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CHAPTER 1

Additional Topics in Probability

1-1 Probability Distributions

We present some common probability distributions that are useful

n

mathematical methods that will be used in this lecture note. We give the

density function, mean, variance and moment generating function (mgf).

N=0,12..... m=20,1..... N,

Name pfd Mean Variance mgf
p. r=1
Bernoulli (x.p)=4{1—p. x=0 . + pe’.
. Jep ! . P p(l —p) i
distribution 0. otherwise. g=1-p
0=p=<1
- — n X=X
Binomial fln.p) = (1.) pra np npq (q+ pe")"
y=01..... n
flx,pp=q¢g— ' p.x=1.2,... 1 '
Geometric — i,, Pe f
O<p=1l P I 1 —qge
(m) (N — m‘)
Y o\ =X m m
Hyper- | fx. Nom n) = (N) . am |7 (E) (_] — W) (N —n)
geometric 0 N N1




Name pfd Mean Variance mgf
; : . _x+r=1\
r\.cgau\.’e flx.r.p) = (x ) rq g q p r
binomial FF fF I — g
r=0.1.2,... ' '
}-lf A
fled) = —
Poisson xl A ’ expi(e’ — 1))
x=012 ...
Mo+ fA)
flx.a, B) = (—ﬁ)x“_](l —x) 1, a af
a+ B @+ B @+ p+1)
0<=x=l
f{ : It .'.'_‘.\' lf 272
X v = Y5
Chi-square ' MNx/2) QM v — p?
I'(v/2)
x > 0, v > 0(degrees of freedom)
o e M, x=0
fh'.A]:{ -, 1 | ty 1
Exponential 0, otherwise, - _ 1=
pone Y PY: (1-3)
A=0
e P ' o
flx, a, ﬁ):.r“_lL. pe a (l —i) ,
Camma la) — . p
P B
x=0,a=0,=0 t=fi
f(_r.u.aizlexp(—l'r_’u ) .
Laplace 20 o, m 202
—00 < X, i
X , 1 (x — p)?
f(.lv‘ M, O"] = ('_Kp( - ). R 2.2
Normal ov2x 20° I o’ exp(m+ ot )
—0 = x, u =00, 0= 0
fix,a b)= . 2 b ta
Uniform —a a+b (b—a) e’ie
2 12 Hb —a)

a<x=<hb




1-2 Distributions of Functions of random Variables

In many statistical applications, given the probability distribution of
a univariate random variable X. one would like to know the probability
distribution of another unmivariate random variable ¥ = o(X). where ¢ 1s
some known function. For example. if we know the probability distribution

»
<

of the random variable X, we would like know the distribution of ¥ = In( X).
For univariate random variable X, some commonly used transformed random
variable Y of X are: ¥ = X2, Y = X|, Y = V|X], Y =In(X), Y =
\—‘;E and Y = (\—;E)z Similarly for a bivariate random variable (X.Y),
some of the most common transformations of X and Y are X +Y, XY, 3}—
min{X.,Y }, max{X,Y} or VX2 +Y2

In this section we discuss the methods of finding the probability distribution of a function of a
random variable X. We are given the distribution of X, and we are required to find the distribution of
9(X). There are many physical problems that call for the derivation of the distribution of a function
of a random variable. The following is one of the classical examples. The velocity V of a gas molecule
(Maxwell-Boltzmann law) behaves as a gamma-distributed random variable. We would like to derive
the distribution of E = mV?, the kinetic energy of the gas molecule. Because the value of the velocity is
the outcome of arandom experiment, so is the value of E. This is a problem of finding the distribution
of a function of a random variable E = g(V). We now illustrate various techniques for finding the
distribution of g(X) by means of examples.

1-2-1 Distribution Functiom Method

Basically the method of distribution functions is as follows. If X is a random variable with pdf fy(x)
and if ¥ is some function of X, then we can find the cdf Fy(v) = P(Y < v) directly by integrating
fx(x) over the region for which (¥ < v}. Now, by differentiating Fy (v), we get the probability density
function fy(y) of ¥. In general, if ¥ is a function of random variables X, ..., X,, say g(X}, ..., Xy,
then we can summarize the method of distribution function as follows.



PROCEDURE TO FIND CDF OF A FUNCTION OF R.V. USING THE METHOD OF DISTRIBUTION

FUNCTIONS
1. Find theregion{Y =< ylinthe (xy,x5, ..., Xp) space, that is find the set of (xq, x5, ..., xp) for which

glxq, ....xn) = y.
2. Find Fy(y) = P(Y = y) by integrating f(x1,x2, ..., xn) over the region{Y = y}.

3. Find the density function fy (y) by differentiating Fy (y).

Example 1-1

Let X ~ N(0, 1). Using the cdf of X, find the pdf of ¥ =e*.

Solution :
Note that the pdf of X 1s

(X

1

Sx(x)=
V4

Then the cumulative distribution function of Y for a given y > 0 1s
Fy(3)=P(Y<y)=P(e"<y)

L CXCLHD

=P(X <lny)
my 1 -x—;
= e dx
= J2r
Hence, by differentiating F;(¥) .we obtain the probability density function as
1 ny)*
2 :0<y

f=1 war ¢

0 other wise



Example 1-2
Let X ~ N(0, 1). Using the cdf of X, find the pdf of X2.

Solution
Let Y = X2. Note that the pdf of X is

f(~\’)=—1 e_x2/2. —00 < X < 00.

