0 and z = 0 ⇒ |z| = 0

(b) |z| = |z|

(c) |zw| = |z||w|
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(d) |Re z| ≤ |z| (i.e. |x| ≤
√

x2 + y2)

(e) |z + w| ≤ |z|+ |w| (Triangle Inequality)

Proof of (e).

|z + w|2 = (z + w)(z + w) = (z + w)(z + w)

= zz + zw + wz︸ ︷︷ ︸
2Re(zw)

+ww = |z|2 + 2 Re(zw)︸ ︷︷ ︸
≤|zw|=|z||w|

+|w|2

≤ |z|2 + 2|z||w|+ |w|2 = (|z|+ |w|)2

So |z + w|2 ≤ (|z| + |w|)2. If we take positive square root of both sides, we
get |z + w| ≤ |z|+ |w|.

1.19 Theorem (Cauchy-Schwarz Inequality). Let aj, bj ∈ C where j =
1, 2, . . . , n. Then ∣∣∣∣∣

n∑
j=1

ajbj

∣∣∣∣∣
2

≤

(
n∑

j=1

|aj|2
)(

n∑
j=1

|bj|2
)

Proof. Let us define

A =
n∑

j=1

|aj|2 , B =
n∑

j=1

|bj|2 , C =
n∑

j=1

ajbj

We have B ≥ 0. If B = 0, then all bj = 0. Then inequality becomes 0 ≤ 0.
So assume B > 0. Then

0 ≤
n∑

j=1

|Baj − Cbj|2 =
n∑

j=1

(Baj − Cbj)
(
Baj − C bj

)
=

n∑
j=1

(
B2|aj|2 −BCajbj − CBbjaj + |C|2|bj|2

)
= B2A−BCC︸ ︷︷ ︸

B|C|2
−CBC︸ ︷︷ ︸

|C|2B

+|C|2B

= B
(
AB − |C|2

)
So 0 ≤ B (AB − |C|2) and since B > 0, we have AB − |C|2 ≥ 0. Then
|C|2 ≤ AB.
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Replacing bj by bj and using z = z, |z| = |z| we get∣∣∣∣∣
n∑

j=1

ajbj

∣∣∣∣∣
2

≤

(
n∑

j=1

|aj|2
)(

n∑
j=1

|bj|2
)

If aj ≥ 0, bj ≥ 0 are real numbers then(
n∑

j=1

ajbj

)2

≤

(
n∑

j=1

a2
j

)(
n∑

j=1

b2
j

)
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2 Sets And Functions

2.1 General

Let X and Y be two non-empty sets. A function f : X → Y is a rule which
assigns to each x ∈ X a unique element y = f(x) in Y .

2.1 Example. Given x ∈ R, consider its decimal expansion in which there
is no infinite chain of 9’s. x = 1

4
is represented as 0.25000 · · · instead of

0.24999 · · · Let y = f(x) be the fortyninth digit after the decimal point. We
have f : R → {0, 1, 2, . . . , 9}.

2.2 Definition. Let f : X → Y , A ⊂ X. We define the image of A under
f as the set f(A) = {y ∈ Y : ∃x ∈ A such that y = f(x)}. Let B ⊂ Y . We
define the inverse image of B under f as the set f−1(B) = {x ∈ X : f(x) ∈
B}.

2.3 Example. f : R → R, f(x) = x2. Then

A = (1, 2] then f(A) = (1, 4]
A = (−1, 3) then f(A) = [0, 9)
B = [1, 4] then f−1(B) = [−2,−1] ∪ [1, 2]
B = [−1, 4] then f−1(B) = [−2, 2]
B = [−2,−1] then f−1(B) = ∅

2.4 Definition. Let f : X → Y be a function. Then we define

X: Domain of f and f(X): Range of f

If f(X) = Y , then f is called a surjection or onto.

If x1 6= x2 then f(x1) 6= f(x2) (equivalently f(x1) = f(x2) ⇒ x1 = x2) then
f is called one-to-one (1-1 ) or an injection.

If f is both an injection and a surjection, then f is called a bijection or a 1-1
correspondence.

Let f : X → Y , A ⊂ X, B ⊂ Y . We have

(a) f(f−1(B)) ⊂ B. f(f−1(B)) = B for all B ⇔ f is onto

(b) A ⊂ f(f−1(A)). A = f(f−1(A)) for all A ⇔ f is 1-1

(c) f(A1 ∩ A2) ⊂ f(A1) ∩ f(A2). f(A1 ∩ A2) = f(A1) ∩ f(A2) for all A1

and A2 ⇔ f is 1-1
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(d) f(A1 ∪ A2) = f(A1) ∪ f(A2)

Proof of (b).

A ⊂ f−1(f(A))

Let x ∈ A and let y = f(x). Then y ∈ f(A), i.e. f(x) ∈ f(A). So
x ∈ f−1(f(A)) and A ⊂ f−1(f(A)).

A = f−1(f(A)) for all A ⊂ X ⇔ f is 1-1

(⇐): Assume f is 1-1. Show for all A ⊂ X, A = f−1(f(A)), i.e. show
A ⊂ f−1(f(A))︸ ︷︷ ︸

always true

and f−1(f(A)) ⊂ A. So show f−1(f(A)) ⊂ A. Let x ∈

f−1(f(A)). Then f(x) ∈ f(A). Then ∃x′ ∈ A such that f(x) = f(x′).
Since f is 1-1, x = x′. So x ∈ A and f−1(f(A)) ⊂ A.

(⇒): Assume A = f−1(f(A)) for all A ⊂ X. Show f is 1-1. Assume f is
not 1-1. Then there are x1, x2 ∈ X such that x1 6= x2 and f(x1) =
f(x2). Let y = f(x1) = f(x2). Let A = {x1}. Then f(A) = {y} and
f−1(f(A)) = {x1, x2, . . .}. Then A 6= f−1(f(A)). Contradiction.

Let {Ai : i ∈ I} be an arbitrary class of subsets of a set X indexed by a set
I of subscripts. We define⋃

i∈I

Ai = {x : x ∈ Ai for at least one i ∈ I}

⋂
i∈I

Ai = {x : x ∈ Ai for every i ∈ I}

If I = ∅, then we define
⋃

i∈∅ Ai = ∅ and
⋂

i∈∅ Ai = X. (If we require of an
element that it belongs to each set in the class and if there are no sets in the
class, then every element x ∈ X satisfies this requirement.) If A ⊂ X we
define AC = {x : x /∈ A} complement of A.(⋃

i∈I

Ai

)C

=
⋂
i∈I

AC
i ,

(⋂
i∈I

Ai

)C

=
⋃
i∈I

AC
i (De Morgan’s Laws)

Let f : X → Y , let {Ai : i ∈ I}, {Bj : j ∈ J} be classes of subsets of X and
Y .

f

(⋃
i∈I

Ai

)
=
⋃
i∈I

f(Ai) , f

(⋂
i∈I

Ai

)
⊂
⋂
i∈I

f(Ai)

f−1

(⋃
j∈J

Bj

)
=
⋃
j∈J

f−1(Bj) , f−1

(⋂
j∈J

Bj

)
=
⋂
j∈J

f−1(Bj)

For all B ⊂ Y we have
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(a) f−1(BC) = (f−1(B))C

(b) f(A)C ⊂ f(AC) for all A ⊂ X ⇔ f is onto

(c) f(AC) ⊂ f(A)C for all A ⊂ X ⇔ f is 1-1

Proof of (a). Let x ∈ f−1(BC). Then f(x) ∈ BC . Show x ∈ (f−1(B))C .
Assume it is not true, i.e. x ∈ f−1(B) ⇒ f(x) ∈ B. So f(x) ∈ BC ∩B︸ ︷︷ ︸

∅

.

Contradiction. Thus, x ∈ (f−1(B))C . So, f−1(BC) ⊂ (f−1(B))C .

Let x ∈ (f−1(B))C . Show x ∈ f−1(BC), i.e. f(x) ∈ BC . Assume it is
not true, i.e. f(x) ∈ B so x ∈ f−1(B). Then, x ∈ (f−1(B))C ∩ f−1(B)︸ ︷︷ ︸

∅

.

Contradiction. So, (f−1(B))C ⊂ f−1(BC).

If f : X → Y is 1-1 onto, then ∀y ∈ Y ∃ unique x ∈ X such that y = f(x).
Send Y → X. This way we get f−1 : Y → X (the inverse function of f)
f−1(f(x)) = x ∀x ∈ X, f(f−1(y)) = y ∀y ∈ Y .

2.2 Countable And Uncountable Sets

Let C be any collection of sets. For A, B ∈ C we write A ∼ B (and say A
and B are numerically equivalent) if there is a 1-1 correspondence f : A → B.
∼ has the following properties

(i) A ∼ A

(ii) A ∼ B ⇒ B ∼ A

(iii) A ∼ C ⇒ A ∼ C

2.5 Example. A = N = {1, 2, 3, . . .}, B = 2N = {2, 4, 6, . . .}. Then A ∼ B
by f : A → B, f(n) = 2n.

2.6 Definition. For n = 1, 2, 3, . . . let Jn = {1, 2, 3, . . . , n}. Let X 6= ∅ be
any set. We say

• X is finite if ∃n ∈ N such that X ∼ Jn.

• X is infinite if it is not finite.

• X is countable (or denumerable) if X ∼ N.

• X is uncountable if X is not finite and not countable.
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• X is at most countable if X is finite or countable.

2.7 Example. N, 2N are countable.

2.8 Example. Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} is countable. Define f :
N → Z as follows

N : 1, 2, 3, 4, 5, . . .
↓ ↓ ↓ ↓ ↓ · · ·

Z : 0, 1, -1, 2, -2, . . .

So we have

f(n) =

{
n
2

if n is even

−n−1
2

if n is odd

2.9 Example. Q+ = {q : q ∈ Q, q > 0} is countable. Given q ∈ Q+, we
have m,n ∈ Z m > 0, n > 0 such that q = m

n
. List the elements of Q+ in

m\n 1 2 3 4 · · ·

1 1
1

1
2

1
3

1
4

· · ·
↙ ↙ ↙

2 2
1

2
2

2
3

2
4

· · ·
↙ ↙ ↙

3 3
1

3
2

3
3

3
4

· · ·
↙ ↙ ↙

4 4
1

4
2

4
3

4
4

· · ·

...
...

...
...

...
. . .

this order omitting the ones which are already listed before. Then we get the
following sequence

1

1
,

1

2
,

2

1
,

1

3
,

3

1
,

1

4
,

2

3
,

3

2
,

4

1
· · ·

Define f : N → Q+ as follows

f(1) =
1

1
, f(2) =

1

2
, f(3) =

2

1
, f(4) =

1

3
· · ·
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Suppose X is countable, so we have 1-1, onto function f : N → X. Let
f(n) = xn. Then we can write the elements of X as a sequence

X = {x1, x2, x3, . . .}

2.10 Example. Q is countable. (Similar to the proof of Z is countable.)

2.11 Proposition. Let I be a countable index set and assume for every
i ∈ I, Ai is a countable set. Then

⋃
i∈I Ai is countable. (Countable union of

countable sets is countable.)

2.12 Example. X = [0, 1) is not countable. Every x ∈ X has a binary
(i.e. base 2) expansion x = 0.x1x2x3x4 · · · where each of x1, x2, x3, . . . is 0 or
1. Assume X = [0, 1) is countable. Then write its elements as a sequence.
X = {y1, y2, y3, . . .}. Then write each of y1, y2, y3, . . . in the binary expansion.

y1 = 0.y1
1y

1
2y

1
3 · · ·

y2 = 0.y2
1y

2
2y

2
3 · · ·

y3 = 0.y3
1y

3
2y

3
3 · · ·

...

Define

z1 =

{
0 if y1

1 = 1

1 if y1
1 = 0

z2 =

{
0 if y2

2 = 1

1 if y2
2 = 0

zn =

{
0 if yn

n = 1

1 if yn
n = 0

Let z = 0.z1z2z3 · · · ∈ [0, 1). But z 6= y1, z 6= y2, . . . Contradiction.

2.13 Example. [0, 1], (0, 1), R, (a, b) are all uncountable. They are all
numerically equivalent.

2.14 Example. f :
(
−π

2
, π

2

)
→ R and f(x) = tan x gives

(
−π

2
, π

2

)
∼ R.

2.15 Theorem (Cantor-Schröder-Bernstein). Let X,Y be two non-empty
sets. Assume there are 1-1 functions. f : X → Y and g : Y → X. Then
X ∼ Y .
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2.16 Example. Let X = {(x, y) : 0 < x < 1, 0 < y < 1}. Then X ∼ (0, 1).

Define g : (0, 1) → X by g(x) =
(
x, 1

2

)
.

Define f : X → (0, 1) as follows: Given (x, y) ∈ X, write X and Y in their
decimal expansion with no infinite chain of 9’s.

x = 0.x1x2x3 · · · and y = 0.y1y2y3 · · ·

Let
f(x, y) = 0.x1y1x2y2x3y3 · · ·

Then f, g are 1-1 so by the above theorem X ∼ (0, 1).
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3 Basic Topology

3.1 Metric Spaces

In R, Rk = {(x1, . . . , xk) : x1, . . . , xk ∈ R} we have the notion of distance.

In R, d(x, y) = |x− y|
In Rk, x = (x1, . . . , xk), y = (y1, . . . , yk). We have

d(x, y) =
√

(x1 − y1)2 + · · ·+ (xk − yk)2

3.1 Definition. Let X 6= ∅ be a set. Suppose we have a function

d : X ×X︸ ︷︷ ︸
{(x,y):x,y∈X}

→ R

with the following properties

(i) ∀x, y ∈ X, d(x, y) ≥ 0 d(x, y) = 0 ⇔ x = y

(ii) ∀x, y ∈ X, d(x, y) = d(y, x)

(iii) ∀x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y) (Triangle Inequality)

d is called a metric and the pair (X, d) is called a metric space.

Proof of (iii). X = Rk, d(x, y) =
√

(x1 − y1)2 + · · ·+ (xk − yk)2 then d sat-
isfies (i) and (ii). For triangle inequality, let x, y, z ∈ Rk be given. Then we
have

d(x, y)2 =(x1 − y1)
2 + · · ·+ (xk − yk)

2

=((x1 − z1) + (z1 − y1))
2 + · · ·+ ((xk − zk) + (zk − yk))

2

=(x1 − z1)
2 + · · ·+ (xk − zk)

2 + (z1 − y1)
2 + · · ·+ (zk − yk)

2

+ 2[(x1 − z1)(z1 − y1) + · · ·+ (xk − zk)(zk − yk)]

≤(d(x, z))2 + (d(z, y))2

+ 2 |(x1 − z1)(z1 − y1) + · · ·+ (xk − zk)(zk − yk)|︸ ︷︷ ︸
≤((x1−z1)2+···+(xk−zk)2)1/2((z1−y1)2+···+(zk−yk)2)1/2

(from Cauchy-Schwarz inequality)

≤(d(x, z))2 + (d(z, y))2 + 2d(x, z)d(z, y)

≤(d(x, z) + d(z, y))2
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3.2 Example.

1) X 6= ∅ any set. Given any x, y ∈ X let

d(x, y) =

{
1 if x 6= y
0 if x = y

(i) and (ii) are trivially true. Check (iii).

Proof of (iii). If d(x, y) = 0, then it is true as RHS ≥ 0. If d(x, y) = 1, then
we cannot have RHS = 0. If RHS = 0 we have, d(x, z) = 0 and d(z, y) = 0.
That is x = z and z = y. So x = y. Then d(x, y) = 0. Contradiction.

This metric is called the discrete metric.

2) Let X = Rk = {x = (x1, . . . , xk) : x1, · · · , xk ∈ R}

d1(x, y) = |x1 − y1|+ |x2 − y2|+ · · ·+ |xk − yk|

(i) and (ii) are trivially true. Check (iii).

Proof of (iii). Given x, y, z ∈ Rk

d1(x, y) = |x1 − y1|+ · · ·+ |xk − yk|
= |(x1 − z1) + (z1 − y1)|+ · · ·+ |(xk − zk) + (zk − yk)|
≤ |x1 − z1|+ |z1 − y1|+ · · ·+ |xk − zk|+ |zk − yk|
= d1(x, z) + d1(z, y)

d1 is called the `1 metric on Rk.

3) X = Rk

d∞(x, y) = max{|x1 − y1|, . . . , |xk − yk|}

(i) and (ii) are trivially true. Check (iii).

Proof of (iii). Given x, y, z ∈ Rk

d∞(x, y) = max{|x1 − y1|, . . . , |xk − yk|}
= |xi − yi| (1 ≤ i ≤ k)

= |(xi − zi) + (zi − yi)| ≤ |xi − zi|︸ ︷︷ ︸
≤max

+ |zi − yi|︸ ︷︷ ︸
≤max

≤ d∞(x, z) + d∞(z, y)
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d∞ is called the `∞ metric on Rk.

4) Let S be any fixed non-empty set. A function f : S → R is called bounded
if f(S) is a bounded subset of R, i.e. there are two numbers A, B such that
∀s ∈ S, A ≤ f(s) ≤ B.

For example, f : R → R, f(s) = arctan s is bounded, f(s) =
√

s2 + 1 is
unbounded.

Let X = B(s) = all bounded functions f : S → R. Let f, g ∈ B(S), then
f − g is also bounded. We define

d(f, g) = sup{|f(s)− g(s)| : s ∈ S}

Geometrically, it is the supremum of the vertical distances between the two
graphs (See Figure 1). (i) and (ii) are trivially true. Check (iii). We need the
following: Let A, B be two non-empty subsets of R that are bounded above.
Then, sup(A + B) ≤ sup A + sup B. A + B = {x + y : x ∈ A, y ∈ B}. Let
a = sup A and b = sup B. Let z ∈ A + B be arbitrary. Then ∃x ∈ A, y ∈ B
such that z = x+ y. Then we have x+ y ≤ a+ b. Since z = x+ y, z ≤ a+ b.
So a+b is an upper bound for the set A+B. Since supremum is the smallest
upper bound, sup(A+B) ≤ a+b. In fact we have sup(A+B) = sup A+sup B.
Show sup(A + B) ≥ sup A + sup B. Given ε > 0, ∃x ∈ A and ∃y ∈ B such
that a− ε < x and b− ε < y. Then a + b− 2ε < x + y. Since x + y ∈ A + B,
we have x + y ≤ sup(A + B). Then a + b − 2ε < sup(A + B). Here a, b,
sup(A + B) are fixed numbers, i.e. they do not depend on ε > 0. We have
a+b < sup(A+B)+2ε true for every ε > 0. Then we have a+b ≤ sup(A+B).

If it is not true, then a + b > sup(A + B). Let δ = a+b−sup(A+B)
4

then δ > 0.
So we have

a + b < sup(A + B) + 2δ

< sup(A + B) +
a + b− sup(A + B)

2
a + b

2
<

sup(A + B)

2

Contradiction.

Proof of (iii). Given f, g, h ∈ B(S), let

C = {|f(s)− g(s)| : s ∈ S}
A = {|f(s)− h(s)| : s ∈ S}
B = {|h(s)− g(s)| : s ∈ S}
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Then sup C = d(f, g), sup A = d(f, h) and supB = d(h, g). Let x ∈ C. Then
∃s ∈ S such that x = |f(s)− g(s)|. Then

x = |f(s)− g(s)|
= |(f(s)− h(s)) + (h(s)− g(s))|
≤ |f(s)− h(s)|︸ ︷︷ ︸

call y

+ |h(s)− g(s)|︸ ︷︷ ︸
call z

= y + z ∈ A + B

So ∀x ∈ C, there is an element u ∈ A + B such that x ≤ u. Then, sup C ≤
sup(A + B) ≤ sup A + sup B. That is, d(f, g) ≤ d(f, h) + d(h, g).

3.3 Definition. Let (X, d) be a metric space, p ∈ X and r > 0. Then

The open ball centered at p of radius r is defined as the set

Br(p) = {x ∈ X : d(x, p) < r}

The closed ball centered at p of radius r is defined as the set

Br[p] = {x ∈ X : d(x, p) ≤ r}

3.4 Example.

1) X = Rk, d2(x, y) =
√

(x1 − y1)2 + · · ·+ (xk − yk)2. (See Figure 2).

2) X 6= ∅, d: discrete metric. Then

Br(p) =

{
{p} if r ≤ 1

X if r > 1
Br[p] =

{
{p} if r < 1

X if r ≥ 1

3) X = Rk with `1 metric d1. Let X = R2, p = (p1, p2), x = (x1, x2).
Then |x1 − p1| + |x2 − p2| < r. If p1 = p2 = 0 we have |x1| + |x2| < r.
(See Figure 3).

4) X = Rk with `∞ metric d∞. Let X = R2, p = (0, 0), x = (x1, x2).
Then max{|x1|, |x2|} < r. (See Figure 4).

5) X = B(S) with sup metric. Let S = [a, b]. Then Br(f) is the set of all
functions g whose graph is in the shaded area. (See Figure 5).
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3.5 Definition. Let (X, d) be a metric space and E a subset of X.

1) A point p ∈ E is called an interior point of E if ∃r > 0 such that
Br(p) ⊂ E. (See Figure 6).

2) The set of all interior points of E is called the interior of E. It is
denoted by intE or E◦. We have intE ⊂ E. (See Figure 7).

3) E is said to be open if intE = E, i.e. if every point of E is an interior
point of E, i.e. ∀p ∈ E ∃r > 0 such that Br(p) ⊂ E. (See Figure 8).

3.6 Proposition. Every open ball Br(p) is an open set.

Proof. Let q ∈ Br(p). Show that ∃s > 0 such that Bs(q) ⊂ Br(p). Since
q ∈ Br(p) we have d(q, p) < r. So r − d(q, p)︸ ︷︷ ︸

let this be s

> 0. Show Bs(q) ⊂ Br(p). Let

x ∈ Bs(q), i.e. d(x, q) < s. Then

d(x, p) ≤ d(x, q) + d(q, p)

< s + d(q, p)

< r − d(q, p) + d(q, p)

< r

So x ∈ Br(p).

4) Let p ∈ X. A subset N ⊂ X is called a neighborhood of p if p ∈ intN .
(See Figure 9).

Br(p) is a neighborhood of p or Br(p) is a neighborhood of all of its
points.

5) A point p ∈ X is called a limit point (or accumulation point or cluster
point) of E if every neighborhood N of p contains a point q ∈ E with
q 6= p. (See Figure 10).

6) A point p ∈ E is called an isolated point of E if p is not a limit point
of E, i.e. if there is a neighborhood N of p such that N ∩ E = {p}.

3.7 Example. Let X = R, E = {1, 1
2
, 1

3
, 1

4
, . . .}, d(x, y) = |x − y|. Isolated

points of E are 1, 1
2
, 1

3
, 1

4
, . . . E has only one limit point that is 0. Given any

open ball Br(0) = (−r, r), find n ∈ N such that 1
r

< n. Then x = 1
n
∈

Br(0) ∩ E and x 6= 0.
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7) E ′ is the set of all limit points of E. We define E = E ∪E ′. E is called
the closure of E.

We have p ∈ E ⇔ for every neighborhood N of p we have N ∩ E 6= ∅.

8) E is closed if every limit point of E is an element of E, i.e. E ′ ⊂ E,
i.e. E = E. (See Figure 11).

9) E is perfect if E is closed and has no isolated points. (See Figure 12).

10) E is bounded if ∃m > 0 such that ∀x, y ∈ E d(x, y) ≤ m. (See Fig-
ure 13).

11) E is dense in X if E = X, i.e. ∀p ∈ X and for all neighborhood N of
p we have N ∩ E 6= ∅.

3.8 Example. Let X = R, E = Q. We have Q = R. Given p ∈ R and given
a neighborhood Br(p) = (p − r, p + r), find a rational number x such that
p− r < x < p + r. So x ∈ Br(p) ∩Q.

3.9 Theorem. E is open ⇔ EC is closed.

Proof.

(⇒): Let E be open. Show that every limit point p of EC is an element of EC .
Assume it is not true. Then EC has a limit point p0 such that p0 /∈ EC .
Then p0 ∈ E. Since E is open ∃r > 0 such that Br(p0) ⊂ E. Also
since p0 is a limit point of EC , every neighborhood N of p0 contains a
point q ∈ EC such that q 6= p0. Since Br(p0) is also a neighborhood
of p0 we have that Br(p0) contains a point q ∈ EC such that q 6= p0.
Then q ∈ Br(p0) ⊂ E but also q ∈ EC . Contradiction.

(⇐): Let EC be closed. Show that every point p in E is an interior point.
Let p ∈ E be arbitrary. Since p /∈ EC , p is not a limit point of EC .
Then p has a neighborhood N such that N does not contain any point
q ∈ EC with q 6= p. Then N ∩ EC = ∅ so N ⊂ E. Since N is a
neighborhood of p, ∃r > o such that Br(p) ⊂ N . So Br(p) ⊂ E.

3.10 Theorem. p is a limit point of E ⇔ every neighborhood N of p contains
infinitely many points of E.

Proof.
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(⇐): Trivial.

(⇒): Let p be a limit point of E and let N be an arbitrary neighborhood of
p. Then ∃r > 0 such that Br(p) ⊂ N .

∃q1 ∈ Br(p) ∩ E such that q1 6= p. d(q1, p) > 0. Let r1 = d(q1, p) < r.

∃q2 ∈ Br1(p) ∩ E such that q2 6= p. d(q2, p) < r1 = d(q1, p). Then
q2 6= q1. d(q2, p) > 0. Let r2 = d(q2, p) < r1.

Continue this way and get a sequence of points q1, q2, q3, . . . , qn, . . . in
E such that qi 6= qj for i + j and also each qi 6= p and qi ∈ Br(p).

3.11 Corollary. If E is a finite set then E has no limit points.

3.12 Theorem. Let E ⊂ X. Then

(a) E is a closed set.

(b) E = E ⇔ E is a closed set.

(c) E is the smallest closed set that contains E, i.e. if F is any closed set
such that E ⊂ F then E ⊂ F .

Proof.

(a) Show (E)C is an open set. Let p ∈ (E)C . Then ∃r > 0 such that
Br(p) ∩ E = ∅. This means Br(p) ⊂ EC . Show that actually Br(p) ⊂
(E)C . If not true, ∃q ∈ Br(p) such that q /∈ (E)C , i.e. q ∈ E. Then for
every neighborhood N of q we have N ∩ E 6= ∅. This is also true for
N = Br(p), i.e. Br(p) ∩ E 6= ∅. But Br(p) ∩ E = ∅. Contradiction. So
Br(p) ⊂ (E)C .

(b) (⇒): E is closed by (a) so E is closed.

(⇐): Let E be closed. Then E is contains all of its limit points, i.e.
E ′ ⊂ E, E = E ∪ E ′ ⊂ E. Since E ⊂ E is always true, we have
E = E.

(c) Let E be given and F be a closed set such that E ⊂ F . Show E ⊂ F .
Let p ∈ E = E ∪ E ′. If p ∈ E then p ∈ F . If p ∈ E ′ show p ∈ F .
Given any neighborhood N of p, N contains infinitely many points of
E so N contains infinitely many points of F , i.e. p ∈ F ′ ⊂ F .

Basic properties: Let (X, d) be a metric space.
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1) The union of any collection of open sets is open.

2) The intersection of a finite number of open sets is open.

3) The intersection of any collection of closed sets is closed.

4) The union of a finite number of closed sets is closed.

5) E is open ⇔ EC is closed.

6) E is closed ⇔ E = E.

7) E is the smallest closed set that contains E.

8) E is open ⇔ E = intE.

9) intE is the largest open set that is contained in E.

3.13 Example. Intersection of infinitely many open sets may not be open.
Let X = R, d(x, y) = |x − y|. For n = 1, 2, 3, . . . let En =

(
− 1

n
, n+1

n

)
. All

En’s are open but
⋂∞

n=1 En = [0, 1] is not open.

3.14 Proposition. Let ∅ 6= E ⊂ R be bounded above. Let y = sup E. Then
y ∈ E.

Proof. Let N be an arbitrary neighborhood of y. Then ∃r > 0 such that
Br(y) ⊂ N . y − r cannot be an upper bound for E. Then ∃x ∈ E such that
y−r < x. Also, x ≤ y < y+r. So y−r < x < y+r, i.e. x ∈ Br(y) ⇒ x ∈ N .
So x ∈ E ∩N , i.e. E ∩N 6= ∅.

3.2 Subspaces

3.15 Definition. Let (X, d) be a metric space and Y 6= ∅ be a subset of X.
Then Y is a metric space in its own right with the same distance function.
In this case we say (Y, d) is a subspace of (X, d).

3.16 Example. X = R2, Y = {(x, 0) : x ∈ R}. Let E = {(x, 0) : 1 < x <
2}. Then E ⊂ Y so E ⊂ X. As a subset of Y , E is an open set. As a subset
of X, E is not an open set. Let E ⊂ Y ⊂ X. We say E is open (closed)
relative to Y if E is open (closed) as a subset of the metric space (Y, d).

E is open relative to Y ⇔ ∀p ∈ E ∃r > 0 such that BY
r (p)︸ ︷︷ ︸

BX
r (p)∩Y

⊂ E.

E is closed relative to Y ⇔ Y \ E is open relative to Y .
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3.17 Theorem. Let E ⊂ Y ⊂ X. Then

(a) E is open relative to Y ⇔ there is an open set F ⊂ X such that
E = F ∩ Y .

(b) E is closed relative to Y ⇔ there is a closed set F ⊂ X such that
E = F ∩ Y .

Proof.

(a) (⇒): Let E be open relative to Y . Then ∀p ∈ E ∃rp > 0 such that
BX

rp
(p) ∩ Y ⊂ E. Let F =

⋃
p∈E BX

rp
(p). Then F is an open set in

X. Show F ∩ Y = E.

F ∩ Y =

(⋃
p∈E

BX
rp

(p)

)
∩ Y =

⋃
p∈E

(
BX

rp
(p) ∩ Y

)
︸ ︷︷ ︸

⊂E for all p

⊂ E

Conversely, let p0 ∈ E. Then p0 ∈ Y since E ⊂ Y . Then p0 ∈
BX

rp0
⊂ F . So p0 ∈ Y ∩ F .

(⇐): Assume E = F ∩ Y where F ⊂ X is open in X. Let p ∈ E.
Then p ∈ Y and p ∈ F . Since F is open in X, ∃r > 0 such that
BX

r (p) ⊂ F . Then BX
r (p) ∩ Y ⊂ F ∩ Y = E.

(b) (⇒): Let E ⊂ Y be closed relative to Y . Then Y \E is open relative to
Y . So there exists an open set A ⊂ X such that Y \ E = A ∩ Y .
Then E = Y \ (Y \ E) = Y \ (A ∩ Y ) = (A ∩ Y )C ∩ Y = (AC ∪
Y C) ∩ Y = (AC ∩ Y ) ∪ (Y C ∩ Y )︸ ︷︷ ︸

∅

= AC ∩ Y . AC is closed in X

and we may call it F .

(⇐): Assume E = F ∩ Y where F ⊂ X is a closed set. Then Y \ E =
Y \ (F ∩ Y ) = Y ∩ (F ∩ Y )C = Y ∩ (FC ∪ Y C) = Y ∩ FC︸︷︷︸

open in X

is

open relative to Y .

3.3 Compact Sets

3.18 Definition. Let (X, d) be a metric space and E be a non-empty subset
of X. An open cover of X is a collection of {Gi : i ∈ I} of open subsets Gi

of X such that E ⊂
⋃

i∈I Gi.
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3.19 Example. X = R, d(x, y) = |x − y|, E = (0, 1). For every x ∈ E let
Gx = (−1, x).

⋃
x∈E Gx = (−1, 1) ⊃ E. So {Gx : x ∈ E} is an open cover of

E.

3.20 Example. X = R2 with d2 and E = B1(0). For n ∈ N let Gn =
B n

n+1
(0).

⋃∞
n=1 Gn = E. So {Gn : n ∈ N} is an open cover of E.

3.21 Definition. A subset K of a metric space (X, d) is said to be compact
if every open cover of K contains a finite subcover, i.e. given any open cover
{Gi : i ∈ I} of K, we have that ∃i1, . . . , in ∈ I such that K ⊂ Gi1 ∪· · ·∪Gin .

3.22 Example. X = R, d(x, y) = |x− y|. E = (0, 1) is not compact. Take
I = E = (0, 1). For x ∈ I, Gx = (−1, x).

⋃
x∈I Gx = (−1, 1) ⊃ E. So,

{Gx : x ∈ I} is an open cover for E. This open cover does not have any
finite subcover. Assume it is not true, so assume x1, . . . , xn ∈ E such that
Gx1 ∪ · · · ∪Gxn ⊃ E. Let xk = max{x1, . . . , xn}. Then (0, 1) ⊂ (−1, xk) but
xk ∈ E = (0, 1), i.e. xk < 1. Let x = xk+1

2
. Then x ∈ E but x /∈ (−1, xk).

3.23 Theorem. Let K ⊂ Y ⊂ X. Then K is compact relative to Y ⇔ K
is compact relative to Y .

Proof.

(⇒): Assume K is compact relative to Y . Let {Gi : i ∈ I} be any collection of
sets open relative to X such that

⋃
i∈I Gi ⊃ K. Then {Y ∩Gi : i ∈ I} is

a collection of sets open relative to Y and K = K∩Y ⊂
(⋃

i∈I Gi

)
∩Y =⋃

i∈I(Y ∩ Gi). So {Y ∩ Gi : i ∈ I} is an open (relative to Y ) cover
of K. Since K is compact relative to Y , ∃i1, . . . , in ∈ I such that
K ⊂ (Y ∩Gi1) ∪ · · · ∪ (Y ∩Gin). Then K ⊂ Gi1 ∪ · · · ∪Gin .

(⇐): Let K be compact relative to X. Let {Gi : i ∈ I} be an arbitrary
collection of sets open relative to Y such that K ⊂

⋃
i∈I Gi. Then we

have Gi = Y ∩ Ei for some open subset Ei of X. Then K ⊂
⋃

i∈I(Y ∩
Ei) ⊂

⋃
i∈I Ei. So {Ei : i ∈ I} is an open cover of K in X. Since K is

compact relative to X, ∃i1, . . . , in such that K ⊂ Ei1 ∪ · · · ∪Ein . Then
K = K ∩ Y ⊂ (Ei1 ∩ Y ) ∪ · · · ∪ (Ein ∩ Y ) = Gi1 ∪ · · · ∪Gin .

3.24 Theorem. If K ⊂ X is compact then K is closed.
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Proof. We will show KC is open. Let p ∈ KC . Show ∃r > 0 such that
Br(p) ⊂ KC ∀q ∈ K (since q 6= p). d(q, p) > 0. Let

rq =
d(q, p)

2
Vq = Brq(p) Wq = Brq(q)

Then Vq ∩Wq = ∅. Find Vq and Wq ∀q ∈ K K ⊂
⋃

q∈K Wq. The collection
{Wq : q ∈ K} is an open cover of K. Since K is compact, ∃q1, . . . , qn ∈ K
such that K ⊂ Wq1 ∪ · · · ∪Wqn . Let V = Vq1 ∩ · · · ∩ Vqn . Then V is an open
set and p ∈ V . If rqk

= min{rq1 , . . . , rqn} then V = Brqk
(p). Show V ⊂ KC .

If it is not true, then ∃z ∈ V but z /∈ KC , i.e. z ∈ K. Then z ∈ Wqi
for

some i ∈ {1, . . . , n}. z ∈ V ⊂ Vqi
(the same i). So z ∈ Wqi

∩ Vqi
= ∅.

Contradiction.

3.25 Theorem. Closed subsets of compact sets are compact.

Proof. Let F ⊂ K ⊂ X where K is compact and F is closed. (relative to X
and relative to K are the same since K is closed.) Let {Gi : i ∈ I} be a set
open in X such that F ⊂

⋃
i∈I Gi. Then {Gi : i ∈ I}∪{FC} is an open cover

of K. Since K is compact, ∃i1, . . . , in ∈ I such that K ⊂ Gi1∪· · ·∪Gin∪FC .
Then F = F ∩K ⊂ (Gi1∩F )∪· · ·∪(Gin∩F )∪(FC ∩ F )︸ ︷︷ ︸

∅

⊂ Gi1∪· · ·∪Gin .

3.26 Corollary. Let F, K ⊂ X where K is compact and F is closed. Then
F ∩K is compact.

3.27 Theorem. Let {Ki : i ∈ I} be a collection of compact subsets of X
such that the intersection of every finite subcollection of {Ki : i ∈ I} is
non-empty.

⋂
i∈I Ki 6= ∅.

Proof. Assume the contrary.
⋂

i∈I Ki = ∅. Fix one of these sets, Ki0 . Then

Ki0 ∩
(⋂

i6=i0
Ki

)
= ∅. Then Ki0 ⊂

(⋂
i6=i0

Ki

)C

, i.e. Ki0 ⊂
⋃

i6=i0
KC

i . So

{KC
i : i 6= i0} is an open cover of Ki0 . Since Ki0 is compact, ∃i1, . . . , in such

that Ki0 ⊂ KC
i1
∪ · · · ∪KC

in︸ ︷︷ ︸
(Ki1

∩···∩Kin )C

. But Ki0 ∩Ki1 ∩ · · · ∩Kin = ∅. This contradicts

the hypothesis.

3.28 Corollary. Let {Kn : n ∈ N} be a sequence of non-empty compact
sets such that K1 ⊃ K2 ⊃ K3 ⊃ · · · Then

⋂∞
n=1 Kn 6= ∅.
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3.29 Example. X = R, d(x, y) = |x− y|, En = [n, +∞) = {x : x ∈ R, x ≥
n}, n = 1, 2, 3, . . . Then En’s are closed, En 6= ∅ and E1 ⊃ E2 ⊃ E3 ⊃ · · ·
We have

⋂∞
n=1 En = ∅.