V2
Then the cumulative distribution function of Y for a given y = 0 is
F(y)=P(Y <y)=P(X* < y)
=P(—/y<X <.y
5
5

1
e_xl/zdx

/

-— Y

)

y

N5

=2/ : e 124y, (by the symrnetryofe_xz/z).
0

V2r

Hence, by differentiating F(y), we obtain the probability density function as

fr(y) = Le—."/zL

V2n 2.y
|712_ny—1/28—y/2' 0<y<oo

0, otherwise.

This is a x2-distribution with 1 degree of freedom.



Example 1-3

Suppose that the random variable X has a Poisson probability distribution

e hx
-, x=0,1,2,...
fx) = xf

0, otherwise.

Find the cumulative distribution function of Y = aX + b.

Solution

The cdf of Y is given by

Fiy)y=PY=y)=PaX+b=y)

[%b] e_)“)-.x

where [x] is the largest integer less than or equal to x. Therefore,

0, y<b
Fon=4[2]
—Ay X
):0 ‘ Jr!)'L .+ y2b
x=

It should be noted here that the pmf, fy(y) of Y, can be found from the equation

fr(y) = Fy(y)— Fy(y—1), for y=an+b, n=0,1,2,...

1-2-2 Transformation Method

Theorem

1. Let X be a continuous random variable with probability

density function f(z). Let y = T'(x) be an increasing (or decreasing) function.
Then the density function of the random variable Y = T'(X') is given by

dx i
g(y) = ‘%' f(W(y))

where x = W(y) is the inverse function of T'(x).



Proof: Suppose y = T'(z) is an increasing function. The distribution func-
tion G(y) of Y is given by

Gly)=P(Y <y)
=P(T(X) <)
=P(X <W(y))

Wi(y)
=/ f(I)dI.

-0

Then, differentiating we get the density function of Y, which is

dG
g9(y) = d;y)

d Wiy)
=3 (/: f(I)d-T)

dW
= 1w () T

= F(W(»)) j—§ (since = =W(y)).

On the other hand, if y = T'(x) is a decreasing function, then the distribution
function of Y is given by

Gy)=PY <y
=P(T(X)<y)
=P(X = W(y)) (since T(z) is decreasing)
=1-P(X < W(y))

Wiw)
=1—/ ’ f(z)dx.



As before, differentiating we get the density function of Y, which is

dG
9(y) = d;y)

d Wi(y)
=5 (1 —/:w f(.r)d:r:)

dW
= —fw) LY

= —f(W(y)) Z_'; (since z = W(y)).

Hence, combining both the cases, we get

F(W(y))

dxr
g(y) = '@

and the proof of the theorem is now complete.

Example 1-4 Let Z = 3£ If X ~ N (u, 0?), what is the probability
density function of Z7?

Answer:

(x) = ==L,

Hence, the inverse of U is given by
Wiz) =2
=0z+ M.

=a0.

dz
Hence, by Theorem 10.1, the density of Z is given by

d
d—’l F(W(y)
L a(gee’

V2ro?

9(z) =

=i




Example 1-5 Let Z = X-£ If X ~ N (u,0?), then show that Z? is

chi-square with one degree of freedom, that Z? ~ y?(1).

Answer: a
T —
v=T@) = (%)
T=p+0/y.
W) =p+oyi.  y>0
dr o
dy 2y

The density of Y is

o(y) = ‘%l FW ()

Hence Y ~ y2(1).



Theorem 2. Let X and Y be two continuous random variables with
joint density f(z,y). Let U = P(X,Y) and V = Q(X,Y) be functions of X
and Y. If the functions P(z,y) and Q(z,y) have single valued inverses, say
X =R(U,V)and Y = S(U,V), then the joint density g(u,v) of U and V is
given by

g(u,v) = [J| F(R(u,v), S(u,v)),

where J denotes the Jacobian and given by

bz b2
J = det (g‘y‘ g;)

Ju  Bu

Ju dv  Ov du

Example 1-6

Let X and Y be independent random variables with common pdf f(x)=e™. (x> 0).
Find the joint pdf of

U=X/(X+Y). V=X+Y.

Solution :

fan)=f(x).f(y)=eTe”

We have U =X/(X+Y)=X/V. Hence, X=UV and Y =V —X=V -UV=V(1-U). Thus,
the Jacobian

v u

J= =v(l-u)—(—vu)=v

-v 1-u
Then|J|=v. Notethat0=u<1.0<v <o,

Sv)=f 7 ). byt (u.v)) - |J|

o ol 05usl.0<v<om,
=ewev(lu)

v =ve'
Suppose we want the marginal f(v) and f(x) . thatis,

x

f(r:)=Ive“'dv=1 = f)=1 :0<u<l

0



1
f(v)=_|.ve“'a'u =ve" = f()=ve :0=v<w
0

Sometimes the expressions for two variables. U and V. may not be given. Only one
expression 1s available. In that case, call the given expression of X and Y as U, and
define V=Y. Then, we can use the previous method to first find the joint density and
then find the marginal to obtain the pdf of U. The following example demonstrates
the method .

If we talking about discrete random variables the Jacobian determined is dropped .

Example 1- 7

Let X and Y be independent random variables uniformly distributed on [0. 1]. Find
the distribution of X+Y.

Solution :

f@)=1@).f(») =1

Let U=X+Y and let V=Y .Hence X=U-V and Y=V.
Thus. the Jacobian v a=v

Jr-1 Kln
o 1 §
Then |J|=1.

If x=0 thenO=u-v 1.e v=u o
If x=1 then l=u-v ie v=u-1 Figure 1 :The regions of integration.

1 0<u—-v<l L 0<sv<l

other wise

f@v)=f ™ (). b (u.y)) - |J| = {:}



Because V i1s the variable we introduced. to get the pdf of U. we just need to find the
marginal pdf from the joint pdf . From Figure 1. the regions of integration are
0<u<l.and 0 <u<2. Thatis,

-

Ildu =u - 0<su <l
0

=]
Ildu =2-u ; 0<su<2

-1

Example 1- 8
Let X and Y be independent random variables such that X ~P(x.4,) and
Y ~P(y./,) . Find the distribution of X+Y
Solution :

A
.also ¥ ~P(y.4,) = P(y)=e ? —

since X ~P(x.4) = P(x)=e" o

x
A2
x!

since X and Y are independent

X . y
P(x.y)=P(x).P(y) =™ %e_"ﬁ %

Spaceof X and Y

Q={(x.y): x=0123.... .y=0123..... }
Let U=X+Y and let V=Y
So

u=x+y =h(x.y) and v=y = h(x.y) .suchthat 4 .k, area (1-1) trans. Map.
from a space Q onto the space g of u.v .

and

x=u-v=h'(u,) and y=v= h'u.v) .suchthat #* h;' area (1-1) trans.
Map. from a space g onto the space QO ofx.y.

20 =2>u—-vz20 D uzvy

720 =>v=0 = v=0.1......, u



B={(u.v): u

The jont pmfof Uand V 1s

gu.v)=g[h.h']=e """ AT cu,ve p
(et —=v)' !
The pmfof U 1s
g(”): ie-"{l*";‘l’ _/1‘1"_" /‘g = e_"i“l**'izl i ,{1"“‘ ;";
| (1 — 1) ! = =)'t
— g~ Ath) i”' ;u_v iz —ul+m Z Pk B B )qu_v /ﬂ
0:1'("—1)'1' H'.,,O (—v)!' !
1 & (u
_ —lA4+4) u-v v
=e — ;V)
u! ,;0 [1}{1 i
_ —1,414-&2 (214_/1 )
—(4+4y) 1 . ey
Lglu=x+y)=e 7R (A, +4, )™ x+y=01......
x+y)! ;

Thus .
X+Y~ P(x+y A4 +4,)

Example 1- 9
Let X ~ filx)=2x,;0<x <1
Solution :

Space of X 1is

Q={x:x(0.1) }
Space of Y 1s
B={y: 0<y<8}
y=8x’=h(x) = x="—
-1 -2
DA L 1_}3
dy| 23 6

U T B -2 T U
g)=f1 (] M—Z(T g’* .—g.’r

3\/_ _ k—l

>v . v=0L..u |

. Find the distribution of Y =8Xx" .

(»

0<y<8



Example 1- 10
Let X and Y be independent random variables uniformly distributed on [0, 1]. Find

the distribution of U where U=X+Y and V=X-Y

Solution :

- X~ U0 = f(x)=1

S fxy)=f(x).f () =1

Q={(x,1):0<x<1,0<y<l}

H=X+)

v=x—yv=hh(x.y) =¥ =%(u —v)= h;l (u.v) .

=h(x.y)

Thus. the Jacobian

J=

b | = | —

Then |J|

1
If x=0 ::vU=E(H+1'):>H=—1'
1
If x=1 =1 =E{H+1'):>u=2—1'
If v=0 ::>0=%(u—1-‘}::>u=1'

If v=1 :‘al:%(u—r}::- v=u-2

ﬂ1={(n.v):—u{v«:w O<cu<l }
ﬁ:={("-1’):rf—2c:v<:2—u d<u<2 }

_ 1
S

B=pp

guv)=f (7 (u.v).h3' (u) - |J| =%

glu)=!

Tlﬁ:u

I
=
I

=x =%{u +v)=h ()

0<u<l

l<u<?

also Y~U(01)= f(v)=1

v‘\
(L)
u=v .
- v=2-u
{U.G.}_ Q 0)
U
nmon Se=u2
< (1-1)

Figure 2 :The regions of integration.



Example 1- 11

Let X~ f(x)=1 .0<x<1.Let Y= -4mnX . Define the pdfof Y .
Solution :

Space of X is

Q:{x:O <x<l }

Space of Yis

B={y:0<x<» }

-y

yv=—4lhx=h(x) = x=et =] ()

£0)=1UP W1 = 136 |- e

-y

g(_m-')=ie4 0<y<>

Hence. Y ~EXP(4)
OR

.
1 -1 1

g(y) = m;' e D<y<w since I'(1) =(1-1)!=0!=1

Thus . Y ~Gamma(l,4)
OR

Y ~ X



Examp ]-12 . Let each of the independent random variables X and Y
have the density function

g for0 <z < oo
f(I)={

0 otherwise.

What is the joint density of U = X and V = 2X + 3Y and the domain on
which this density is positive?

Answer: Since

U=X
V =2X +3Y,
we get by solving for X and Y

X=U
Y=1V—2U.

3 3
Hence, the Jacobian of the transformation is given by
J dr dy Jx dy
T Oudv v du

The joint density function of U and V is
9(u,v) = |J| f(R(u,v), S(u,v))

f (u, %v - %u)

Since
0<xr <o

0<y< oo,

we get
0<u<oo

0<v< oo,
Further, since v = 2u + 3y and 3y > 0, we have

v > 2u.



Hence, the domain of g(u, v) where nonzero is given by
0<2u<v<oo.

The joint density g(u,v) of the random variables U and V' is given by

e (57%) for 0 <2u < v < o0

glu,v)= {
0 otherwise.