3.30 Theorem (Nested Intervals). Let {In : n = 1, 2, . . .} be a sequence
of non-empty, closed, bounded intervals in R such that I1 ⊃ I2 ⊃ I3 ⊃ · · ·
Then

⋂∞
n=1 In 6= ∅.

Proof. Let In = [an, bn] and an ≤ bn. That is, a1 ≤ a2 ≤ a3 ≤ · · · and
· · · ≤ b3 ≤ b2 ≤ b1. We also have that ∀n ∀k an ≤ bk. Given n, k ∈ N

(i) If n = k then an ≤ bn = bk.

(ii) If n > k then In ⊂ Ik. Then an ∈ In ⊂ Ik ⇒ ak ≤ an ≤ bk.

(iii) If n < k then Ik ⊂ In. Then bk ∈ Ik ⊂ In ⇒ an ≤ bk ≤ bn.

Let E = {a1, a2, a3, . . .}. Then E 6= ∅ and E is bounded above. Let x =
sup E. Then an ≤ x for all n.

Claim: x ≤ bn ∀n.

Assume it is not true. Then ∃n such that bn0 < X. Then bn0 cannot be an
upper bound for E. So there is an element ak0 ∈ E such that ak0 > bn0 .
Contradiction. So ∀n we have an ≤ x ≤ bn, i.e. x ∈ In. So x ∈

⋂∞
n=1 In.

3.31 Remark. If also limn→∞(bn − an) = 0 then
⋂∞

n=1 In consists of only
one point.

3.32 Definition. Let a1 ≤ b1, . . . , ak ≤ bk be real numbers. Then the set of
all points p = (x1, . . . , xk) ∈ Rk such that a1 ≤ x1 ≤ b1, . . . , ak ≤ xk ≤ bk is
called a k-cell in Rk. (See Figure 14).

3.33 Theorem. Let k be fixed. Let {In} be a sequence of non-empty k-cells
such that I1 ⊃ I2 ⊃ I3 ⊃ · · · Then

⋂∞
n=1 In 6= ∅.

3.34 Theorem. Let K be a compact subset of a metric space (X, d). Then
K is bounded.

Proof. Fix a point p0 ∈ K. X =
⋃∞

n=1 Bn(p0) and K ⊂
⋃∞

n=1 Bn(p0).
So ∃n1, . . . nr ∈ N such that K ⊂ Bn1(p0) ∪ · · · ∪ Bnr(p0). Let n0 =
max{n1, . . . , nr}. Let p, q ∈ K, then p ∈ Bni

(p0) and q ∈ Bnj
(p0) where ni, nj

are one of n1, . . . , nr. We have d(p, q) ≤ d(p, p0)+d(p0, q) ≤ ni+nj ≤ 2n0.
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3.35 Theorem (Heine-Borel). A subset K of Rk is compact ⇔ K is closed
and bounded.

Proof.

(⇒): True in all metric spaces.

(⇐): Let K ⊂ Rk be closed and bounded. Since K is bounded, there is a
k-cell I such that K ⊂ I. I is compact, so K being a closed subset of
the compact set I is compact.

3.36 Theorem. Every k-cell is a compact set in Rk.

Proof. Let E ⊂ Rk be a k-cell. Then there are real numbers
a1, b1, a2, b2, . . . , ak, bk such that a1 ≤ b1, a2 ≤ b2, . . . , ak ≤ bk and

E = {p = (x1, . . . , xk) ∈ Rk : a1 ≤ x1 ≤ b1, . . . , ak ≤ xk ≤ bk}

If a1 = b1, a2 = b2, . . . , ak = bk then E consists of one point which is compact.
So assume there is at least one j, 1 ≤ j ≤ k, such that aj < bj. Let

δ =
√

(b1 − a1)2 + (b2 − a2)2 + · · ·+ (bn − an)2

Then δ > 0. Assume E is not compact. So there is an open cover {Gα : α ∈
A} such that no finite subcollection of Gα’s covers E. Let

ci =
ai + bi

2

We divide each side of E into two parts and this way we divide E into 2k

subcells. Call them Q1, Q2, . . . , Q2k . Then at least one of these Qj’s cannot
be covered by finitely many sets, Gα’s. Call this Qj E1. For all p, q ∈ E we
have d2(p, q) ≤ δ and for all p, q ∈ E1, d2(p, q) ≤ δ

2
. Next divide E1 into 2k

subcells by halving each side and continue this way. This way we obtain a
sequence {En} of k-cells such that

(a) E ⊃ E1 ⊃ E2 ⊃ E3 ⊃ · · ·

(b) En cannot be covered by any finite subcollection of {Gα : α ∈ A}

(c) For all p, q ∈ En, d2(p, q) ≤ δ
2n
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By (a),
⋂∞

n=1 En 6= ∅. Let p∗ ∈
⋂∞

n=1 En. Then p∗ ∈ E. Since {Gα : α ∈ A} is
an open cover of E, there is an α0 ∈ A such that p∗ ∈ Gα0 . Since Gα0 is open,
there is r > 0 such that Br(p

∗) ⊂ Gα0 . Find a natural number n0 such that
δ
r

< 2n0 , i.e. δ
2n0

< r. Now we show that En0 ⊂ Gα0 . p∗ ∈ En0 . Let p ∈ En0

be an arbitrary point. By (c), d2(p, p
∗) ≤ δ

2n0
. Also, δ

2n0
< r. So d2(p, p

∗) < r.
So p ∈ Br(p

∗) ⊂ Gα0 . Thus, p ∈ En0 ⇒ p ∈ Gα0 . So En0 ⊂ Gα0 . This means
En0 can be covered by finitely many sets from {Gα : α ∈ A} (indeed just by
one set). This contradicts (b).

3.37 Theorem. Let (X, d) be a metric space and K ⊂ X. Then K is
compact ⇔ every infinite subset of K has a limit point in K.

Proof.

(⇒): Let K be compact. Assume claim is not true. Then there is an infinite
subset A ⊂ K such that A has no limit point in K. So, given any
point p ∈ K, p is not a limit point of A. So there is rp > 0 such
that Brp(p) contains no point of A different from p. The collection of
{Brp(p) : p ∈ K} is an open cover of K. Since K is compact, there are
p1, p2, . . . , pn ∈ K such that K ⊂ Brp1

(p1) ∪ Brp2
(p2) ∪ · · · ∪ Brpn

(pn).
Since A ⊂ K and A is an infinite set, one of the open balls on the right
hand side must contain infinitely many points of A. Contradiction.

(⇐): Omitted.

3.38 Theorem (Bolzano-Weierstrass). Every infinite, bounded subset E of
Rk has a limit point in Rk.

Proof. Since E is bounded, there is a k-cell I such that E ⊂ I. Then since
I is compact, the infinite subset E of I has a limit point p ∈ I ⊂ Rk.

3.4 The Cantor Set

Let us define

E0 = [0, 1]

E1 =

[
0,

1

3

]
∪
[
2

3
, 1

]
E2 =

[
0,

1

9

]
∪
[
2

9
,
1

3

]
∪
[
2

3
,
7

9

]
∪
[
8

9
, 1

]
...
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Continue this way by removing the open middle thirds of the remaining
intervals. This way we get a sequence E1 ⊃ E2 ⊃ E3 ⊃ · · · ⊃ En ⊃ · · · such
that En is the union of 2n disjoint closed intervals of length 1

3n . We define

C =
∞⋂

n=1

En

which is called the Cantor Set.

Properties of C
(1) C is compact

(2) C 6= ∅

(3) intC = ∅

(4) C is perfect

(5) C is uncountable

Proof of (3). Assume intC 6= ∅. Then there is a non-empty open interval
(α, β) ⊂ C and C does not contain intervals of the form

(
3k+1
3m , 3k+2

3m

)
. Since

they are removed in the process of construction. Assume C contains (α, β)
where α < β. Let a > 0 be a constant which will be determined later. Choose
m ∈ N such that a

β−α
< 3m, i.e. 1

3m < β−α
a

. Let k be the smallest integer

such that α < 3k+1
3m , i.e. α3m−1

3
< k. Then k − 1 ≤ α3m−1

3
. Show 3k+2

3m < β.

k − 1 ≤ α3m − 1

3
⇒ k ≤ α3m − 1

3
+ 1

Show

α3m − 1

3
+ 1 <

3mβ − 2

3

1 <
3mβ − 2

3
− 3mα− 1

3

1 <
3m(β − α)− 1

3

Now we have
3m(β − α)− 1

3
>

3ma 1
3m − 1

3
=

a− 1

3
So let a−1

3
≥ 1, i.e. a ≥ 4. Choose a = 4. This way we have that(

3k + 1

3m
,
3k + 2

3m

)
⊂ (α, β) ⇒

(
3k + 1

3m
,
3k + 2

3m

)
⊂ C

Contradiction.
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3.5 Connected Sets

3.39 Definition. Let (X, d) be a metric space and A, B ⊂ X. We say A
and B are separated if A ∩B = ∅ and A ∩B = ∅.

3.40 Example. X = R, A = Q, B = R\Q. We have A∩B = R∩(R\Q) 6= ∅.
Then Q, R \Q in R are not separated.

3.41 Definition. A subset E ⊂ X is said to be disconnected if there are two
non-empty separated sets A, B such that E = A ∪B.

A subset E ⊂ X is said to be connected if it is not disconnected, i.e. there
are no non-empty separated sets A, B such that E = A ∪B.

3.42 Theorem. A non-empty subset E ⊂ R is connected⇔ E is an interval.

Proof. An interval is defined as follows: Whenever x < z and x, z ∈ E for
all y with x < y < z we have y ∈ E.

(⇒): Let E ⊂ R be connected. Assume E is not an interval. So there are
two points x, z ∈ E with x < z, there is y with x < y < z and y /∈ E.
Let A = E ∩ (−∞, y), B = E ∩ (y, +∞). x ∈ A, z ∈ B. So A 6= ∅,
B 6= ∅. Show A ∩ B = ∅, A ∩ B = ∅. A ⊂ (−∞, y) ⇒ A ⊂ (−∞, y].
So A ∩B ⊂ (−∞, y) ∩ (y, +∞) = ∅. Similarly we have A ∩B = ∅.

A ∪B = (E ∩ (−∞, y)) ∪ (E ∩ (y, +∞))

= E ∩ ((−∞, y) ∪ (y, +∞))︸ ︷︷ ︸
R\{y}

= E since y /∈ E

(⇐): Omitted.
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4 Sequences And Series

4.1 Sequences

Let (X, d) be a metric space. A sequence in X is a function f : N → X. If
pn = f(n), we denote this sequence by (pn) or {pn}.

4.1 Example. X = R2, pn =
(

1−n
n

, (−1)n

n

)
where n = 1, 2, 3, . . . Then

p1 = (0,−1)

p2 =

(
−1

2
,
1

2

)
p3 =

(
−2

3
,
−1

3

)
...

4.2 Definition. We say the sequence {pn} converges to p ∈ X if for every
ε > 0 there is a natural number n0 (depending on ε > 0 in general) such that
for all n ∈ N with n ≥ n0 we have d(pn, p) < ε, i.e. pn ∈ Bε(p). We write
pn → p or limn→∞ pn = p.

pn → p ⇔ every neighborhood of p contains all but finitely many terms pn.

If {pn} does not converge to any p ∈ X, we say {pn} is divergent.

4.3 Example. X = R2, pn =
(

1−n
n

, (−1)n

n

)
. p = (−1, 0). Show pn → p. Let

ε > 0 be given. Let n0 be any natural number such that
√

2
ε

< n0. Let n be
any natural number such that n0 ≤ n.

d2(pn, p) =

√(
1− n

n
− (−1)

)2

+

(
(−1)n

n
− 0

)2

=

√(
1

n

)2

+

(
(−1)n

n

)2

=

√
2

n2
=

√
2

n

≤
√

2

n0

< ε
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4.4 Remark. {xn} =
{

1
n

}
converges to x = 0 in (R, | · |), but it is divergent

in ((0, 2), | · |).

4.5 Definition. We say that the sequence {pn} is bounded if the set E =
{p1, p2, p3, . . .} is a bounded subset of X, i.e. there is a constant M > 0 such
that for all pi, pj ∈ E we have d(pi, pj) ≤ M .

4.6 Theorem.

(a) Let {pn} be a sequence such that pn → p and pn → p′. Then p = p′.

(b) If {pn} is convergent then {pn} is bounded.

(c) Let E 6= ∅ be subset of X. Then p ∈ E ⇔ there is a sequence {pn}
contained in E such that pn → p.

Proof.

(a) Let pn → p and pn → p′. Assume p 6= p′. Then d(p, p′) > 0. Let ε0 =
d(p,p′)

3
then ε0 > 0. We have pn → p so there is n1 ∈ N such that for all

n ≥ n1 we have d(pn, p) < ε0. We also have pn → p′ so there is n2 ∈ N
such that for all n ≥ n2 we have d(pn, p

′) < ε0. Let n0 = max{n1, n2}.
Then n0 ≥ n1 ⇒ d(pn0 , p) < ε0 and n0 ≥ n2 ⇒ d(pn0 , p

′) < ε0. Then
3ε0 = d(p, p′) ≤ d(p, pn0) + d(pn0 , p

′) < ε0 + ε0 = 2ε0. So 3ε0 < 2ε0.
Since ε0 > 0, this cannot be true.

(b) Let pn → p. For ε = 1 > 0, there is n0 ∈ N such that for all n ≥ n0 we
have d(pn, p) < 1. If i, j ≥ n0, then d(pi, pj) ≤ d(pi, p) + d(p, pj) < 1 +
1 = 2. Let K = max{1, d(p1, p), . . . , d(pn0−1, p)}. Then for all n ∈ N we
have d(pn, p) ≤ K. For any i, j ∈ N, d(pi, pj) ≤ d(pi, p)+d(p, pj) ≤ 2K.

(c) (⇐): {pn} in E such that pn → p. Show p ∈ E. Given r > 0 we have
n0 ∈ N such that for all n ≥ n0, d(pn, p) < r. So pn0 ∈ Br(p)∩E.
So Br(p) ∩ E 6= ∅. So p ∈ E.

(⇒): Let p ∈ E. Then for every r > 0, Br(p) ∩ E 6= ∅.

For r = 1, find p1 ∈ B1(p) ∩ E

For r =
1

2
, find p2 ∈ B 1

2
(p) ∩ E

...

For r =
1

n
, find pn ∈ B 1

n
(p) ∩ E
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Then {pn} is a sequence in E. Given ε > 0 let n0 be such that
1
ε

< n0. Then for all n ≥ n0 we have d(pn, p) < 1
n
≤ 1

n0
< ε. So

pn → p.

4.7 Theorem. Let {sn} and {tn} be sequences in R such that sn → s and
tn → t where s, t ∈ R. Then

(a) sn + tn → s + t

(b) For all constants c ∈ R, csn → c · s

(c) sntn → s · t

(d) If s 6= 0 then 1
sn
→ 1

s

Proof of (a). We have that

d(sn + tn, s + t) = |sn + tn − (s + t)|
= |(sn − s) + (tn − t)|
≤ |sn − s|+ |tn − t|

Given ε > 0, let ε′ = ε
2

> 0. We have sn → s so there is n1 ∈ N such that
for all n ≥ n1 we have |sn − s| < ε′. We also have tn → t so there is n2 ∈ N
such that for all n ≥ n2 we have |tn − t| < ε′. Let n0 = max{n1, n2}. Then
n ≥ n0 ⇒ n ≥ n1 ⇒ |sn − s| < ε′ and n ≥ n0 ⇒ n ≥ n2 ⇒ |tn − t| < ε′. So
for all n ≥ n0 we have

d(sn + tn, s + t) ≤ |sn − s|+ |tn − t|
< ε′ + ε′ = 2ε′ = ε

Proof of (d). Let ε0 = |s|
2

then ε0 > 0. So there is n1 ∈ N such that for all
n ≥ n1 we have |sn−s| < ε0. Let n ≥ n1, |s| = |s−sn+sn| ≤ |s−sn|+ |sn| <
|s|
2

+ |sn|. So for all n ≥ n1,
|s|
2

< |sn|. In particular for all n ≥ n1, sn 6= 0
so 1

sn
is defined. And also 1

|sn| < 2
|s| . To show limn→∞

1
sn

= 1
s
, let ε > 0 be

given. Let ε′ = ε|s|2
2

> 0. We have sn → s so there is n2 ∈ N such that for
all n ≥ n2 we have |sn − s| < ε′. Let n0 = max{n1, n2} and n ≥ n0. Then∣∣∣∣ 1

sn

− 1

s

∣∣∣∣ =

∣∣∣∣s− sn

s · sn

∣∣∣∣ =
|s− sn|
|s||sn|

<
ε′

|s|
· 1

|sn|
<

ε′

|s|
· 2

|s|

=
ε|s|2

2
· 2

|s|2
= ε
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4.8 Theorem.

(a) Let {pn} be a sequence in Rk where pn = (xn
1 , . . . , x

n
k) and p =

(x1, . . . , xk) ∈ Rk. Then pn → p ⇔ xn
1 → x1, x

n
2 → x2, . . . , x

n
k → xk.

(b) Let {pn}, {qn} be two sequences in Rk and {αn} be a sequence in R.
Assume pn → p, qn → q in Rk and αn → α in R. Then pn + qn → p+ q
and αnpn → αp.

Proof of (a). We need the following: If q = (y1, . . . , yk) ∈ Rk then for all
i = 1, 2, . . . , k

|yi| ≤
√

y2
1 + y2

2 + · · ·+ y2
k ≤ |y1|+ |y2|+ · · ·+ |yk|

|yi|2 = y2
i ≤ y2

1 + y2
2 + · · ·+ y2

k

y2
1 + y2

2 + · · ·+ y2
k ≤ (|y1|+ |y2|+ · · ·+ |yk|)2

Assume pn → p. Given ε > 0, we have n0 ∈ N such that for all n ≥ n0,
d2(pn, p) < ε. Let n ≥ n0. Then

|xn
1 − x1| ≤

√
(xn

1 − x1)2 + (xn
2 − x2)2 + · · ·+ (xn

k − xk)2 = d2(pn, p) < ε

|xn
2 − x2| ≤ · · · < ε

...

Conversely, assume xn
1 → x1, x

n
2 → x2, . . . , x

n
k → xk. To show pn → p, let

ε > 0 be given. Let ε′ = ε
k

> 0.

xn
1 → x1 so we have n1 such that for all n ≥ n1, |xn

1 − x1| < ε′

xn
2 → x2 so we have n2 such that for all n ≥ n2, |xn

2 − x2| < ε′

...

xn
k → xk so we have nk such that for all n ≥ nk, |xn

k − xk| < ε′

Let n0 = max{n1, n2, . . . , nk}. For all n ≥ n0

d2(pn, p) =
√

(xn
1 − x1)2 + (xn

2 − x2)2 + · · ·+ (xn
k − xk)2

≤ |xn
1 − x1|+ |xn

2 − x2|+ · · ·+ |xn
k − xk|

< ε′ + ε′ + · · ·+ ε′

= kε′ = ε
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4.2 Subsequences

4.9 Definition. Let {pn} be a sequence in X. Let {nk} be a sequence of
natural numbers such that n1 < n2 < n3 < · · · Then the sequence {pnk

} is
called a subsequence of {pn}.