1-2-3 Moment generating function Method

W=

Notes :
-If Y=aX+b then my(t) =e” my(ar)

- My, (t) =my(at) my(l)

Theorem 1-1 :

Let my(f) and my (r) denote the moment-generating functions of random variables
X and Y . respectively. If both moment-generating functions exist and
m () = my(r) for all values of t. then X and Y have the same probability
distribution.

- Summary of the Moment-Generating Function Method :

Let U be a function of the random variables 1.1, ....... AT

1. Find the moment-generating function for U .my,(f) .

2. Compare (). with other well-known moment-generating functions. If

my; (t) = my () for all values of t. Theorem 6.1 implies that U and V
have identical distributions. )
This

Example 1- 13
Let X and Y be independent random variables Gamma distributed on [« . 1]. Find
the distribution of X+Y.



Solution :
m, ()=(1-1)" .m ()=(1-1)"

m,,(t)=E (e )= E(e™* )= E(e™ )E(e” )=m_(1) m,(t)
=(1-1)" . (1-1)"

i (1 —t )—Za
That is a moment generating of Gamma( 2« .1).Thus
X+Y ~ Gamma(2e«.1).

In general if arv's X, ~G(a, .f).Vi=12....n  Find the pdf of Y = ZX,.

m, (N=(1-4t)" .Vi=l2..n
m, ()= E(e% ) = Elernens—+) ) plgmerneotn)
= E(e™ )E(e™)...Ele™ )= m, (1) m, (2)..... m, (1)
= (=Bt)* (=Bt ). (1- Bt}
~(1-p1) 5"

el

That 1s a moment generating of Gamma( g % 1).Thus

Y ~ Gamma(;“i A1)

Example 1- 14
Let X;. Xo. . ... X, be independent and identically distributed random variables

such that X, ~N(g, .67).Vi=12....n_Find the pdf of Y = Za,.X,. .a is
i=1

constant .



Solution :
m,, (r)=EXP{ 1 r+-§— o} rz} =120
”ly ({)= E(ery ) — E(etl ax + Xy + ... +ay X, ) )= E(eta]x1+ta3x2+ et AyXy )
= E(e™ )E(e™ ). E(e"™™ ):"’x. (at) m_(ayt)..... m_(a,t)

= E)d’{ 1y alr+% o, afrz}.E.XT{ 7 alr+%o‘22 (12212} ..... E.XP{ ,unr+% Gl a it

= Exp{ (gﬂi a,-JH%[g"f g }}

That is a moment generating function of N{{ D u;a, ]
i=l

- (gna) (£14)

i=1 =l

icrf a; U,Thus

Li=l

For a special case that is if X.Y ~ N(u.c?) then X-Y ~ N(u-u .c* +o?)

ie X-Y~ N(@©.20%)

Example 1- 15
LetY:. Yo .... Y, be independent and identically distributed random variables

such that for 0 <p<1.P(Y;=1)=pand P(Y;=0)=q=1 — p. (Such random
variables are called Bernoulli random variables.)

Let W=Y,+Y,....+Y, , What is the distribution of W?

Solution :

"-'y(f):(etp +q )
My (1) = E[e”r): E(eﬁ:l'1+h+.‘..+y,, i): E(em+ryz+____+ry' )
- E(e‘-‘i )E(ef.': )_..E(el*‘. ): m, (1) my, (0)..... m, (1)

=le'p+q).'prq).lep+q)

n—times

=le'p+q)

That is a moment generating of b(n.p) .Thus
W ~ b(n.p).



Example 1- 16
If X~N(0.1) then X*~ 7, ?
Solution :

Let Y=X

f(x)=%e_% — WXL

m,(1)= E (e“z )~ _J; J_ xl 2 dx :: J;_ze-%al dx
=:E \/;_;re A dxzﬁ:i (l:/;_?% e%’z“_z” dx

= (1—2r)‘%

That 1s a moment generating of ;ff” .Thus
“~ ) -
In general If X;.X5.....X ~N(0O) . then X7 +X;+..+ X, ~ yo,

Example 1- 16

Let Xi. Xo. ..., X, be independent and identically distributed random variables
2
such that X, ~N(u.0”).Vi=L2...n Find the pdfof Y = Z o
i=1
Solution :

m,(1)=E (e'-") =E

r‘E[ S r ] rII i .]2+r1l O .I|2+ +r' o ._[3
e i=l, & — E e I 2 \ g .o /
2
=

220 (= =
=Ele 7 |Ele ° e 7 |=|Ele

...




© fx=p ? [x—utz © 4 x-;f : tx—lurl2 "

e I
= e e

o o2 el

P (—p\? n . n
x 1 (x? ,{; X xo-,ul ® 1 _x- ur‘ 1-2¢)
— I e ¢ \ f — j e 247
c.OAN27m c

1 V+u = dx=a;dv

Ja=-21)

pdfof N(0.1) soit is equall n

§|

_?dv

1 1 jf c e_%dl' jf yz_
(1-21)2 =027 (- 2:) V27

-n

=(1-2¢)7

. . . 2
That is a moment generating function of %, .Thus

Y“lenl -



EXERCISES :

1-1-Let JX,.X, ~N(0.1) prove that the pdf of Y = 1s Cauchy distribution .

1
X,

-

1-2-Let X .Y be two indep. R.v.'s such that X~ Gle,.l) .Y ~Gle,.1) . Let
X

W,=X+Y and W3=ﬁ . Find the pdf of w; and w, .

1-3-Let X~ f(x)=1 ,0<x<1, Let Y=-2InX . Define the pdf of Y .

1-4-Let Xy, . . .. X, be independent and identically distributed random variables

-x

1 =
with pdf f(x}:ze * x>0 _ Ai>0.Find the pdf of Z; X,

1-5- The joint pdf of X and Y is f(x.»)=60e™" x>0.6>0. Find the
pdf of XY.

1-6-If Y, and Y, are independent and identically distributed normal random
variables with mean p and variance o”. find the probability density function
for U=(1/2)(Y; - 3Y>y).

. X,
1-7- Let X ~G(e.f) . Show that 1’2? ~ Xia) -
1-8- The joint pdf of (X, }) 1s
1] =X
flx.y )=9—1 e ¢ x,y >0 .0>0.

Find the pdf of U=X-Y.

1-9- If the joint pdf of (X V) is
_x!_yl

1 gl
f(.’f,_‘l')=—€ e , o<y <o, —w<y<w . Jg,0 >0
21 0,0, '

find the pdf of X*+17.



Chapter 2

Sampling Distributions

We call the probability distribution of a sample statistic its sampling distribution.
Sampling distributions provide the link between probability theory and statistical inference.
The ability to determine the distribution of a statistic is a critical part in the construction and
evaluation of statistical procedures. It is important to observe that there is a difference
between the distribution of population from which the sample was taken and the distribution
of the sample statistic. In general, a population has a distribution called a population
distribution, which is usually unknown, whereas a statistic has a sampling distribution, which
is usually different from the population distribution. The sampling distribution of a statistic
provides a theoretical model of the relative frequency histogram for the likely values of the

statistic that one would observe through repeated sampling.

Definition 2-1 A sample is a set of observable random variables X1, . .., Xn. The number n

Is called the sample size.

In most of the inferential procedures that we study in this book, we are dealing with random
samples. We call the random variables Xy, . . ., X, identically distributed if every X; has the
same probability distribution.

Definition 2-2 A random sample of size n from a population is a set of n independent and

identically distributed (iid) observable random variables Xy, . . ., X,.

Definition 2-3 A function T of observable random variables Xy, . . ., X, that does not

depend on any unknown parameters is called a statistic.



For example, suppose that we want to estimate a population mean p. If we obtain a
random sample of n observations. x;. Xp. . . .. Xg . 1t seems reasonable to estimate
i with the sample mean

X=—)x
n Z: '
The goodness of this estimate depends on the behavior of the random variables

— 122
X1. Xo. ..., X, and the effect that this behavior hason X = fzxf . Notice

i=1
that the random variable x i1s a function of (only) the random variables

Xi. Xo. ..., X, and the (constant) sample size n. The random variable X" is therefore
an example of a stafistic.

Definition 2-4 The probability distribution of a sample statistic is called the sampling

distribution.



2 1- The Distribution of X :
Let X;.X,....and X, areindependent and identically distributed normal random

variables with mean 1t and variance o” . then the way to find the Distribution of X
1s

1 3
m,(ﬂ:m{ ;:t+?alf‘}
=] | L +x3+ .. +x, ) LI +i:u1+____+im:,r
mf(f)=E(€’x]=E| e ]=E[e"' " " ]

L L L
e" ]E{e" ) ],...E{e“ ’ ]

=E

‘j

o
That is a moment generating function of N [ H " ] .Thus

. 2
X~ N[ ;J.J—] _
n
That is
— o1 L =
f( (= |— —e ¢ —m< X<
271 ©

To drive the mean and var. of x :

E X)zE{lixi 1=1(E{x1 )+ E(x, )+...... +E(.r"})=i(ﬂ+,u+ ........ + 11 }zln,u:,u
n ni e

n n

~E(X)=u

"

n = fim



n

Var(f)=val{lzx,-)=ﬂiz( var(x, )+ var(x, )+......+var(x, ) L :

1 i1

n n

.'.\-'arﬁ)=lc:r2
n

Example 2-1: Let X,.X,.....and X, are independent and identically distributed

G(«.p).Find the Distribution of X 9
Solution :
mx(t)=(l —ﬂt)-a

m=(t)= E(e'f ) = E|

- o &)

L{xl+x2+....+x") ] Lxl+ix2+.‘..+ix.
e =FEle" " n

=11, () My, (). m, ()
2 1—p%) ) (l—ﬂ%]‘a ...... (1—/3%]_‘:
| I_E,]—m




: : . P
That is a moment generating function of G( na.; .Thus
E G( na.ﬁ ) ,
n
That 1s

nx
i ne :

e A

To drive the mean and var. of X :

i=1

~E(X)=ap

E(EFE(%ixi]=%(E(x1)+E(x2]+ ...... +E(x,,))=%{gﬁ+aﬁ+v +afﬁ}=




2-2- The Distribution of S° :
nS?

we want to find The Distribution of $? . so we must be first find the distr. of — .
=

Let X,.X,....and X, are independent and identically distributed normal random
variables with mean p and variance o’

we have
‘Z::(-".-“ll)z =‘Z"l:(-\',-—i;+—i- ,u)zzg{ (x,.—_)_x;)z +2(x,.——i;x3(_— /1) +(Y— /1)2}

=§(x,—f\f +2i(x‘—f)(f— /1) +g(f_ /1)2

i=1

=Z":(.\’,.—T)2 +0+'Z:l:(f— /1)2

i=1

Z”l:(x,.—,u)2 =Z"l:(x,.—f)2 +n(§'— ,u)2
" (x,-puf n & (x,.—I’f (f— /1)2
> o!  o? ; n a2

i=1

- "2i(xt_f)2 =i(XI—fl)2 . n(f—;“)z

g gl (F)
c

o i=l

" s 2 %7 2
We have Z‘x’ #) ~ Xn) and nM ~ Zn)

O'2 (o}

i=]

Thus .