4.10 Example. {p1, p3, p7, p10, p23, . . .} is a subsequence of {pn}. n1 = 2,
n2 = 3, n3 = 7, n4 = 10, n5 = 23 and so on.

4.11 Proposition. pn → p ⇔ every subsequence of {pn} converges to p.

Proof.

(⇐): Since {pn} is a subsequence of itself, pn → p.

(⇒): Let pn → p. Let {pnk
} be an arbitrary subsequence of {pn}. To show

pnk
→ p, let ε > 0 be given. Since pn → p, we have n0 such that for all

n ≥ n0, d(pn, p) < ε. If k ≥ n0 then nk ≥ k ≥ n0 so d(pnk
, p) < ε.

4.12 Remark. Limits of subsequences are limit points of the sequence.

4.13 Example. X = R2 and pn =
(

n+(−1)nn+1
n

, 1
n

)
n is even ⇒ pn =

(
2n + 1

n
,
1

n

)
→ (2, 0)

n is odd ⇒ pn =

(
1

n
,
1

n

)
→ (0, 0)

So the sequence {pn} has limit points (2, 0) and (0, 0).

4.14 Example. In X = R, xn = n + (−1)nn + 1
n

n is even ⇒ xn = 2n +
1

n
→ +∞

n is odd ⇒ xn =
1

n
→ 0

We do not accept +∞ as a limit since +∞ is not a member of R. So 0 is
the only limit point of the sequence {xn} but {xn} is divergent since it is not
bounded.
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4.15 Theorem.

(a) Let (X, d) be a compact metric space and {pn} be any sequence in X.
Then {pn} has a subsequence that converges to a point p ∈ X.

(b) Every bounded sequence in Rk has a convergent subsequence.

Proof.

(a) Case 1: {pn} has only finitely many distinct terms. Then at least one
term, say pn0 is repeated infinitely many times, i.e. the sequence {pn}
has a subsequence all of whose terms are p. Then the limit of this
subsequence is p = pn0 ∈ X.

Case 2: {pn} has infinitely many distinct terms. Then the set E =
{p1, p2, p3, . . .} is an infinite subset of the compact set X. So it has a
limit point p ∈ X. Then p is the limit of a subsequence of {pn}.

(b) Since {pn} is bounded, there is a k-cell I such that {pn} ⊂ I. I is
compact, so by (a), {pn} has a subsequence that converges to a point
p ∈ I.

4.3 Cauchy Sequences

4.16 Definition. Let (X, d) be a metric space. A sequence {pn} in X is
called a Cauchy sequence if for every ε > 0 we have n0 ∈ N such that for all
n,m ≥ n0, d(pn, pm) < ε.

4.17 Example. In X = R

xn =

∫ n

1

cos t

t2
dt

Then {xn} is a Cauchy sequence in R. Given n, m if n = m then xn = xm
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so d(xn, xm) = |xn − xm| = 0 < ε. If n 6= m, assume m < n.

d(xn − xm) = |xn − xm|

=

∣∣∣∣∫ n

1

cos t

t2
dt−

∫ m

1

cos t

t2
dt

∣∣∣∣
=

∣∣∣∣∫ n

m

cos t

t2
dt

∣∣∣∣
≤
∫ n

m

∣∣∣∣cos t

t2

∣∣∣∣ dt We know

∣∣∣∣cos t

t2

∣∣∣∣ =
| cos t|

t2
≤ 1

t2

≤
∫ n

m

1

t2
dt = −1

t

∣∣∣∣n
m

= − 1

n
+

1

m

≤ 1

m
≤ 1

n0

< ε

Given ε > 0, choose n0 ∈ N such that 1
ε

< n0. Then for all n,m ∈ N with
n0 ≤ m ≤ n we have d(xn, xm) < ε.

4.18 Example. X = R, xn =
√

n. If n = m + 1 then

d(xn, xm) = |xm+1 − xm|
= |
√

m + 1−
√

m| =
√

m + 1−
√

m

= (
√

m + 1−
√

m)

√
m + 1 +

√
m√

m + 1 +
√

m

=
1√

m + 1 +
√

m
<

1√
m

Given ε > 0, choose n0 ∈ N such that 1
ε2 < n0. Then for all m ≥ n0 we have

d(xm+1, xm) < ε.

So the distance between successive terms gets smaller as the index gets larger
but this sequence {xn} is not a Cauchy sequence. For example, for ε = 1,
consider

d(xm, x3m+1) = |
√

m−
√

3m + 1|
=
√

3m + 1−
√

m =
√

m + 2m + 1−
√

m

≥
√

(
√

m + 1)2 −
√

m

≥
√

m + 1−
√

m ≥ 1

4.19 Theorem. Let (X, d) be a metric space.
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(a) Every convergent sequence in X is Cauchy.

(b) Every Cauchy sequence is bounded.

Proof.

(a) Assume pn → p. Show {pn} is Cauchy. Given ε > 0 let ε′ = ε
2

> 0.
Since pn → p, there is n0 ∈ N such that d(pn, p) < ε′ for all n ≥ n0.
Let n,m ≥ n0. Then

d(pn, pm) ≤ d(pn, p) + d(p, pm) < ε′ + ε′ = 2ε′ = ε

(b) Let {pn} be a Cauchy sequence in X. For ε = 1 there is n0 ∈ N
such that for all n, m ≥ n0 we have d(pn, pm) < 1. Let K =
max{1, d(p1, pn0), . . . , d(pn0−1, pn0)} and M = 2k. Then we show that
for all n,m ∈ N, d(pn, pm) ≤ M .

Case 1: n, m ≥ n0. Then

d(pn, pm) < 1 ≤ K < M

Case 2: n, m < n0. Then

d(pn, pm) ≤ d(pn, pn0) + d(pn0 , pm) ≤ K + K = M

Case 3: m < n0 and n ≥ n0. Then

d(pn, pm) ≤ d(pn, pn0)︸ ︷︷ ︸
<1

+ d(pn0 , pm)︸ ︷︷ ︸
≤K

< 1 + K ≤ K + K = M

Converse of (a) is not true in general.

4.20 Example. X = (0, 1) = {x ∈ R : 0 < x < 1} with d(x, x′) = |x − x′|.
xn = 1

2n
. {xn} is a Cauchy sequence in X but {xn} has no limit in X.

4.21 Definition. A metric space (X, d) is said to be complete if every Cauchy
sequence in (X, d) is convergent to some point p ∈ X.

4.22 Theorem.

(a) Every compact metric space (X, d) is complete.

(b) (Rk, d2) is complete. ((Rk, d1), (Rk, d∞) are also complete.)
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Proof.

(a) Let (X, d) be a compact metric space and let {pn} be a Cauchy sequence
in X. Then {pn} has a subsequence {pnk

} which converges to a point
p ∈ X. Show pn → p. Let ε > 0 be given. Let ε′ = ε

2
> 0. {pn}

is Cauchy, so there is N1 ∈ N such that for all n, m ≥ N1 we have
d(pn, pm) < ε′. pnk

→ p, so there is N2 such that for all k ≥ N2 we
have d(pnk

, p) < ε′. Let N = max{N1, N2}. Then for all n ≥ N

d(pn, p) ≤ d(pn, pnN
)︸ ︷︷ ︸

<ε′

+ d(pnN
, p)︸ ︷︷ ︸

<ε′

< 2ε′ = ε

(b) Let {pn} be a Cauchy sequence in Rk. Then {pn} is bounded so there
is a k-cell I such that {pn} ⊂ I. (I, d2) is compact. Then by (a), {pn}
has a limit p ∈ I ⊂ Rk.

4.23 Remark. S 6= ∅, B(S) all bounded functions f : S → R.

d(f, g) = sup{|f(s)− g(s)| : s ∈ S}

(B(S), d) is complete.

4.24 Theorem. Let (X, d) be a complete metric space and Y 6= ∅ be a
subset of X. The subspace (Y, d) is complete ⇔ Y is a closed subset of X.

Proof.

(⇒): Assume (Y, d) is complete and show Y is closed, i.e. Y ⊂ Y . Let p ∈ Y .
Then there is a sequence {pn} in Y such that pn → p. Then {pn} is
convergent in X. So {pn} is Cauchy in X. Since all pn ∈ Y , {pn} is
Cauchy in Y . Since Y is complete, there is an element q ∈ Y such that
pn → q. Then p = q ∈ Y . So p ∈ Y , i.e. Y ⊂ Y .

(⇐): Assume Y is closed. Show (Y, d) is complete. Let {pn} be a Cauchy
sequence in Y . Then {pn} is a Cauchy sequence in X. Since (X, d) is
complete, there is p ∈ X such that pn → p. Then p is the limit of the
sequence {pn} in Y . Then p ∈ Y . Since Y is closed, Y = Y . So p ∈ Y .
So (Y, d) is complete.

4.25 Example. X = R2, Y = {(x, y) : x ≥ 0, y ≥ 0}. Then (Y, d2) is
complete.
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Monotone Sequence Property In R
Let {sn} be a sequence in R. We say

{sn} is increasing if s1 ≤ s2 ≤ s3 ≤ · · · ≤ sn ≤ sn+1 ≤ · · ·
{sn} is decreasing if s1 ≥ s2 ≥ s3 ≥ · · · ≥ sn ≥ sn+1 ≥ · · ·
{sn} is monotone if {sn} is either increasing or decreasing.

4.26 Theorem (Monotone Sequence Property). Let {sn} be a monotone
sequence in R. Then {sn} is convergent ⇔ {sn} is bounded.

Proof.

(⇒): True for all sequences.

(⇐): We do the proof for decreasing sequences. Let s = inf{s1, s2, s3, . . .}.
Show limn→∞ sn = s. Let ε > 0 be given. Then s + ε cannot be a
lower bound for the set {s1, s2, s3, . . .}. Then there is sn0 such that
sn0 < s + ε. Let n ≥ n0. s− ε < s ≤ sn ≤ sn0 < s + ε. For all n ≥ n0

s− ε < sn < s + ε

−ε < sn − s < ε

|sn − s| < ε

d(sn, s) < ε

4.27 Example. Let A > 0 be fixed. Start with any x1 > 0 and define

xn =
1

2

(
xn−1 +

A

xn−1

)
n = 2, 3, 4, . . .

Then limn→∞ xn =
√

A. We will show x2 ≥ x3 ≥ x4 ≥ · · · For n ≥ 2

x2
n − A =

1

4

(
x2

n−1 +
A2

x2
n−1

+ 2A

)
− A

=
1

4

(
x2

n−1 +
A2

x2
n−1

− 2A

)
=

1

4

(
xn−1 −

A

xn−1

)2

≥ 0
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So x2
n ≥ A for all n ≥ 2. Since all xn > 0, xn ≥

√
A for all n ≥ 2. For n ≥ 2

xn − xn+1 = xn −
1

2

(
xn +

A

xn

)
=

1

2

(
xn −

A

xn

)
=

1

2

x2
n − A

xn

≥ 0

So xn ≥ xn+1 for all n ≥ 2. So {xn}∞n=2 is decreasing and bounded. So
limn→∞ xn = x exists. Then we solve for x. We have that

xn+1 = 1
2

(
xn + A

xn

)
↓ ↓
x = 1

2

(
x + A

x

)
Then

2x = x +
A

x
x2 = A

x = ∓
√

A

Since all xn > 0, limit x cannot be negative. So x =
√

A.

4.4 Upper And Lower Limits

Let {xn} be a sequence in R.

We write limn→∞ xn = +∞ (or xn → +∞) if for every M > 0 we can find a
natural number n0 (depending on M in general) such that for all n ≥ n0 we
have M ≤ xn.

We write limn→∞ xn = −∞ (or xn → −∞) if for every M < 0 we can find a
natural number n0 (depending on M in general) such that for all n ≥ n0 we
have xn ≤ M .

In either case, we say {xn} is divergent.

4.28 Example. xn = n + 1
n

and limn→∞ xn = +∞. {xn} is divergent.

4.29 Definition. Let {xn} be a sequence in R. Let E be the set of all
subsequential limits of {xn}. Then E ⊂ R ∪ {−∞, +∞}.

44



4.30 Example. xn = n + (−1)nn + 1
n
. Subsequential limits are +∞ and 0.

So E = {0, +∞}.

4.31 Definition. Let x∗ = sup E and x∗ = inf E (Considered in the set of
extended real numbers.)

x∗ is called the upper limit (or limit superior) of {xn} and it is denoted by

x∗ = lim sup
n→∞

xn = lim
n→∞

xn

x∗ is called the lower limit (or limit inferior) of {xn} and it is denoted by

x∗ = lim inf
n→∞

xn = lim
n→∞

xn

4.32 Example. The function Π : N×N → N defined by Π(r, s) = 2r−1(2s−
1), is 1-1 and onto. Let s be fixed. Ns = {2r−1(2s − 1) : r = 1, 2, 3, . . .} =

r\s 1 2 3 4 · · ·

1 1 3 5 7 · · ·
2 2 6 10 14 · · ·
3 4 12 20 28 · · ·
4 8 24 40 56 · · ·
...

...
...

...
...

. . .

{2s − 1, 2(2s − 1), 4(2s − 1), . . .} Then for s 6= s′, Ns ∩ Ns′ = ∅. Also⋃∞
s=1 Ns = N. Define a sequence {xn} in R as follows: Given n ∈ N, there is

a unique s such that n ∈ Ns. Define xn = sn

n+1
. What are the subsequential

limits of {xn} ? What are lim supn→∞ xn and lim infn→∞ xn ?

If n ∈ N1 = {1, 2, 4, 8, . . .} then xn =
n

n + 1
→ 1

If n ∈ N2 = {3, 6, 12, 24, . . .} then xn =
2n

n + 1
→ 2

...

If n ∈ Ns = {· · · } then xn =
sn

n + 1
→ s

So all 1, 2, 3, . . . are subsequential limits. Then we have {1, 2, 3, . . .} ⊂ E.
Then sup E = +∞, i.e. lim supn→∞ xn = +∞.
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Since xn = sn

n+1
, s ≥ 1 ⇒ xn ≥ n

n+1
so all xn ≥ 1

2
. So if x is a subsequential

limit of {xn} then x ≥ 1
2
. Can we have a subsequential limit x such that

1
2
≤ x ≤ 1 ? If n ∈ Ns where s ≥ 2 then xn = sn

n+1
≥ 2n

n+1
≥ 1. If n ∈ N1

then xn = n
n+1

→ 1. So 1 is the smallest subsequential limit of {xn}. Thus
lim infn→∞ xn = 1.

Properties

(i) lim infn→∞ xn ≤ lim supn→∞ xn

(ii) lim inf
n→∞

xn = lim sup
n→∞

xn︸ ︷︷ ︸
call this x

⇔ limn→∞ xn = x (Here x ∈ R or x = +∞ or

x = −∞)

(iii) Let x ∈ R, i.e. x 6= ∓∞. We have that lim supn→∞ xn = x ⇔

(a) For every ε > 0 there is a natural number n0 such that for all
n ≥ n0, xn < x + ε

and

(b) For every ε > 0 there are infinitely many n such that x− ε < xn

4.33 Theorem (Squeeze Property or Sandwich Property). Let {xn}, {yn},
{zn} be three sequences in R such that xn ≤ yn ≤ zn for all n. Assume that
{xn} and {zn} are convergent and lim

n→∞
xn = lim

n→∞
zn︸ ︷︷ ︸

call this c

. Then {yn} is convergent

and limn→∞ yn = c.

Proof. Given ε > 0

xn → c, so there is n1 ∈ N such that for all n ≥ n1, |xn − c| < ε

zn → c, so there is n2 ∈ N such that for all n ≥ n2, |zn − c| < ε

Let n0 = max{n1, n2} and n ≥ n0. Show |yn − c| < ε

If c ≤ yn then |yn − c| = yn − c ≤ zn − c ≤ |zn − c| < ε

If c > yn then |yn − c| = c− yn ≤ c− xn ≤ |c− xn| = |xn − c| < ε

Some Special Sequences In R

4.34 Theorem.

(a) If p > 0 constant then limn→∞
1
np = 0

(b) If p > 0 constant then limn→∞ n
√

p = 1
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(c) limn→∞
n
√

n = 1

(d) If p > 0 and α ∈ R are constants then limn→∞
nα

(1+p)n = 0

Note: This is usually expressed as polynomials tend to increase slower
than exponentials.

(e) If x is constant and |x| < 1, i.e. −1 < x < 1 then limn→∞ xn = 0

Proof of (b).

If p = 1 then n
√

p = 1 for all n, so limn→∞ n
√

p = 1.

If p > 1 let xn = n
√

p− 1. Then xn > 0 for all n.

p = (1 + xn)n = 1 + nxn +
n(n− 1)

2
x2

n + · · ·+ xn
n︸ ︷︷ ︸

positive

So p ≥ 1 + nxn. So 0 < xn < p−1
n

. By sandwich property, limn→∞ xn = 0.
Then n

√
p = 1 + xn → 1.

If p < 1 then n

√
1
p
→ 1 by the previous case so n

√
p → 1.

Proof of (c). Let xn = n
√

n− 1. Then xn ≥ 0 for all n.

n = (1 + xn)n = 1 + nxn +
n(n− 1)

2
x2

n +
n(n− 1)(n− 2)

6
x3

n + · · ·+ xn
n︸ ︷︷ ︸

≥0

≥ n(n− 1)

2
x2

n

So n ≥ n(n−1)
2

x2
n ⇒ 0 ≤ x2

n ≤ 2
n−1

⇒ 0 ≤ xn ≤
√

2
n−1

. By sandwich theorem,

limn→∞ xn = 0. Then n
√

n = 1 + xn → 1.

Proof of (d). If α ≤ 0 we have limn→∞
nα

(1+p)n = 0. So assume α > 0. Fix a
natural number k such that α < k. Then for n ≥ 2k

n(n− 1) · · · (n− k + 1)︸ ︷︷ ︸
k terms

>
n

2
· n

2
· · · n

2︸ ︷︷ ︸
k terms

=
(n

2

)k
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(1 + p)n =
n∑

`=0

(
n

`

)
p` · 1n−`

>

(
n

k

)
pk =

n(n− 1) · · · (n− k + 1)

k!
pk

>

(
n
2

)k
k!

pk =
nk

2kk!
pk =

nk−αnα

2kk!
pk

2kk!

pk

1

nk−α
>

nα

(1 + p)n
> 0

By sandwich property, we have limn→∞
nα

(1+p)n = 0.

4.5 Series

4.35 Definition. Given a sequence {an} in R, the symbol
∑∞

n=1 an is called
an (infinite) series. Given a series

∑∞
n=1 an we define the following sequence

{sn}

s1 = a1

s2 = a1 + a2

s3 = a1 + a2 + a3

...

sn = a1 + a2 + · · ·+ an

{sn} is called the sequence of partial sums.