Hence .

3 &
S '”TIM—U

2
What about the mean and var. of S~ 2 I will use the properties of mean and var. to

find them .

. n 2 n
Since=59  ~ Xin1) .then 5(—282)=11—1
(o2 o



= %E(S )=n-1= E(s?)= %

Also .

2
var(’—ZSz]ziz(n—l) = _var(s?)=2(n-1)
o o

— var( 52)22(";_904

Exercises :
2-1- Let X;.X,.....X, denote a R.S. of size n (7> 2) from N(1,2) . Find the

pdf of X and Drive mean .var.and mgf ofit.
22-1f ¥~ u, 2| Show that :
\ n )

~ N(0.1)

n

X- 7

Ars

2-3-Let X;.X,......X, denoteaR.S. of sizen (7> 2) from G(2.2) . Find the pdf

A‘)’{nl

C)Z

i=l

of X' and Drive mean . var. and mgf of it .



Now we introduce some distributions that can be derived from a normal distribution. These
distributions play a very important role in inferential problems.

Since the normal population is very important in statistics, the sampling
distributions associated with the normal population are very important. The
most important sampling distributions which are associated with the normal

2-3 Chi-Square Distribution

A chi-square distribution is used in many inferential problems, for example, in inferential problems
dealing with the variance. Recall that the chi-square distribution is a special case of a gamma distri-
bution with@ = n/2 and B = 2. If n is a positive integer, then the parameter n is called the degrees of
freedom. However, if n is not an integer, but g = 2, we still refer to this distribution as a chi-square.
The mgf of a x>— random variable is M(t) = (1 — 2¢)~*/2. The mean and variance of a chi-square
distribution are 4 = n and o2 = 2n, respectively. That is, the mean of a x?(n) random variable is
equal to its degree of freedom and the variance is twice the degree of freedom. We now give some
useful results for y?— random variables.

Definition 2- 5:

A continuous random variable X is said to have a chi-
square distribution with r degrees of freedom if its probability density func-
tion is of the form

rrlzw;rﬁ_‘c_’i' if0<ax < oc
flazr) = "5

0 otherwise,

where r = 0. If X has chi-square distribution, then we denote it by writing
X ~ x*(r). Recall that a gamma distribution reduces to chi-square distri-
bution if @« = Z and # = 2. The mean and variance of X are r and 2r,
respectively.

Chi-Square Distributions

Thus, chi-square distribution is also a special case of gamma distribution.

Further, if »r — oo. then chi-square distribution tends to normal distribution.



Theorem 4.2.3 Let X, ..., X; be independent x> — random variables with n,, . . ., n; degrees of freedom,
respectively. Then the sum V = Z{-‘Zl X, is chi-square distributed with ny + ny + --- + ny degrees of
freedom.

Proof. The mgf of V is

[
~ —(Z ni)/l
MV(')=]_[(1 —2:)_""/2:“ —21) \=1 )

i=1

This implies that V ~ x? ( - n;).

Theorem 4.2.5 If a random variable X has a gamma distribution with parameters & and 8, then

vy =2 22a)
= —~x" (2a).
B

Proof. Recall that the mgf of the gamma random variable X is (1 — g)~“.
M M E(e7
y(n = gﬂa;(!) = (e )
2
_E (ex{-,r)) — My (E;)
B

—(1=-2"%=(1-20"F,

Hence, Y ~ x (2a). O

The following result states that by squaring a standard normal random variable, we can generate a
chi-square random variable, with one degree of freedom.

Theorem 4.2.6 If X is a standard normal random variable, then X? is chi-square random variable with 1 d.f.

Proof. Because X ~ N(0, 1) the moment-generating function of X? is

oC
21 _2p ~1/2
sz(r)=fe' — dx =(1—2t)" /%,
2
—00

This implies that X2 ~ x2(1). Figure 4.1 gives the probability densities of the random variables X
and X°. 0O



Theorem 4.2.7 Let the random sample X, . ..., X, be from a N(u, o?) distributed. Then Z; = (X; — p)/
o,i=1,..., n are independent standard normal random variables and

i2?=i(x‘;")z

i=1 i=1

has a x?-distribution with n degrees of freedom. In particular, if X, . . .., X, are independent standard normal
random variables, then Y2 = 37 | X? is chi-square distributed with n degrees of freedom.

Example 14.1. If X ~ GAM(1,1), then what is the probability density
function of the random variable 2X ?

Answer: We will use the moment generating method to find the distribution
of 2X . The moment generating function of a gamma random variable is given
by

M(t)=(1—06t) =, if t <

| -

Since X ~ GAM (1,1), the moment generating function of X is given by

1

Mx(t) = 1—>

t < 1.

Hence, the moment generating function of 2X is

Mox () = Mx (2t)
1
1 — 2¢
- 1
(1 —2t)%
= MGF of x?(2).

Hence, if X is GAM (1,1) or is an exponential with parameter 1, then 2X is
chi-square with 2 degrees of freedom.

Example 14.2. If X ~ x2(5), then what is the probability that X is between
1.145 and 12.837



Answer: The probability of X between 1.145 and 12.83 can be calculated
from the following:

P(1.145 < X < 12.83)
= P(X <12.83) — P(X < 1.145)

_ /12 .83 Fchdie— /1 145 o

0

12.83 . 1.145 1 5
= —————<zZ le"%Tdr — ——  _r3le%F 4

= 0.975 — 0.050 (from x? table)
= 0.925.

Example 14.3. If X ~ x2(7), then what are values of the constants a and
b such that P(a < X < b) = 0.957

Answer: Since
095=Pla< X <b)=P(X <b) — P(X <a),

we get
P(X <b) =095+ P(X < a).

We choose a = 1.690, so that
P(X < 1.690) = 0.025.
From this, we get
P(X < b) =0.95+ 0.025 = 0.975

Thus, from chi-square table, we get b = 16.01.



2-4 Student t-Distribution

3

Let W ~ N(0.1) and V—~;_r(2r) and both W and V are indep. . Let T=—— . we

N

say that T has t-distribution with r degree freedom (df).
. w
1.e. T= 72 tr) ?
v
Let us find the pdfof T.
w

A
1 W 1 ) %—1 -
W~ N(01)= fi(w)=—m—e ? . —w<w<w and £()=—0IH {‘— ez . v>0.
2 N ,,1_[1] 2
L2
Since W and V are indep.
—_2 , 'a -
1 - 1 v )2 -
S flway )= fw)fh(v)= e ? (—) e’
2,
Space of W and V :
Q={[w.1-'):—a:<‘n‘c::r:, 0{.1‘-:::»:}
1
w f'\/; fHE A1 -1
= = w= = =u F.H) and u=v = v=wu=u, (r.u)
% NN ~
o
Spaceof T and U
B={(tu):—xw<t<ew ., O<u<=xn}
i
NN T Vu
|J‘= =2
7
0 1
. g(f-u)=f(ul_1 u:,_l ) |J|
51 L rl 2l er
= 1 1 (ﬁ]' e 2r e:‘/;= 1 1 uzze_?[l AIJ
N2 2r{£) 2 Vr 27 2% r_}
2 L2
ao r 1 _u'_‘_'! A o« L—i [’ +t2
.g(f)=_‘.\,_i — 1 w22 e 3! Af} due = Jl - 1, _ I u? 2 e_zll /:'] du
o =TT 231"(%} 2T 231—{%)0
L - =



rl
1 1 G z = d-
= glt)= _[ - e’
f[rr ¥ ¢ 2 2
=T 221"11]“' |1+L 1+L]
\ 2 | 1 r r
= 1 -
_ 1 1 f*%_l o7 4
5 s -
T 212 _(r)°
22[1+—J r(—]
\ ro \ 2
]_fr+l]m .
1 1 L2 —1 =
- - -I,.z e? dz
Jr r+ 2 FTH (r+1),
> t= 1 _(r)\T
2'(1+—] r ] 2
r y
:l
’nn r+l
-
_ 1 lﬁL1 r r+1]j - 1 .3 e? d-
r P\ [ R DS, r+1}
[]+—} l'(—} 2
L r 2
1 1 (r+1
_ 1—{ ]
JEf 3 ) 2
|1——] r[—]
\ r 2)
1 1 ‘r+1
Hence . glr)= r ] ,—m <<
Jr , L2
23\
2
r 2
w

and denoted by 7=

~ ()
A4

Lr=>0



Example 14.6. If T ~ t(10), then what is the probability that T is at least
2.228 7

Answer: The probability that T is at least 2.228 is given by

P(T >2.228) =1 — P(T < 2.228)
=1-0.975 (from t — table)
= 0.025.

Example 14.7. If T ~ ¢(19), then what is the value of the constant ¢ such
that P (|T| <¢) =0.957

Answer:
095=P(|T| <¢)
=P(—c<T <e)
=P(T<c)-1+P(T <c)
=2P(T<¢)-1.
Hence

P(T < ¢) = 0.975.

Thus, using the t-table, we get for 19 degrees of freedom

c = 2.093.



Theorem 14.7. If X ~ N(pu,0?) and X, X5, ..., X, be a random sample
from the population X, then

X—p
S
vn

~ t(n —1).

Proof: Since each X; ~ N(u,0?),

Thus, .
X;“NNmn
=
Further, Know that
n s2
— ~x*(n—1)
Hence
X =
C ~t(n — 1)

Sl |
al(EL
HIE:



Example 14.8. Let X;, X5, X35, X4 be a random sample of size 4 from a
standard normal distribution. If the statistic W is given by
_ X1 — X2+ X3
VX + X3+ X2+ X7

then what is the expected value of W ?

Answer: Since X; ~ N(0,1), we get
X1 —Xo+ X3~ N(U,?))

and
X1 — X2+ X3
V3

Further, since X; ~ N(0,1), we have

~ N(0,1).

X7 ~x%1)

and hence
X7+ X3+ X3+ X7 ~x*(4)
Thus,
X —Xo+Xa o
V3 = (_) W ~ t(4).
\/X$+X§+X§+X§ V3
1

Now using the distribution of W, we find the expected value of W.

ewi- () 2[5]
‘/3) E[t(4)]

(
)

w|§ N



Example 14.9. If X ~ N(0,1) and X, X is random sample of size two from

the population X, then what is the 75" percentile of the statistic W = 7"#‘7
Answer: Since each X; ~ N(0,1), we have

X1~ N(0,1)

X3 ~x*(1).
H

ence X,
W = 5 t(1).
X3

The 75'" percentile a of W is then given by
0.75 = P(W < a)
Hence, from the t-table, we get
a=1J9

Hence the 75" percentile of W is 1.0.

2-5 F-Distribution

The F-distribution was developed by Fisher to study the behavior of two variances
from random samples taken from two independent normal populations. In applied
problems we may be interested in knowing whether the population variances are equal or
not, based on the response of the random samples. Knowing the answer to such a question

Is also important in selecting the appropriate statistical methods to study their true means.