If limn→∞ sn = s exists in R (s = ∓∞ is not acceptable) we say the series is
convergent and has sum = s. We write

∑∞
n=1 an = s.

If limn→∞ sn = ∓∞ or limn→∞ sn does not exist we say that the series∑∞
n=1 an is divergent.

4.36 Example.
∑∞

n=1
1

(n+1)2−1
= 1

22−1
+ 1

32−1
+ 1

42−1
+ · · · Then

an =
1

(n + 1)2 − 1
=

1

n(n + 2)
=

A

n
+

B

n + 2

Then A = 1
2

and B = −1
2
. We get

1
2

n
−

1
2

n + 2
=

1

2

(
1

n
− 1

n + 2

)
=

1

2

n + 2− n

n(n + 2)
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So an = 1
2

(
1
n
− 1

n+2

)
. Then

sn = a1 + a2 + · · ·+ an

=
1

2

(
1

1
− 1

3

)
+

1

2

(
1

2
− 1

4

)
+

1

2

(
1

3
− 1

5

)
+ · · ·+ 1

2

(
1

n
− 1

n + 2

)
Cancellation pattern: ( |X) + ( | ) + (X| )+ · · · Then

sn =
1

2

(
1

1
+

1

2
− 1

n + 1
− 1

n + 2

)
=

1

2

(
3

2
− 1

n + 1
− 1

n + 2

)
Then limn→∞ sn = 1

2
· 3

2
= 3

4
so s = 3

4
i.e. 1

22−1
+ 1

32−1
+ · · · = 3

4

4.37 Example. Let r ∈ R be a constant. Consider
∑∞

n=0 rn = 1 + r + r2 +
r3 + · · · geometrical series.

sn = 1 + r + r2 + · · ·+ rn

rsn = r + r2 + · · ·+ rn︸ ︷︷ ︸
sn−1

+rn+1

rsn = sn − 1 + rn+1

1− rn+1 = sn − rsn

sn =
1− rn+1

1− r
if r 6= 1

If |r| < 1, i.e. −1 < r < 1 then rn+1 → 0 so limn→∞ sn = 1
1−r

If r = 1 then sn = n + 1 → +∞
For any other value of r, limn→∞ sn does not exist. So the geometrical series
is convergent only for −1 < r < 1.

∞∑
n=0

rn = 1 + r + r2 + r3 + · · · = 1

1− r
if − 1 < r < 1

4.38 Theorem (Cauchy Criterion).
∑∞

n=1 an is convergent⇔ for every ε > 0
there is n0 ∈ N such that for all n,m ≥ n0 with n ≥ m we have |

∑n
k=m ak| =

|am + am+1 + · · ·+ an| < ε.

Proof.
∑∞

n=1 an is convergent then {sn} is convergent. So {sn} is Cauchy.
That is, for every ε > 0 there is n0 ∈ N such that for all n, m ≥ n0 with
n ≥ m we have |sn − sm−1| < ε.

sn − sm−1 = a1 + a2 + · · ·+ an − (a1 + · · ·+ am−1) = am + · · ·+ an
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4.39 Theorem. If
∑

an is convergent then limn→∞ an = 0.

Proof. an = sn − sn−1 → s− s = 0.

4.40 Example.
∑∞

n=1(−1)n = (−1)+1+(−1)+1+(−1)+ · · · is divergent
since limn→∞(−1)n does not exist. So limn→∞(−1)n 6= 0.

sn =

{
0 if n is even
−1 if n is odd

4.41 Definition. A series
∑∞

n=1 an is said to be non-negative if there is
n0 ∈ N such that for all n ≥ n0 we have an ≥ 0.

4.42 Theorem. Let
∑

an be a non-negative series. Then
∑

an is convergent
⇔ {sn} is bounded.

Proof. There is n0 such that for all n ≥ n0 we have an ≥ 0.

sn0 = sn0−1 + an0 ≥ sn0−1

sn0+1 = sn0 + an0+1 ≥ sn0

...

sn+1 = sn + an+1 ≥ sn

...

sn0 ≤ sn0+1 ≤ · · · ≤ sn ≤ sn+1 ≤ · · ·

By monotone sequence property (since {sn}∞n=n0
is increasing), {sn} is con-

vergent ⇔ {sn} is bounded.

4.43 Theorem (Comparison Test).

(a) Suppose there is n0 such that for all n ≥ n0 |an| ≤ cn and
∑

cn is
convergent. Then

∑
an is also convergent.

(b) Suppose there is n0 such that for all n ≥ n0 an ≥ dn ≥ 0 and
∑

dn is
divergent. Then

∑
an is also divergent.

Proof.
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(a) Use Cauchy criterion. Let ε > 0 be given. Since
∑

cn is convergent,
there is n1 ∈ N such that for all n, m ≥ n1 with m ≤ n we have
|
∑n

k=m ck| < ε. Let n2 = max{n0, n1}. Let n ≥ m ≥ n2. Then∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ = |am + am+1 + · · ·+ an| ≤ |am|︸︷︷︸
≤cm

+ |am+1|︸ ︷︷ ︸
≤cm+1

+ · · ·+ |an|︸︷︷︸
≤cn

≤ cm + cm+1 + · · ·+ cn = |cm + cm+1 + · · ·+ cn| < ε

(b) This follows from (a). If
∑

an were convergent, then by (a),
∑

dn

would be convergent.

4.44 Theorem (Cauchy Condensation Test). Suppose a1 ≥ a2 ≥ a3 ≥ · · · ≥
0. Then

∑∞
n=1 an is convergent ⇔

∑∞
k=0 2ka2k = a1 + 2a2 + 4a4 + 8a8 + · · ·

is convergent.

Proof. Let sn = a1 + a2 + · · ·+ an and tn = a1 + 2a2 + · · ·+ 2na2n .

tn = a1 + 2a2 + 4a4 + · · ·+ 2na2n

= a1 + (a2 + a2) + (a4 + a4 + a4 + a4) + · · ·+ (a2n + a2n + · · ·+ a2n)︸ ︷︷ ︸
2n terms

≥ a1 + a2 + a3 + · · ·+ a2n+1−1 = s2n+1−1

s2n = a1 + a2 + (a3 + a4) + (a5 + a6 + a7 + a8) + · · ·+ (a2n−1+1 + · · ·+ a2n)︸ ︷︷ ︸
2n−1 terms

≥ 1

2
a1 + a2 + 2a4 + 4a8 + · · ·+ 2n−1a2n

=
1

2
(a1 + 2a2 + 4a4 + 8a8 + · · ·+ 2na2n) =

1

2
tn

Then s2n+1−1 ≤ tn ≤ 2s2n . So
∑

an is convergent ⇔ {sn} is bounded ⇔ {tn}
is bounded ⇔

∑
2ka2k is convergent.

4.45 Example. Let p > 0 be constant and consider the p-series
∑∞

n=1
1
np .

Then an = 1
np > 0 and a1 ≥ a2 ≥ a3 ≥ · · ·

∞∑
k=0

2ka2k =
∞∑

k=0

2k 1

(2k)p
=

∞∑
k=0

2k−kp =
∞∑

k=0

(21−p)k

Geometric series with r = 21−p > 0. It is convergent ⇔ r < 1, i.e.
21−p < 1 ⇔ p > 1. If p ≤ 0 let q = −p ≥ 0. an = 1

np = 1
n−q = nq

51



then limn→∞ an 6= 0. So
∑

1
np is divergent.

Summary: Let p be a constant. Then
∑∞

n=1
1
np is convergent ⇔ p > 1.

For example,
∑∞

n=1
1
n2 and

∑∞
n=1

1
n
√

n
are convergent but

∑∞
n=1

1
n

and∑∞
n=1

1√
n

are divergent.
∑∞

n=1
1

n1.00001 is convergent.
∑∞

n=1
1

n1+ 1
n

is not a

p-series since the exponent 1 + 1
n

is not a constant.

4.46 Remark.
∞∑

n=1

1

n2
=

π2

6

The Number e

The series
∞∑

n=0

1

n!
= 1 + 1 +

1

2!
+

1

3!
+

1

4!
+ · · ·

is convergent. For n ≥ 2

an =
1

n!
=

1

2 · 3 · · ·n︸ ︷︷ ︸
n−1 factors

≤ 1

2n−1

∑
1

2n−1 = 2
∑(

1
2

)n
is convergent. So by comparison test,

∑∞
n=0 an =

∑∞
n=0

1
n!

is convergent.

4.47 Definition.

e =
∞∑

n=0

1

n!

4.48 Theorem. e is not rational.

Proof. Suppose e is rational. Then e = p
q

where p, q are natural numbers.
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Since all an > 0, we have sn < e for all n. We have 0 < e− sq < 1
q!q

e− sq =
1

(q + 1)!
+

1

(q + 2)!
+

1

(q + 3)!
+ · · ·

=
1

(q + 1)!

[
1 +

1

q + 2
+

1

(q + 2)(q + 3)
+ · · ·

]
<

1

(q + 1)!

[
1 +

1

q + 1
+

1

(q + 1)(q + 1)
+ · · ·

]
=

1

(q + 1)!

∞∑
n=0

(
1

q + 1

)n

Geometrical series with r =
1

q + 1

<
1

(q + 1)!

1

1− 1
q+1

=
1

(q + 1)!

q + 1

q
=

1

q!q

Then 0 < q!(e− sq) < 1
q
. p = e · q is an integer. So q! · e = 1 ·2 · · · (q−1) · q · e

is an integer. q!sq = q!
(
1 + 1 + 1

2!
+ · · ·+ 1

q!

)
is also an integer. So q!e− qsq

is an integer. Also, 1
q
≤ 1 so 0 < q!e− q!sq < 1. Contradiction.

4.49 Remark. e is not even an algebraic number.

A real number r is called an algebraic number if there is a polynomial P (x) =
anx

n + an−1x
n−1 + · · ·+ a1x + a0 with integer coefficients an, an−1, . . . , a1, a0

such that P (r) = 0.

4.50 Example. r =
√

2 is algebraic. P (x) = x2 − 2 then P (r) = 0.

A real number that is not algebraic is called transcendental. e, π are tran-
scendental numbers.

4.51 Theorem (Root Test). Given
∑

an let α = lim supn→∞
n
√
|an|. Then

0 ≤ α ≤ +∞.

(a) α < 1 ⇒
∑

an is convergent

(b) α > 1 ⇒
∑

an is divergent

(c) α = 1 ⇒ No information

Proof.

(a) Find β such that α < β < 1. Then there is n0 ∈ N such that for all
n ≥ n0 we have n

√
|an| < β. That is, |an| < βn for all n ≥ n0.

∑
βn

is convergent (geometrical series, 0 < β < 1) so by comparison test,∑
an is convergent.
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(b) We have α > 1. Since lim sup is the largest subsequential limit, we can
find a subsequence {nk} of natural numbers such that nk

√
|ank

| → α.

Since α > 1, we have nk
√
|ank

| > 1 ⇒ |ank
| > 1. Then “limn→∞ an = 0”

cannot be true. So
∑

an is divergent.

(c)
∑

1
n

is divergent and α = 1. (in fact limn→∞
n

√∣∣ 1
n

∣∣ = 1)∑
1
n2 is convergent and α = 1. (in fact limn→∞

n

√∣∣ 1
n2

∣∣ = 1)

4.52 Example. Consider
∑∞

n=1
(−2)n

n
Then an = (−2)n

n
. We apply root test.

n
√
|an| = n

√
2n

n
= 2

n√n
. We have α = limn→∞

2
n√n

= 2. α > 1 so
∑ (−2)n

n
is

divergent.

4.53 Theorem (Ratio Test). Let
∑

an be an arbitrary series.

(a) If lim supn→∞
|an+1|
|an| < 1 then

∑
an is convergent.

(b) If lim infn→∞
|an+1|
|an| > 1 then

∑
an is divergent.

(c) If lim infn→∞
|an+1|
|an| ≤ 1 ≤ lim supn→∞

|an+1|
|an| then no information.

Proof. Omitted. Similar to the proof of the root test.

4.54 Example. Consider
∑

an where

an =

{
n2

10n if n is odd

n3

100n if n is even

an > 0 for all n so |an| = an. Then

|an+1|
|an|

=
an+1

an

=


(n+1)3

100n+1

n2

10n

if n is odd

(n+1)2

10n+1

n3

100n

if n is even

Then

|an+1|
|an|

=

{
(n+1)3

n2
1

10n+2 if n is odd

(n+1)2

n3 10n−1 if n is even
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So lim supn→∞
|an+1|
|an| = +∞ and lim infn→∞

|an+1|
|an| = 0. So ratio test gives no

information. Then try root test.

n
√
|an| =

{
( n√n)2

10
if n is odd

( n√n)3

100
if n is even

1
10

and 1
100

are the only subsequential limits of { n
√
|an|}. We have

lim supn→∞
n
√
|an| = 1

10
< 1. So by root test, the series

∑
an is conver-

gent.

4.55 Remark. Root test has wider scope.

Ratio test shows convergence ⇒ Root test shows convergence

Root test gives no information ⇒ Ratio test gives no information

4.56 Theorem. Let {cn} be any sequence of positive numbers. Then

lim inf
n→∞

cn+1

cn

≤ lim inf
n→∞

n
√

cn ≤ lim sup
n→∞

n
√

cn ≤ lim sup
n→∞

cn+1

cn

Raabe’s Test: Let
∑

an be a series of real numbers.

(a) lim infn→∞ n
(

|an|
|an+1| − 1

)
= p If 1 < p then

∑
an is convergent.

(b) lim supn→∞ n
(

|an|
|an+1| − 1

)
= q If q < 1 then

∑
an is divergent.

4.57 Example. Consider
∑∞

n=1
1·3···(2n−1)
2·4···(2n)

|an+1|
|an|

=
an+1

an

=

1·3···(2n−1)·(2n+1)
2·4···(2n)·(2n+2)

1·3···(2n−1)
2·4···(2n)

=
2n + 1

2n + 2
→ 1

We have lim supn→∞
|an+1|
|an| = lim infn→∞

|an+1|
|an| . So ratio test gives no infor-

mation. Then try Raabe’s test.

n

(
|an|
|an+1|

− 1

)
= n

(
2n + 2

2n + 1
− 1

)
= n

1

2n + 1
→ 1

2

We have lim supn→∞ n
(

|an|
|an+1| − 1

)
= 1

2
< 1. So the series is divergent.
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4.58 Definition (Power Series). Let {cn} be a fixed sequence of real numbers
and x ∈ R be a variable. The series

c0 + c1x + c2x
2 + · · ·+ cnx

n + · · · =
∞∑

n=0

cnx
n

is called a power series.

4.59 Example. Let cn = 1
n!

. Consider 1 + x + x2

2!
+ x3

3!
+ · · · =

∑∞
n=0

xn

n!

General Question: Given a power series, find the set of all x for which the
power series is convergent.

We apply root test.

lim sup
n→∞

n
√
|cnxn| = lim sup

n→∞
|x| n
√
|cn| = |x| lim sup

n→∞

n
√
|cn|︸ ︷︷ ︸

call α

= |x|α

If |x|α < 1, i.e. |x| < 1
α

then
∑

cnx
n is convergent.

If |x|α > 1, i.e. |x| > 1
α

then
∑

cnx
n is divergent.

4.60 Theorem. With any power series
∑

cnx
n is associated a radius of

convergence R, 0 ≤ R ≤ +∞ such that

(i) The series converges for all x with |x| < R

(ii) The series diverges for all x with |x| > R

R = 1
α

where α = lim supn→∞
n
√
|cn| or α = limn→∞

|cn+1|
|cn| if this limit exists.

If α = 0 then R = +∞. If α = +∞ then R = 0. (For R = 0, it means the
series

∑
cnx

n converges only for x = 0.)

4.61 Example. Consider
∑∞

n=0 n!xn = 1+x+2!x2+3!x3+ · · · Then cn = n!

α = lim
n→∞

|cn+1|
|cn|

= lim
n→∞

(n + 1) = +∞

So R = 0 and
∑

n!xn converges only for x = 0.

4.62 Example. Consider
∑∞

n=0
xn

n!
= 1 + x + x2

2!
+ x3

3!
+ · · · Then cn = 1

n!

α = lim
n→∞

|cn+1|
|cn|

= lim
n→∞

1

n + 1
= 0

So R = +∞ and
∑

xn

n!
converges for all x ∈ R with |x| < +∞, i.e. for all

x ∈ R.
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4.63 Example. Consider
∑∞

n=1
xn

n
. Then cn = 1

n

α = lim sup
n→∞

n

√∣∣∣∣ 1n
∣∣∣∣ = lim sup

n→∞

1
n
√

n
= 1

So R = 1 and

The series
∑

xn

n
is convergent for all x with |x| < 1, i.e. −1 < x < 1

The series
∑

xn

n
is divergent for all x with |x| > 1, i.e. x < −1, 1 < x

No information for |x| = 1, i.e. x = ∓1

If x = 1,
∑∞

n=1
1n

n
=
∑∞

n=1
1
n

is divergent. (p-series with p = 1)

If x = −1,
∑∞

n=1
(−1)n

n
= −1 + 1

2
− 1

3
+ 1

4
− · · ·

Abel’s Partial Summation Formula: Let {an} and {bn} be two se-
quences.

An =
n∑

k=1

ak = a1 + a2 + · · ·+ an

Then
n+1∑
k=1

akbk = An+1bn+1 −
n∑

k=1

Ak(bk+1 − bk)

Proof. Let A0 = 0. Then ak = Ak − Ak−1, k = 1, 2, . . .

n+1∑
k=1

akbk =
n+1∑
k=1

(Ak − Ak−1) bk

=
n+1∑
k=1

Akbk −
n+1∑
k=1

Ak−1bk︸ ︷︷ ︸Pn
k=1 Akbk+1

=
n∑

k=1

Akbk + An+1bn+1 −
n∑

k=1

Akbk+1

= An+1bn+1 +
n∑

k=1

Ak(bk − bk+1)

4.64 Theorem (Dirichlet’s Test). Let {an} and {bn} be two sequences of
real numbers. An =

∑n
k=1 ak = a1 + · · ·+ an. Assume

(a) The sequence {An} is bounded
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(b) b1 ≥ b2 ≥ b3 ≥ · · ·

(c) limn→∞ bn = 0

Then
∑∞

n=1 anbn is convergent.

Proof. Let sn = a1b1 + · · · + anbn. Show {sn} converges in R. By Abel’s
formula

sn+1 = An+1bn+1 −
n∑

k=1

Ak(bk+1 − bk)

{An} is bounded, so there is a constant M > 0 such that |An| ≤ M for all n.

−M ≤ An+1 ≤ M

If we multiply by bn+1 ≥ 0 we get

−Mbn+1 ≤ An+1bn+1 ≤ Mbn+1

So limn→∞ An+1bn+1 = 0. Next, show limn→∞ (
∑n

k=1 Ak(bk+1 − bk)) exists in
R. This is the n-th partial sum of the series

∑∞
n=1 An(bn+1 − bn). So show

the series
∑∞

n=1 An(bn+1−bn) is convergent. Use Cauchy criterion. Let ε > 0
be given. Let ε′ = ε

2M
> 0. Since limn→∞ bn = 0, we have n0 ∈ N such that

for all n ≥ n0, |bn| = |bn − 0| < ε′. Let n,m ≥ n0 and n ≥ m.∣∣∣∣∣
n∑

k=m

Ak(bk+1 − bk)

∣∣∣∣∣ ≤
n∑

k=m

|Ak|︸︷︷︸
≤M

|bk+1 − bk| ≤ M
n∑

k = m |bk+1 − bk|︸ ︷︷ ︸
bk−bk+1

= M ((bm − bm+1) + (bm+1 − bm+2) + · · ·+ (bn − bn+1))

= M(bm − bn+1) ≤ M |bm − bn+1| ≤ M(|bm|︸︷︷︸
<ε′

− |bn+1|︸ ︷︷ ︸
<ε′

)

< M2ε′ = ε

4.65 Example. Consider

1 + 1
12√
1

+
2√
2
− 3√

3
+

1 + 1
42√
4

+
2√
5
− 3√

6
+

1 + 1
72√
7

+
2√
8
− 3√

9
+ · · ·

Then b1 = 1√
1
, b2 = 1√

2
, b3 = 1√

3
· · · bn = 1√

n
· · · {bn} satisfies (b) and (c).

Also a1 = 1 + 1
12 , a2 = 2, a3 = −3, a4 = 1 + 1

42 , a5 = 2, a6 = 3, a7 = 1 + 1
72 ,

a8 = 2, a9 = −3, . . .

Then A1 = 1 + 1
12 , A2 = 3 + 1

12 , A3 = 1
12 , A4 = 1

12 + 1 + 1
42 , A5 = 1

12 + 3 + 1
42 ,
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A6 = 1
12 + 6 + 1

42 · · ·

We have An ≤ 3 +
1

12
+

1

42
+

1

72
+ · · ·︸ ︷︷ ︸

≤π2

6

So {An} is bounded. So the series is

convergent by Dirichlet’s test.

Alternating Series Test Of Leibniz: Assume b1 ≥ b2 ≥ b3 ≥ · · · and
limn→∞ bn = 0. Then

∞∑
n=1

(−1)nbn = −b1 + b2− b3 + · · · and
∞∑

n=1

(−1)n+1bn = b1− b2 + b3− · · ·

are convergent.

4.66 Example. Let bn = 1
n
. Then

∞∑
n=1

(−1)n+1 1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− · · · = ln 2

is convergent.

The series
∑∞

n=1 cn =
∑∞

n=1
(−1)n+1

n
i.e. cn = (−1)n+1

n
is convergent but∑∞

n=1 |cn| =
∑∞

n=1
1
n

is divergent.

4.67 Definition. Let
∑

cn be a series. If
∑

cn is convergent but
∑
|cn| is di-

vergent, we say
∑

cn is conditionally convergent. If
∑
|cn| is also convergent,

we say
∑

cn is absolutely convergent.

4.68 Theorem. If
∑
|cn| is convergent then

∑
cn is also convergent.

Proof. Use Cauchy criterion. Let ε > 0 be given. Since
∑
|cn| is convergent,

there is n0 such that for all n ≥ m ≥ n0 we have |
∑n

k=m |ck|| < ε. Let
n ≥ m ≥ n0. Then ∣∣∣∣∣

n∑
k=m

ck

∣∣∣∣∣ ≤
n∑

k=m

|ck| < ε

So
∑

cn satisfies Cauchy criterion. Then
∑

cn is convergent.

For absolute convergence we can use root test, ratio test or comparison test.
For conditional convergence we can use Dirichlet’s test or alternating series
test. (Only for alternating series.)
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4.69 Example. Consider

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · = S

The series is convergent by the alternating series test.

S = 1−1

2
+

1

3
−
((

1

4
− 1

5

)
+

(
1

6
− 1

7

)
+ · · ·

)
=

5

6
−(a positive number) <

5

6

Consider the rearrangement

1 +
1

3
− 1

2︸ ︷︷ ︸+
1

5
+

1

7
− 1

4︸ ︷︷ ︸+
1

9
+

1

11
− 1

6︸ ︷︷ ︸+
1

13
+

1

15
− 1

8︸ ︷︷ ︸+ · · ·

Each group is in the form

1

4n− 3
+

1

4n− 1
− 1

2n
=

(4n− 1)2n + (4n− 3)2n− (4n− 3)(4n− 1)

(4n− 3)(4n− 1)2n

=
8n2 − 2n + 8n2 − 6n− 16n2 + 4n + 12n− 3

· · ·
=

8n− 3

· · ·
> 0

If tn is the n-th partial sum of the rearrangement. Then t3 < t6 < t9 < · · ·
Then lim supn→∞ tn > t3 = 1 + 1

3
− 1

2
= 5

6
. It follows that limn→∞ tn cannot

be S since S < 5
6
. This is a property of the conditionally convergent series.

Given a conditionally convergent series
∑

an and −∞ ≤ r ≤ +∞, it is
possible to find a rearrangement of the series such that rearrangement has
sum= r.

4.70 Definition. Let φ : N → N be a 1-1, onto function. Let
∑∞

n=1 an

be a series. Let bn = aφ(n). The series
∑∞

n=1 bn =
∑∞

n=1 aφ(n) is called a
rearrangement of the series

∑∞
n=1 an.

If

∞∑
n=1

an = 1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

∞∑
n=1

bn = 1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ · · ·

Then φ(1) = 1, φ(2) = 3, φ(3) = 2, φ(4) = 5, φ(5) = 7, φ(6) = 4, . . .
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4.71 Theorem. Assume
∑∞

n=1 an is absolutely convergent, i.e.
∑∞

n=1 |an|
is convergent. Then every rearrangement of

∑∞
n=1 an is convergent and it

converges to the same sum.

Proof. Let
∑∞

n=1 aφ(n) be a rearrangement of
∑∞

n=1 an. Let

sn = a1 + a2 + · · ·+ an

tn = aφ(1) + aφ(2) + · · ·+ aφ(n)

Given sn → s where s ∈ R (s 6= ∓∞). Show sn − tn → 0 as n → ∞. Let
ε > 0 be given. Since

∑
an converges absolutely, there is N such that for all

n ≥ m ≥ N we have
∑n

k=m |ak| < ε. Find p ≥ N such that

{1, 2, . . . , N} ⊂ {φ(1), φ(2), . . . , φ(p)}

Take n > p. Then

|sn − tn − 0| =|sn − tn|
=|a1 + a2 + · · ·+ aN + aN+1 + · · ·+ an

−aφ(1) − aφ(2) − · · · − aφ(p)︸ ︷︷ ︸
N of them will be cancelled

− · · · − aφ(n)|

︸ ︷︷ ︸
The remaining terms will be of the form −ak where k>N

Let q = max{k : ∓ak remains in the above}. Then

|sn − tn − 0| ≤
q∑

k=N+1

|ak| < ε

4.6 Operations With Series

4.72 Theorem. Let
∑

an,
∑

bn be convergent series with sums A and B.
Let c ∈ R be a constant. Then∑

(an + bn) is convergent and has sum A + B∑
can is convergent and has sum cA

4.73 Remark. The sum of two divergent series may be convergent.
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4.74 Example.∑∞
n=1

1
n

and
∑∞

n=1−
1

n+1
are both divergent.∑∞

n=1

(
1
n
− 1

n+1

)
=
∑∞

n=1
1

n(n+1)
is convergent.

4.75 Example.
∑∞

n=0

((
2
3

)n − 5 (−1)n

4n

)
is convergent.

∞∑
n=1

(
2

3

)n

− 5
∞∑

n=1

(
−1

4

)n

=
1

1− 2
3

− 5
1

1−
(
−1

4

) = 3− 5
4

5
= −1

Cauchy Product Of Two Series: Consider the series

∞∑
n=0

an = a0 + a1 + a2 + · · · and
∞∑

n=1

bn = b0 + b1 + b2 + · · ·

We define a new series
∑∞

n=0 cn as follows

c0 = a0b0

c1 = a0b1 + a1b0

c2 = a0b2 + a1b1 + a2b0

...

cn = a0bn + a1bn−1 + · · ·+ an−1b1 + anb0 =
n∑

k=0

akbn−k

∑∞
n=0 cn is called the Cauchy product of

∑∞
n=0 an and

∑∞
n=0 bn.

4.76 Theorem. Assume

(a)
∑∞

n=0 an is absolutely convergent and
∑∞

n=0 an = A

(b)
∑∞

n=0 bn is convergent and
∑∞

n=0 bn = B

(c) cn =
∑n

k=0 akbn−k n = 0, 1, 2, . . .

Then
∑∞

n=0 cn is convergent and has sum C = AB.

4.77 Remark. The above theorem is not true if both series are conditionally
convergent.
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4.78 Example. Consider the Cauchy product of the conditionally conver-
gent series

∞∑
n=0

(−1)n

√
n + 1

=
1√
1
− 1√

2
+

1√
3
− 1√

4
+ · · ·

with itself. We have an = bn = (−1)n
√

n+1
. Then

cn =
n∑

k=0

(−1)k

√
k + 1

· (−1)n−k

√
n− k + 1

= (−1)n

n∑
k=0

1√
(k + 1)(n− k + 1)

We have

(n−k+1)(k+1) = nk+n−k2−k+k+1 = n+1+k(n−k) ≤ n+1+
n2

4
=
(n

2
+ 1
)2

When 0 ≤ x ≤ n, max. of x(n− x) is n2

4
so we have

|cn| =
n∑

k=0

1√
(k + 1)(n− k + 1)

≥
n∑

k=0

1√(
n
2

+ 1
)

=
n∑

k=0

1
n
2

+ 1
=

n + 1
n
2

+ 1
=

2n + 2

n + 2
≥ 1

So “limn→∞ cn = 0” cannot be true. So the series
∑

cn is divergent.
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5 Continuity

5.1 General

Let (X, dX) and (Y, dY ) be two metric spaces. Let E 6= ∅ be a non-empty
subset of X, f : E → Y , p ∈ E ′, q ∈ Y . We say limx→p f(x) = q (or f(x) → q
as x → p) if for every ε > 0 there is δ > 0 with the following property: For
every x ∈ E with dX(x, p) < δ we have dY (f(x), q) < ε. Equivalently, for
every ε > 0 there is δ > 0 such that f

(
BX

δ (p) ∩ E
)
⊂ BY

ε (q). δ > 0 depends
in general on ε > 0 and the point p. For limx→p f(x), f(p) need not be
defined.

5.1 Example. Let X = R2 with d2 and Y = R with | · | metric.
Let E = {(x, y) : (x, y) ∈ R2 and xy 6= 0}. f : E → R, f(x, y) = x

y
sin
(

y
x

)
Let p = (a, 0) where a > 0. Then p ∈ E ′. Show lim(x,y)→(a,0) f(x, y) = 1. Let
ε > 0 be given. Since limt→0

sin t
t

= 1, we have δ′ > 0 such that for all t with

0 < |t| < δ′ we have
∣∣ sin t

t
− 1
∣∣ < ε. Choose δ = aδ′

1+δ′
. Then 0 < δ < a. Show

that for all (x, y) ∈ E with d2 ((x, y), (a, 0)) < δ we have that |f(x, y)−1| < ε.
Let (x, y) ∈ E be such that d2 ((x, y), (a, 0)) < δ i.e.

(x− a)2 + (y − 0)2 < δ2 ⇒ |x− a| < δ and |y − 0| < δ

a− δ < x < a + δ so 0 < x. Let t = y
x
. Then

0 < |t| = |y|
|x|

=
|y|
x

<
δ

a− δ
=

aδ′

1+δ′

a− aδ′

1+δ′

=
aδ′

1+δ′

a+aδ′−aδ′

1+δ′

=
aδ′

a
= δ′

So t = y
x

satisfies 0 < |t| < δ′, thus∣∣∣∣sin t

t
− 1

∣∣∣∣ < ε i.e.

∣∣∣∣∣sin
(

y
x

)
y
x

− 1

∣∣∣∣∣ < ε

5.2 Theorem. limx→p f(x) = q ⇔ for every sequence {pn} in E with
limn→∞ pn = p and pn 6= p we have that limn→∞ f(pn) = q.

Proof.

(⇒): Suppose limx→p f(x) = q. Let {pn} be an arbitrary sequence in E such
that limn→∞ pn = p and pn 6= p. Show limn→∞ f(pn) = q. Let ε > 0
be given. Since limx→p f(x) = q, there is δ > 0 such that for all x ∈ E
with dX(x, p) < δ we have dY (f(x), q) < ε. Since limn→∞ pn = p,
there is n0 such that for all n ≥ n0, dX(pn, p) < δ. Let n ≥ n0.
Then dY (f(pn), q) < ε since x = pn (for n ≥ n0) satisfies x ∈ E and
dX(x, p) < δ.
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(⇐): Proof by contraposition. Suppose limx→p f(x) 6= q. So there is an
ε0 > 0 such that for every δ > 0 there is x ∈ E such that dX(x, p) < δ
and dY (f(x), q) ≥ ε0.

Let δ = 1, find x = p1 ∈ E s.t. dX(p1, p) < 1 and dY (f(p1), q) ≥ ε0

Let δ =
1

2
, find x = p2 ∈ E s.t dX(p2, p) <

1

2
and dY (f(p2), q) ≥ ε0

...

Let δ =
1

n
, find x = pn ∈ E s.t. dX(pn, p) <

1

n
and dY (f(pn), q) ≥ ε0

Then {pn} is a sequence in E such that limn→∞ pn = p and
limn→∞ f(pn) 6= q.

5.3 Corollary. Let E ⊂ X, p ∈ E ′, f, g : E → R such that limx→p f(x) = A
and limx→p g(x) = B. Then

lim
x→p

(f(x) + g(x)) = A + B

lim
x→p

f(x)g(x) = AB

lim
x→p

f(x)

g(x)
=

A

B
if B 6= 0

5.4 Definition. Let (X, dX) and (Y, dY ) be metric spaces. Let ∅ 6= E ⊂ X,
f : E → Y , p ∈ E. We say f is continuous at the point p if limx→p f(x) =
f(p), i.e. for every ε > 0 there is δ > 0 such that for all x ∈ E with
dX(x, p) < δ we have dY (f(x), f(p)) < ε. In general δ depends on ε and p.
If f is continuous at every point p of E, we say f is continuous on E.

5.5 Theorem. Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y
(i.e. E = X). f is continuous on X ⇔ for every open set V ⊂ Y , the inverse
image f−1(V ) is an open set.

Proof.

(⇒): Let f be continuous on X. Let V ⊂ Y be an arbitrary open set. Show
f−1(V ) is an open set in X. Let p ∈ f−1(V ) be an arbitrary point.
Then f(p) ∈ V . V is open, so there is s > 0 such that BY

s (f(p)) ⊂ V . f
is continuous at p. Then for ε = s > 0, we find δ > 0 such that for all x
with dX(x, p) < δ we have dY (f(x), f(p)) < ε. Show BX

δ (p) ⊂ f−1(V ).
Let x ∈ BX

δ (p), i.e. dX(x, p) < δ ⇒ dY (f(x), f(p)) < ε = s ⇒ f(x) ∈
BY

s (f(p)) ⊂ V . f(x) ∈ V , so x ∈ f−1(V ).
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(⇐): Suppose f−1(V ) is open for every open set V ⊂ Y . Show f is continuous
on X, i.e. show f is continuous at every point of X. Let p ∈ X be
an arbitrary point. Let ε > 0 be given. The set V = BY

ε (f(p)) is an
open set in Y . Then f−1(V ) is an open set in X. Also p ∈ f−1(V ).
Then there is δ > 0 such that BX

δ (p) ⊂ f−1(V ). Let x be such that
dX(x, p) < δ, i.e. x ∈ BX

δ (p). Then x ∈ f−1(V ), i.e. f(x) ∈ V , i.e.
dY (f(x), f(p)) < ε.

5.6 Corollary. Let f : X → Y . f is cotinuous on X ⇔ for every closed set
F ⊂ Y we have that the inverse image f−1(F ) is closed in X.

Proof. F ⊂ Y is closed ⇔ FC is open. Using f−1(FC) = (f−1(F ))
C

and
“f is continuous ⇔ the inverse image of every open set is open” we get the
result.

5.7 Theorem. Let (X, dX), (Y, dY ) and (Z, dZ) be metric spaces. ∅ 6= E ⊂
X, f : E → Y , g : f(E) → Z, p ∈ E. If f is continuous at p and g is
continuous at q = f(p) then g ◦ f is continuous at p.

Proof. Let ε > 0 be given. Since g is continuous at q, we have a δ′ > 0
such that for all y ∈ f(E) with dY (y, q) < δ′ we have dZ(g(y), g(q)) < ε.
Since f is continuous at p, we have a δ > 0 such that for all x ∈ E with
dX(x, p) < δ we have dY (f(x), f(p)) < δ′. Let x ∈ E and dX(x, p) < δ. Then
dY (f(x), f(p)) < δ′. So dZ(g(y), g(q)) < ε i.e. dZ(g(f(x)), g(f(p))) < ε.

Let (X, d) be a metric space and f : X → Rk. f(x) ∈ Rk, so we have
f(x) = (f1(x), f2(x), . . . , fk(x)) where f1, f2, . . . , fk : X → R.

5.8 Example. f : R3 → R2 and f(x, y, z) = (x2y + 1︸ ︷︷ ︸
f1(x,y,z)

, z3x− 3︸ ︷︷ ︸
f2(x,y,z)

) ∈ R2.

5.9 Theorem. f : X → Rk is continuous on X ⇔ f1, f2, . . . , fk are all
continuous on X.

In the above example, f1, f2 : R3 → R are continuous (since they are poly-
nomials) we have that f : R3 → R2 is also continuous.

5.10 Theorem. Let f, g : X → R be continuous at the point p. Then f + g
and f · g are continuous at p. f

g
is continuous at p if g(p) 6= 0.
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5.11 Example. X = Rk. Fix a coordinate, say j-th coordinate. Define
f : Rk → R. f is continuous on Rk. x = (x1, x2, . . . , xk) → xj. Fix
p = (p1, p2, . . . , pk) in Rk. Show f is continuous at p. Given ε > 0, choose
δ = ε. Let x ∈ Rk be any point such that d2(x, p) < δ. Then

|f(x)− f(p)| = |xj − pj| =
√

(xj − pj)2

≤
√

(x1 − p1)2 + · · ·+ (xk − pk)2 = d2(x, p) < δ = ε

If n1, n2, . . . , nk are non-negative integers then define g : Rk → R by
g(x) = xn1

1 xn2
2 · · ·xnk

k . Then by the theorem, g is continuous on Rk. So
every polynomial P (x) =

∑
cn1···nk

xn1
1 · · ·xnk

k is continuous on X.

5.12 Example. P : R2 → R and P (x, y) = 5x2 − 7x3y4 + 8y6 + 5xy2 − 3 is
continuous on R2.

5.2 Continuity And Compactness

5.13 Theorem. Let f : X → Y be continuous on X. Let E be a compact
subset of X. Then the image f(E) is a compact subset of Y . (Continuous
image of a compact set is compact.)

Proof. Let C = {Gα : α ∈ A} be an open cover of f(E), i.e. every Gα

is an open set and f(E) ⊂
⋃

α∈A Gα. Let Vα = f−1(Gα) and α ∈ A. Vα

is open for every α ∈ A. Do we have E ⊂
⋃

α∈A Vα ? Let x ∈ E. Then
f(x) ∈ f(E). Then f(x) ∈ Gα0 for some α0 ∈ A. So x ∈ f−1(Gα0) = Vα0 .
So E ⊂

⋃
α∈A Vα. So the collection C ′ = {f−1(Gα) : α ∈ A} is an open cover

of E. Since E is compact, there are α1, . . . , αn ∈ A such that

E ⊂ f−1(Gα1) ∪ · · · ∪ f−1(Gαn)

f(E) ⊂ f
(
f−1(Gα1) ∪ · · · ∪ f−1(Gαn)

)
= f

(
f−1(Gα1)

)
∪ · · · ∪ f

(
f−1(Gαn)

)
⊂ Gα1 ∪ · · · ∪Gαn

So C has a finite subcover {Gα1 , . . . , Gαn} of f(E).

In the proof of the following corollary, we will need the following proposition.

5.14 Proposition. Let S 6= ∅ be a bounded subset of R. Then sup S, inf S ∈
S.
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Proof. For sup S only. Let α = sup S. Show every neighborhood B of α
contains a point s from S. B = (α − ε, α + ε). Since α − ε < sup S, α − ε
cannot be an upper bound for S. So there is an element s ∈ S such that
α − ε < S. Also if s ∈ S then s ≤ α < α + ε. So α − ε < s < α + ε, i.e.
s ∈ B.

5.15 Corollary. Let (X, d) be a compact metric space and f : X → R be
continuous on X. Then there are points p, q ∈ X such that for all x ∈ X we
have f(p) ≤ f(x) ≤ f(q). (A continuous real valued function on a compact
set attains its min.= f(p) and max.= f(q))

Proof. The set S = f(X) 6= ∅ is a compact subset of R. S is bounded. Then
sup S ∈ S. S is closed, i.e. S = S so sup S = S = f(X). That is, there is
q ∈ X such that sup S = f(q). For all x ∈ X we have f(x) ≤ sup S = f(q).
Similarly, inf S ∈ S so inf S = f(p) for some p ∈ X.

5.16 Corollary. Let f : [a, b] → R be continuous on [a, b]. Then there are
two points p, q ∈ [a, b] such that for all x ∈ [a, b] we have f(p) ≤ f(x) ≤ f(q).

5.17 Theorem. Let X be a compact metric space, Y be an arbitrary metric
space, f : X → Y be continuous, 1-1, onto. Then the inverse function
g = f−1 : Y → X is also continuous.

Proof. Show that for every closed set F ⊂ X, the inverse image g−1(F ) is a
closed set in Y . We have g−1(F ) = f(F ). X is compact, F is closed so F is
compact. f is continuous, so f(F ) is compact. So f(F ) is closed.

5.18 Remark. If compactness of X is removed then the theorem is not true.

5.19 Example. X = [0, 2π] in R with d(x1, x2) = |x1 − x2|. Y = {(x, y) :
(x, y) ∈ R2, x2+y2 = 1} with d2 metric restricted to Y . Define f : X → Y as
f(t) = (cos t, sin t). f is continuous, 1-1 and onto. But f−1 is not continuous
at the point p = (1, 0).
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5.3 Continuity And Connectedness

5.20 Theorem. Let X, Y be metric spaces and f : X → Y be continuous.
Assume X is connected. Then f(X) is also connected. (Continuous image
of a connected set is connected.)

Proof. Assume f(X) is disconnected. Then there are sets E, F ⊂ Y such
that f(X) = E ∪ F and E ∩ F = ∅, E ∩ F = ∅, E 6= ∅, F 6= ∅. Let
A = f−1(E) and B = f−1(F ). A 6= ∅. Let q ∈ E ⊂ f(X), so q = f(x) for
some x ∈ X. Since f(x) = q ∈ E, x ∈ f−1(E) = A. Similarly, B 6= ∅.

X ⊂ f−1(f(X)) = f−1(E ∪ F ) = f−1(E) ∪ f−1(F ) = A ∪B

Also A ∪ B ⊂ X. So X = A ∪ B. Show A ∩ B = ∅ and A ∩ B = ∅. Assume
A ∩ B 6= ∅. Let p ∈ A ∩ B. Then p ∈ A and p ∈ B = f−1(F )︸ ︷︷ ︸

f(p)∈F

. p ∈ A,

then there is a sequence {pn} in A such that pn → p. f is continuous, so
limn→∞ f(pn) = f(p). pn ∈ A = f−1(E) ⇒ f(pn) ∈ E. So f(p) is the limit of
a sequence in E. It means that f(p) ∈ E. So f(p) ∈ E ∩ F︸ ︷︷ ︸

∅

. Contradiction.

So A ∩ B = ∅. Then X is the union of the separated non-empty sets A, B.
It means that X is disconnected.

5.21 Corollary (Intermediate Value Theorem). Let f : [a, b] → R be con-
tinuous on [a, b]. Assume f(a) and f(b) have different signs. Then there is a
point p such that a < p < b and f(p) = 0.

Proof. [a, b] is connected ⇒ f([a, b]) is connected. So f([a, b]) = [c, d] is
an interval. The interval [c, d] contains both negative and positive numbers
(namely f(a), f(b)). So [c, d] contains y = 0. So 0 ∈ f([a, b]), i.e. there is
p ∈ [a, b] such that f(p) = 0.

5.4 Uniform Continuity

Let (X, dX) and (Y, dY ) be two metric spaces. E ⊂ X and f : E → Y . We
say

(i) f is continuous on E if for every p ∈ E, for every ε > 0 there is
δ = δ(p, ε) > 0 such that for all q ∈ E with dX(q, p) < δ we have
dY (f(q), f(p)) < ε. (In general δ > 0 depends on ε > 0 and the point
p ∈ E.)
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(ii) f is uniformly continuous on E if for every ε > 0 there is δ =
δ(ε) > 0 such that for all points p, q ∈ E with dX(p, q) < δ we have
dY (f(p), f(q)) < ε. (δ depends only on ε. The same δ works for all
p ∈ E.)

Uniform Continuity
⇒
: Continuity

5.22 Example. Let X = R, Y = R, E = (0, 1), dX = dY = | · | and let
f : E → R, f(x) = 1

x

Claim 1: f is continuous on E.

Claim 2: f is not uniformly continuous on E.

1) Let p ∈ E and ε > 0 be given. Then 0 < p < 1. Let δ = εp2

1+εp
> 0. If

q ∈ E such that |q − p| < δ then

|f(p)− f(q)| =
∣∣∣∣1p − 1

q

∣∣∣∣ =
|q − p|

pq
<

δ

pq

We have |q − p| < δ, so p− δ < q < p + δ. We have δ < p, i.e.

εp2

1 + εp
< p ⇔ εp2 < p + εp2

So 0 < p− δ and

|f(p)− f(q)| < δ

pq
<

δ

p(p− δ)
=

εp2

1+εp

p
(
p− εp2

1+εp

) =

εp2

1+εp

pp+εp2−εp2

1+εp

=
εp2

p2
= ε

So f is continuous at p ∈ E. Since p ∈ E is arbitrary, f is continuous on E.
Note that δ = εp2

1+εp
depends on both ε and p. So we are inclined to say that

f is not uniformly continuous on E. But maybe by some other calculation,
we can find δ depending only on ε.

2) Show that f is not uniformly continuous on E, i.e. δ cannot be found
depending only on ε. Assume for ε = 1, we have a δ > 0 such that for all
p, q ∈ E with |p− q| < δ we have |f(p)− f(q)| < 1.

Case 1: 0 < δ ≤ 1
3
. Let p = δ and q = δ + δ

2
. Then p, q ∈ E and

|p− q| = δ
2

< δ. So |f(p)− f(q)| < 1.

|f(p)− f(q)| =
∣∣∣∣1p − 1

q

∣∣∣∣ =
|p− q|

pq
=

δ/2

δ 3δ
2

=
1

3δ
≥ 1
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Contradiction.

Case 2: 1
3

< δ. Let δ′ = 1
3

< δ. As in case 1, let p = δ′ and q = δ′ + δ′

2
. Then

|p− q| < δ′ < δ and |f(p)− f(q)| ≥ 1. Contradiction.

5.23 Example. Let X = Y = R, E = [2, 5], f : E → R, f(x) = x2. Then
f is uniformly continuous on E. Let ε > 0 be given. Let δ = ε

10
> 0. Let

p, q ∈ E be such that |p− q| < δ. Then

|f(p)− f(q)| = |p2 − q2| = |(p− q)(p + q)|
= |p− q||p + q| = |p− q|︸ ︷︷ ︸

<δ

(p + q)︸ ︷︷ ︸
≤10

< 10δ = ε

5.24 Theorem. Let f : X → Y be continuous on X and let E ⊂ X be
compact. Then f is uniformly continuous on E.

Proof. Let ε > 0 be given. Given p ∈ E, since f is continuous at p, we have
a δ = δ(p, ε) > 0 such that for all q ∈ E with dX(q, p) < δ(p, ε) we have
dY (f(q)− f(p)) < ε

3

C =
{

B δ(p,ε)
3

(p) : p ∈ E
}

Do this for every p ∈ E. Then C is an open cover of E. Since E is compact,
this open cover has a finite subcover

C ′ =
{

B δ(p1,ε)
3

(p1), . . . , B δ(pn,ε)
3

(pn)
}

for some finite set p1, . . . , pn ∈ E. So

E ⊂ B δ(p1,ε)
3

(p1) ∪ · · · ∪B δ(pn,ε)
3

(pn)

Let δ = min
{

δ(p1,ε)
3

, · · · , δ(pn,ε)
3

}
. Then δ > 0. Show this δ > 0 has the

property in the definition of uniform continuity. Let p, q ∈ E be two ar-
bitrary points such that dX(p, q) < δ. We have that p ∈ B δ(pi,ε)

3

(pi) and

q ∈ B δ(pj,ε)

3

(pj) for some pi, pj from p1, . . . , pn.

p ∈ B δ(pi,ε)

3

(pi) q ∈ B δ(pj,ε)

3

(pj)

⇓ ⇓
dX(p, pi) < δ(pi,ε)

3
< δ(pi, ε) dX(q, pj) <

δ(pj ,ε)

3
< δ(pj, ε)

⇓ ⇓
dY (f(p), f(pi)) < ε

3
dY (f(q), f(pj)) < ε

3
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Assume δ(pi, ε) ≤ δ(pj, ε). Also

dX(pi, pj) ≤ dX(pi, p)︸ ︷︷ ︸
<

δ(pi,ε)

3

+ dX(p, q)︸ ︷︷ ︸
<δ

+ dX(q, pj)︸ ︷︷ ︸
<

δ(pj,ε)

3

< δ(pj, ε) ⇒ dY (f(pi), f(pj)) <
ε

3

So we have

dY (f(p), f(q)) ≤ dY (f(p), f(pi))︸ ︷︷ ︸
< ε

3

+ dY (f(pi), f(pj))︸ ︷︷ ︸
< ε

3

+ dY (f(pj), f(q))︸ ︷︷ ︸
< ε

3

< ε
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6 Sequences And Series Of Functions

6.1 General

Consider the following sequence of functions defined for 0 ≤ x ≤ 1.

f1(x) = x, f2(x) = x2, f3(x) = x3, . . . , fn(x) = xn, . . .

Fix any x, 0 ≤ x ≤ 1 and consider limn→∞ fn(x) = limn→∞ xn (x: fixed). If
0 ≤ x ≤ 1 then limn→∞ xn = 0. If x = 1 then limn→∞ xn = 1. Define

f(x) =

{
0 if 0 ≤ x ≤ 1
1 if x = 1

Then for every fixed x, 0 ≤ x ≤ 1, we have limn→∞ fn(x) = f(x).

6.1 Definition. Let E be any non-empty set and fn : E → R, n = 1, 2, . . .
f : E → R. We say fn → f pointwise on E if for every fixed x ∈ E,
limn→∞ fn(x) = f(x), i.e. for every x ∈ E and for every ε > 0, there is a
natural number N = N(x, ε) such that for all n ≥ N , |fn(x) − f(x)| < ε.
f is called the pointwise limit of {fn}. In the above example, observe that
every fn is continuous but their pointwise limit f is not continuous on the
set E = [0, 1]. Also every fn is differentiable on the interval E = [0, 1] but
their pointwise limit f is not differentiable on E = [0, 1].

6.2 Example. Consider fn(x) = sin nx√
n

on E = R, f(x) = 0. Then for every

fixed x ∈ R, limn→∞ fn(x) = 0 = f(x). We have f ′n(x) =
√

n cos nx and
f ′(x) = 0. But limn→∞ f ′n(x) 6= f ′(x). Take x = 0, then f ′n(0) =

√
n 9 f ′(0).

6.3 Example. On E = [0, 1], consider the following sequence

fn(x) =


4n2x if 0 ≤ x ≤ 1

2n

4n− 4n2x if 1
2n
≤ x ≤ 1

n

0 if 1
n
≤ x ≤ 1

limn→∞ fn(x) = 0 for every fixed x so f(x) = 0. We have∫ 1

0

f(x)dx = 0 and

∫ 1

0

fn(x)dx =
1

2
· 1
n
·2n = 1 so lim

n→∞

∫ 1

0

fn(x)dx = 1

So we have

lim
n→∞

∫ 1

0

fn(x)dx 6=
∫ 1

0

lim
n→∞

fn(x)dx
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6.4 Example. fn(x) = x2

(1+x2)n and E = R. Consider f(x) =
∑∞

n=0 fn(x)
where n = 0, 1, 2, . . .

f(x) = x2 +
x2

1 + x2
+

x2

(1 + x2)2
+ · · ·+ x2

(1 + x2)n
+ · · ·

= x2

(
1 +

1

1 + x2
+

(
1

1 + x2

)2

+ · · ·+
(

1

1 + x2

)n

+ · · ·

)
︸ ︷︷ ︸

geometric series with r= 1
1+x2

= x2 1

1− 1
1+x2

= 1 + x2 if x 6= 0

If x = 0 then f(0) = 0 + 0 + · · · = 0. So

f(x) =

{
1 + x2 if x 6= 0
0 if x = 0

So the sum f(x) of continuous functions
∑

fn(x) is not continuous on R.
Pointwise convergence is not strong enough for the calculus of limits of se-
quences of functions.

6.2 Uniform Convergence

6.5 Definition. Let E be any non-empty set and fn : E → R, n = 1, 2, . . .,
f : E → R be functions. We say fn → f uniformly on E if for every ε > 0
we have N = N(ε) such that for all n ≥ N(ε) and for all x ∈ E we have
|fn(x)− f(x)| < ε. Here N = N(ε) depends on ε only and it works for every
x ∈ E.

6.6 Example. Let 0 < c < 1 be a fixed constant. Let E = [0, c], fn(x) = xn.
We have for every fixed x ∈ E, limn→∞ fn(x) = limn→∞ xn = 0. So f(x) = 0,
i.e. xn → 0 pointwise on E. Does xn → 0 uniformly on E ? Let ε > 0 be
given. Since limn→∞ cn = 0, we have N such that cN < ε. Let n ≥ N , x ∈ E

|fn(x)− f(x)| = |xn − 0| = xn ≤ cn ≤ cN < ε

6.7 Example. E = [0, 1), fn(x) = xn. For every fixed x with 0 ≤ x < 1, we
have limn→∞ fn(x) = limn→∞ xn = 0. So f(x) = 0 and fn → f , i.e. xn → 0
pointwise on E = [0, 1). But this convergence is not uniform. Assume fn → f
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uniformly on E. Then for ε = 1
4

we can find N1 such that for all n ≥ N1 and
for all x ∈ E = [0, 1) we have |fn(x)− f(x)| < 1

4
i.e. xn < 1

4
. Also

lim
n→∞

(
n + 1

n

)n

= lim
n→∞

(
1 +

1

n

)
= e ⇒ lim

n→∞

(
n

n + 1

)n

=
1

e

So for ε = 1
e
− 1

3
> 0 we have N2 such that for all n ≥ N2 we have∣∣∣∣( n

n + 1

)n

− 1

e

∣∣∣∣ < 1

e
− 1

3
⇒ −1

e
+

1

3
<

(
n

n + 1

)n

− 1

e
<

1

e
− 1

3

⇒ 1

3
<

(
n

n + 1

)n

for all n ≥ N2

Let N = max{N1, N2}, x = N
N+1

and x ∈ E. Since N ≥ N1, we have xN < 1
4

and since N ≥ N2, we have 1
3

< xN . So 1
3

<
(

N
N+1

)N
< 1

4
i.e. 1

3
< 1

4
which is

not true.

Cauchy Criterion For Uniform Convergence

Let E 6= ∅, fn : E → R, n = 1, 2, . . . Assume for every ε > 0 there is a
natural number N = N(ε) such that for all n,m ≥ N(ε) and for all x ∈ E
we have |fn(x)− fm(x)| < ε. Then there is a function f : E → R such that
fn → f uniformly on E.

If we have a series of functions
∑∞

n=1 fn(x) defined on a set E, we define
sn(x) = f1(x) + · · · + fn(x). If there is a function f : E → R such that
sn → f uniformly on E then we say the series

∑∞
n=1 fn(x) = f(x) uniformly

on E.

Cauchy Criterion: Assume for every ε > 0, there is a natural number
N = N(ε) such that for all n, m ≥ N(ε) with n ≥ m and for all x ∈ E
we have |

∑n
k=m fk(x)| < ε. Then there is a function f : E → R such that∑∞

n=1 fn(x) = f(x) uniformly on E.

Weierstrass M-Test: Let fn : E → R, n = 1, 2, . . . Assume for every n
there is a number Mn > 0 such that

(i) |fn(x)| ≤ Mn for all x ∈ E

(ii)
∑∞

n=1 Mn is convergent

Then the series
∑∞

n=1 fn(x) converges uniformly to some function f(x) on E.

6.8 Example. E = R. Consider
∑∞

n=1
cos(2nx)

(2n−1)(2n+1)
. Then fn(x) =

cos(2nx)
(2n−1)(2n+1)

|fn(x)| = | cos(2nx)|
(2n− 1)(2n + 1)

≤ 1

(2n− 1)(2n + 1)
= Mn for all x ∈ E
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∑∞
n=1 Mn is convergent since 0 < Mn ≤ 1

n2 . So there is a function f : R → R
such that

∑∞
n=1 fn(x) = f(x) uniformly on R.

6.9 Example. Consider
∑∞

n=1
x

n+n2x2 and E = [0, +∞). We have

fn(x) = |fn(x)| = x

n + n2x2

To find Mn we use calculus. Find max. of fn(x) for x ≥ 0.

f ′n(x) =
n + n2x2 − xn22x

(n + n2x2)2
=

n− n2x2

(n + n2x2)2
= 0 ⇒ x2 =

1

n
⇒ x =

1√
n

0 ≤ x ≤ 1√
n
⇒ x2 ≤ 1

n
⇒ n2x2 ≤ n ⇒ 0 ≤ n− n2x2 ⇒ f ′n(x) ≥ 0

1√
n
≤ x ⇒ 1

n
≤ x2 ⇒ n ≤ n2x2 ⇒ n− n2x2 ≤ 0 ⇒ f ′n(x) ≤ 0

So fn(x) has its max. at the point x = 1√
n
.

Mn = fn

(
1√
n

)
=

1√
n

n + n2 1
n

=
1

2n3/2∑
Mn = 1

2

∑
1

n3/2 is convergent. So there is a function f : E → R such that∑∞
n=1

x
n+n2x2 = f(x) uniformly on the set E = [0, +∞).

6.10 Example. Consider a power series
∑∞

n=0 cnx
n = c0 + c1x + c2x

2 + · · ·
Assume it has radius of convergence R > 0. If x = lim supn→∞

n
√
|cn| then

R = 1
α
. Let 0 < r < R and E = [−r, r]. fn(x) = cnx

n. For all x ∈ E

|fn(x)| = |cn||x|n ≤ |cn|rn︸ ︷︷ ︸
Mn

Is
∑

Mn convergent ? Use root test.

lim sup
n→∞

n
√
|Mn| = lim sup

n→∞

n
√
|cn|r = r lim sup

n→∞

n
√
|cn|︸ ︷︷ ︸

α

= rα < Rα = 1

So by the root test,
∑

Mn is convergent. So the power series
∑

cnx
n con-

verges uniformly on E = [−r, r] where 0 < r < R.

76



6.3 Uniform Convergence And Continuity

6.11 Theorem. Let (X, d) be a metric space and E 6= ∅ subset of X.
fn : E → R, n = 1, 2, . . . and f : E → R. Assume fn → f uniformly on E.
Let x0 be a limit point of E and assume for every n, limx→x0 fn(x) = An.
Then {An} is convergent and limx→x0 f(x) = limn→∞ An. That is

lim
x→x0

lim
n→∞

fn(x)︸ ︷︷ ︸
f(x)

= lim
n→∞

lim
x→x0

fn(x)︸ ︷︷ ︸
An

The two limits can be interchanged.

Proof. Show {An} is a Cauchy sequence in R. Given ε > 0, find N = N(ε)
such that for all n ≥ N(ε) and for all x ∈ E, |fn(x) − f(x)| < ε

2
. Let

n,m ≥ N(ε). Then for any x ∈ E

|fn(x)− fm(x)| ≤ |fn(x)− f(x)|︸ ︷︷ ︸
< ε

2

+ |f(x)− fm(x)|︸ ︷︷ ︸
< ε

2

< ε

This proof shows uniformly convergent ⇒ uniformly Cauchy

Take n, m ≥ N(ε) and fix them. For every x ∈ E we have |fn(x)−fm(x)| < ε.
Let x → x0. |An − Am| ≤ ε. True for all n, m ≥ N(ε). So {An} is Cauchy.
Since R is complete, limn→∞ An = A exists in R. To show limx→x0 f(x) = A,
let ε > 0 be given. fn → f uniformly on E, so there is N1 = N1(ε) such that
for all n ≥ N1(ε) and for all x ∈ E

|fn(x)− f(x)| < ε

3
· · · (1)

An → A, so there is N2 = N2(ε) such that for all n ≥ N2(ε) we have

|An − A| < ε

3
· · · (2)

Let N = max{N1(ε), N2(ε)}. Since limx→x0 fN(x) = AN , we have δ > 0 such
that for all x ∈ E with dX(x, x0) < δ we have

|fN(x)− AN | <
ε

3
· · · (3)

Let x ∈ E and dX(x, x0) < δ. Then

|f(x)− A| ≤ |f(x)− fN(x)|︸ ︷︷ ︸
< ε

3
by (1)

+ |fN(x)− AN |︸ ︷︷ ︸
< ε

3
by (3)

+ |AN − A|︸ ︷︷ ︸
< ε

3
by (2)

< ε
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6.12 Corollary. Let (X, d) be a metric space. Let fn : X → R, n = 1, 2, . . .
f : X → R. Assume fn → f uniformly on X and each fn is continuous on
X. Then f is also continuous on X. (Uniform limit of continuous functions
is continuous.)

Proof. Fix x0 ∈ X. Show limx→x0 f(x) = f(x0).

lim
x→x0

f(x) = lim
x→x0

lim
n→∞

fn(x) = lim
n→∞

lim
x→x0

fn(x) = lim
n→∞

fn(x0) = f(x0)

6.13 Remark. If each fn is uniformly continuous on X and fn → f uni-
formly on X then f is also uniformly continuous on X.

6.14 Example. E = [0, 1], fn(x) = xn, n = 1, 2, . . .

f(x) =

{
0 if 0 ≤ x < 1
1 if x = 1

Each fn is continuous on E but f is not continuous. So {fn} does not
converge to f uniformly.

lim
x→1−

lim
n→∞

xn︸ ︷︷ ︸
0︸ ︷︷ ︸

0

6= lim
n→∞

lim
x→1−

xn︸ ︷︷ ︸
1︸ ︷︷ ︸

1

(1) x fixed. Take limit as n →∞ (1) n fixed. Take limit as x → 1−

(2) Take limit as x → 1− (2) Take limit as n →∞

6.15 Corollary. Let (X, d) be a metric space. Assume fn : X → R, n =
1, 2, . . . is continuous on X for every n and

∑∞
n=1 fn(x) = f(x) uniformly on

X. Then f is also continuous on X.

limx→x0

∑∞
n=1 fn(x) and

∑∞
n=1 limx→x0 fn(x)

q q
limx→x0 f(x)

∑∞
n=1 fn(x0)

q q

f(x0)
equal
= f(x0)

So limx→x0

∑∞
n=1 fn(x) =

∑∞
n=1 limx→x0 fn(x) if

∑
fn(x) = f(x) uniformly

on X.
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6.16 Example. Consider

∞∑
n=1

x(1− x)n = x(1− x) + x(1− x)2 + x(1− x)3 + · · ·

= x(1− x)
[
1 + (1− x) + (1− x)2 + · · ·

]︸ ︷︷ ︸
geometric series with r=1−x

Also for x = 0 we have 0 + 0 + · · · so let f(x) =
∑∞

n=1 x(1− x)n. Then

f(x) =

{
1− x if 0 < x < 2
0 if x = 0

So E = [0, 2). Do we have uniform convergence on E = [0, 2) ?

lim
x→0+

∞∑
n=1

x(1− x)n ?
=

∞∑
n=1

lim
x→0+

x(1− x)n

LHS=limx→0+ f(x) = limx→0+(1− x) = 1

RHS=
∑∞

n=1 limx→0+ x(1− x)n = 0 + 0 + · · · = 0

1 6= 0 so convergence is not uniform.

6.17 Example. limx→0+

∑∞
n=1

nx2

n3+x3 = ? Take E = [0, 1].

fn(x) = |fn(x)| = nx2

n3 + x3
≤ n

n3
=

1

n2
= Mn

∑
Mn is convergent so by Weierstrass M -test,

∑∞
n=1

nx2

n3+x3 converges to some
f(x) uniformly on E. Then

lim
x→0+

∞∑
n=1

nx2

n3 + x3
=

∞∑
n=1

lim
x→0+

nx2

n3 + x3
=

∞∑
n=1

0 = 0 + 0 + · · · = 0

6.18 Example. Let
∑∞

n=0 cnx
n = c0 + c1x + c2x

2 + · · · be a power series
with radius of convergence R > 0. Then for all x with −R < x < R, the
power series converges. Let x0 be such that −R < x0 < R. Do we have

lim
x→x0

∞∑
n=0

cnx
n ?

=
∞∑

n=0

lim
x→x0

cnx
n
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Find r > 0 such that −R < −r < x0 < r < R. If E = [−r, r] then the power
series converges uniformly on E and x0 ∈ E. So

lim
x→x0

∞∑
n=0

cnx
n =

∞∑
n=0

lim
x→x0

cnx
n

So given a power series
∑∞

n=0 cnx
n with R > 0 and given any x0 such that

−R < x0 < R, we have

lim
x→x0

∞∑
n=0

cnx
n =

∞∑
n=0

lim
x→x0

cnx
n =

∞∑
n=0

cnx
n
0

6.4 Uniform Convergence And Integration

6.19 Theorem. Assume fn : [a, b] → R, n = 1, 2, . . . are integrable on [a, b]
(continuous functions are integrable) and fn → f uniformly on [a, b] for some
f : [a, b] → R. Then f is also integrable on [a, b] and∫ b

a

f(x)dx = lim
n→∞

∫ b

a

fn(x)dx

Proof. We omit the integrability proof. Let ε > 0 be given. Since fn → f
uniformly on [a, b], we have N such that for all n ≥ N , for all a ≤ x ≤ b,
|fn(x)− f(x)| < ε′. Let n ≥ N . Then∣∣∣∣∫ b

a

fn(x)dx−
∫ b

a

f(x)dx

∣∣∣∣ =

∣∣∣∣∫ b

a

(fn(x)− f(x))dx

∣∣∣∣
≤
∫ b

a

|fn(x)− f(x)|dx

≤
∫ b

a

ε′dx = ε′(b− a)

< 2ε′(b− a)︸ ︷︷ ︸
ε

So let ε′ = ε
2(b−a)

6.20 Example. E = [0, 1], fn(x) = n2xn(1− x). Let x ∈ E be fixed.

If x = 0 then fn(0) = 0 → 0

If x = 1 then fn(1) = 0 → 0
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If x = 0 < x < 1 then fn(x) = n2xn(1− x) → 0

So f(x) = 0 for all 0 ≤ x ≤ 1. Do we have fn → f uniformly on [0, 1] ?∫ 1

0

f(x)dx
?
= lim

n→∞

∫ 1

0

fn(x)dx

For LHS we have ∫ 1

0

f(x)dx =

∫ 1

0

0dx = 0

For RHS we have

lim
n→∞

∫ 1

0

fn(x)dx = lim
n→∞

(∫ 1

0

n2xndx−
∫ 1

0

n2xn+1dx

)
= lim

n→∞

(
n2 xn+1

n + 1

∣∣∣∣1
0

− n2 xn+2

n + 2

∣∣∣∣1
0

)

= lim
n→∞

n2

(
1

n + 1
− 1

n + 2

)
= lim

n→∞

n2

(n + 1)(n + 2)
= 1

0 6= 1 so convergence is not uniform.

6.21 Corollary. Assume fn : [a, b] → R, n = 1, 2, . . . are integrable on [a, b]
and the series

∑∞
n=1 fn(x) converges uniformly on [a, b]. Then

∑∞
n=1 fn(x) is

also integrable on [a, b] and∫ b

a

(
∞∑

n=1

fn(x)

)
dx =

∞∑
n=1

∫ b

a

fn(x)dx

6.22 Example. Consider F (x) =
∑∞

n=1
x

n(x+n)
where 0 ≤ x ≤ 1. Show the

series converges uniformly on E = [0, 1].

fn(x) = |fn(x)| = x

n(x + n)
≤ 1

n2
= Mn∑

Mn is convergent. So by Weierstrass M -test, the series
∑∞

n=1
x

n(x+n)
is

uniformly convergent on E = [0, 1]. Let us call∫ 1

0

F (x)dx = γ
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Then we have

γ =
∞∑

n=1

∫ 1

0

x

n(x + n)
dx =

∞∑
n=1

∫ 1

0

(
1

n
− 1

x + n

)
dx

=
∞∑

n=1

(
1

n
x− ln(x + n)

)∣∣∣∣1
0

=
∞∑

n=1

(
1

n
− ln(1 + n) + ln n

)

= lim
n→∞

(
n∑

k=1

(
1

k
− ln(1 + k) + ln k

))

= lim
n→∞

(
n∑

k=1

1

k
− ln 2 + ln 1− ln 3 + ln 2− · · · − ln(1 + n) + ln n

)

= lim
n→∞

(
n∑

k=1

1

k
− ln(n + 1)

)

Let us define

αn =
n∑

k=1

1

k
− ln(n + 1)

Then limn→∞ αn = γ.

n∑
k=1

1

k
= αn + ln(n + 1)

= αn + ln n + ln(n + 1)− ln n

= γ + ln n + ln(n + 1)− ln n + αn − γ︸ ︷︷ ︸
call σn

= γ + ln n + σn

So
∑n

k=1 = ln n + γ + σn where σn → 0 as n → ∞. γ is called Euler’s
constant. γ ≈ 0.57721. It is not known whether γ is rational or irrational.
So for large n, 1 + 1

2
+ 1

3
+ · · ·+ 1

n
≈ ln n + γ.

6.23 Example. Let
∑∞

n=0 cnx
n = c0 + c1x + c2x

2 + · · · be a power series
with radius of convergence R > 0. Take any x0 such that −R < x0 < R.
Then ∫ x0

0

(
∞∑

n=0

cnx
n

)
dx =

∞∑
n=0

∫ x0

0

cnx
ndx
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6.24 Example.
∑∞

n=1
1

2nn
= ? Consider

∑∞
n=0 xn with R = 1. Take x0 = 1

2
.∫ 1/2

0

(
∞∑

n=0

xn

)
dx =

∫ 1/2

0

1

1− x
dx = − ln(1− x)

∣∣∣∣1/2

0

= − ln
1

2
= ln 2

∞∑
n=0

∫ 1/2

0

xndx =
∞∑

n=0

xn+1

n + 1

∣∣∣∣∣
1/2

0

=
∞∑

n=0

1

2n+1(n + 1)
=

∞∑
n=1

1

2nn

We know that ∫ 1/2

0

(
∞∑

n=0

xn

)
dx =

∞∑
n=0

∫ 1/2

0

xndx

So we get
∞∑

n=1

1

2nn
= ln 2

6.5 Uniform Convergence And Differentiation

6.25 Theorem. Let fn : [a, b] → R, n = 1, 2, . . . be differentiable functions.
Assume

(i) {f ′n} converges uniformly to some function g on [a, b].

(ii) There is x0 ∈ [a, b] such that {fn(x0)} is convergent.

Then there is a differentiable function f : [a, b] → R such that fn → f
uniformly on [a, b] and f ′(x) = g(x) for all x ∈ [a, b].

Proof. {fn} is uniformly convergent on [a, b]. Use Cauchy criterion. Let
ε > 0 be given. Let ε′ = · · · Find N1 such that for all n, m ≥ N1, |fn(x0)−
fm(x0)| < ε′. Find N2 such that for all n, m ≥ N2 and for all x ∈ [a, b],
|f ′n(x)− f ′m(x)| < ε′. Let N = max{N1, N2} and n, m ≥ N . Take x ∈ [a, b].
Apply Mean Value Theorem to fn − fm on the interval [x0, x] (or [x, x0]).
Then there is a point t between x0 and x

fn(x)− fm(x)− (fn(x0)− fm(x0)) = (f ′n(t)− f ′m(t))(x− x0)

|fn(x)− fm(x)− (fn(x0)− fm(x0))| = |f ′n(t)− f ′m(t)|︸ ︷︷ ︸
<ε′

|x− x0|︸ ︷︷ ︸
≤b−a

< ε′(b− a)

Then we have

|fn(x)− fm(x)| ≤ |fn(x)− fm(x)− (fn(x0)− fm(x0))|+ |fn(x0)− fm(x0)|
< ε′(b− a) + ε′ = ε′(b− a + 1)
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So let ε′ = ε
b−a+1

. Then there is a function f : [a, b] → R such that fn → f
uniformly on [a, b] and f ′(x) = g(x) for all x ∈ [a, b].

6.26 Corollary. Let fn : [a, b] → R, n = 1, 2, . . . be differentiable functions.
Assume

(i)
∑∞

n=1 f ′n(x) converges uniformly on [a, b].

(ii) There is x0 ∈ [a, b] such that
∑∞

n=1 fn(x0) is convergent.

Then the series
∑∞

n=1 fn(x) is uniformly convergent on [a, b] and(
∞∑

n=1

fn(x)

)′

=
∞∑

n=1

f ′n(x)

6.27 Example. Let the power series
∑∞

n=0 cnx
n = c0 + c1x+ c2x

2 + · · · have

radius of convergence R > 0. Then R = 1
α

where α = lim supn→∞
n
√
|cn|.

Here fn(x) = cnx
n.

∞∑
n=0

f ′n(x) =
∞∑

n=1

cnnxn−1 =
∞∑

n=0

cn+1(n + 1)xn

For this series

lim sup
n→∞

n
√
|cn+1(n + 1)| = lim sup

n→∞

(
n+1
√
|cn+1(n + 1)|

)n+1
n

= lim sup
n→∞

(
n+1
√
|cn+1|

)n+1
n
(

n+1
√

n + 1
)n+1

n
= α

So the differentiated series
∑∞

n=1 cnnxn−1 and the original series
∑∞

n=0 cnx
n

have the same R. So if 0 < r < R then
∑∞

n=1 cnnxn−1 converges uniformly
on [−r, r]. Then for all x with −r ≤ x ≤ r we have(

∞∑
n=0

cnx
n

)′

=
∞∑

n=1

cnnxn−1

Given any x with −R < x < R, we can find a number r such that 0 < r < R
and −r ≤ x ≤ r. So (

∞∑
n=0

cnx
n

)′

=
∞∑

n=1

cnnxn−1

is true for all x with −R < x < R.
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6.28 Remark. This result is not true for a general series of functions.

6.29 Example.
∑∞

n=1
n
2n = ? Let x = 1

2
. Then we have

∞∑
n=1

nxn = x
∞∑

n=1

nxn−1 = x

(
∞∑

n=1

xn

)′

=

(
1

1− x

)′
=

1

(1− x)2

for −1 < x < 1. So we have

∞∑
n=1

n

2n
=

1
2(

1− 1
2

)2 =
1
2
1
4

= 2

� THE END �
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7 Figures

Figure 1: Vertical distances between two graphs

Br(p) Br[p]

Figure 2: Open and closed balls with d2 metric
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Figure 3: Br(p) with d1 metric

Figure 4: Br(0) with d∞ metric

Figure 5: Br(f)
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Figure 6: p is an interior point of E but q is not

The set E intE

Figure 7: The set E and intE

Figure 8: E is an open set

Figure 9: N is a neighborhood of p but not a neighborhood of q
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The set E Set of limit points
of E

Figure 10: The set E and its limit points

E is closed F is not closed and
not open

Figure 11: A set may be neither closed nor open

E is perfect F is not perfect

Figure 12: E is perfect but F has an isolated point
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E is bounded F is unbounded

Figure 13: Bounded and unbounded sets

Figure 14: A k-cell in R2
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