Let U~ z(, and V~ 47, and both Uand V are indep. . Then

7
F=7:-’ ~ fln.r)

Let us find the pdfof F.
o7

5= é let Z=V
o

1 L —u

'.'U«;({z,,} = filu)=——(u)2" e? a11df2(\-}=r;_[r)§" eTv .

271 1] 251“(1]
2 2

e

Since W and V are indep..
S fluv)= ji(”')fz('r)=;(ff)%_l eT;'(r);_l e?

Space of U and V :
O={(u.v):0<u<=., 0<v<ew}

u
f=21 = u=f=z= =u'(f.z) and z=v = v=z=u;'(f.z
v
-
Spaéé of F and Z :
ﬁ={ =):0<= f == 0‘::~:a3}
o gn
Eae I B2
=
o) 1

cglriu )=f(ul_1 3t ) |J|




o

~elf) =] ==

o

[S1E

— 3
n, rtm, T’{%fﬂj

frz? e dz

Let y=z[£f+l] == g = _ &
roo. {ffﬂJ {£f+1J
r r .
12"—1
¢ n)2 Ao R
I _ ;J A HL
° 271'(5 r(i] {—f+1) {—f+1}
212 At r
=L pdf of Zien))
31 z o r+n -
f? n\2_(r+n 1 =51 7
- S ﬂ(r_ ) 2 I = (r+n yioeld
n riyn 2 ¢ - ° 22T
PR )

i A
; . . .
- nir 151_ — 2 f>0 n>0.r>0
glf)=1 I'[;]l‘(%} ;f+1 ]T( [ 2 ] > >0.r>
) O\l - other wise

Notes 2-1 :

1- If F — #(.r) . then ~f(r.z) .

U,
Proof : F=V—4 = 1
/A F
2-If T~t(@) .then 77>~ F(1.r) .

Proof : -7 =—2% Y since W ~ N(0.1) = W?* ~ 13, T/’/r ~ X&)y

Z4 7z

Hence . 7° ~ f(1.7) .

1

F

17'
2




Example 14.11. If X ~ F(9,10), what P(X > 3.02) ? Also, find the mean

and variance of X.

Answer:
P(X >3.02)=1- P(X <3.02)

=1 - P(F(9,10) < 3.02)
=1-0.95 (from F — table)

= 0.05.

Next, we determine the mean and variance of X using the Theorem 14.8.

Hence,
10 10
E(X)=—2_= =— =125
vo — 2 10 — 2 8

and
202 (1] +vo — 2)

1741 (I/2 —= 2)2 (l/2 — 4)

Var(X) =

_2(102(19-2)
— 9(8)2(6)

_ (25)(17)
~ (27) (16)

_ 425 _ o838,

T 432



Example 14.12. If X ~ F(6,9), what is the probability that X is less than
or equal to 0.2439 ?

Answer: We use the above theorem to compute

1
P(X < 0.2439) = P —
( ) (X_02439>

—p(F9,6)> —1 _
0.2439

il P (F(9,6) < ﬁ)
—1— P(F(9,6) < 4.10)

1 —0.95

0.05.

Example 14.13. Let X, X5, ..., Xy and Y;,Y5, ..., Y5 be two random samples
of size 4 and 5 respectively, from a standard normal population. What is the

5 2 2
variance of the statistic T = ( ) sz Jrl;.f }fzﬁ;zﬁyz ?

Answer: Since the population is standard normal, we get

X2+ X2+ X2+ X2 ~ x2(4).

Similarly,
Y12 + Y22 + Y32 + Y42 + Y52 ~ X2(5).
Thus
T — X+ X2+ X3+ X7
o Y2+ Y2+ YZ+ Y2+ Y2
)'(2+)i(2+)i('~’+)i(2
— Y2+Y2+Y2+Y42+Y52

5

— T ~ F(4,5).



Therefore
Var(T) =Var|F(4,5)]
_20(1)
4(3)2(1)
_ 350
T 36
= 0.72.

2-6 Order Statistics

In practice, the random variables of interest may depend on the relative magnitudes
of the observed variable. For example. we may be interested in the maximum
mileage per gallon of a particular class of cars. In this section. we study the behavior
of ordering a random sample from a continuous distribution .

Definition 2-5-1:

LetX;. .. .. X, be a random sample from a continuous distribution with pdf £(x).
Let Yy ....Yybeapermutationof X;.....Xysuchthat Y, <Y< ---<Y,.
Then the ordered random variables Y. .. .. Y, are called the order statistics of the

random sample X;. .. ., X, -
Here Yy is called the kth order statistic. Because of continuity. the equality sign
could be ignored .

Remark 2-5-1 . Although Y] s are iid random variables, the random variables Yi’s
are neither independent nor identically distributed.

Thus, the mmmimum of X7 "s1s Y7 =min (Xy, ..., X )

and the maximum is Y, =max (X3, ..., Xu.

The order statistics of the sample X;, . . . , X, can also be denoted by
’(]), —Q), .. ey _}l}n) where A’ﬂ) < .X—Q) <-- - < Xm}. .

Here X}, 1s the Ath order statistic and 1s equal to Yz in Definition One of the most
commonly used order statistics 1s the median. the value in the middle position in the
sorted order of the values .



Theorem 2-5-1:

Let X;..... X, be a random sample from a population with pdf f(x) . Then the

joint pdf of order statistics Y. . . .. Yo 18

n ) f(v2) f,) for 3 <w, <<y,

0 other wise

FOr vy, )={

The pdf of the k#h order statistic is given by the following theorem .

Example 2-5-1:

Find the distribution of the nth order statistic Y, of the sample Xj. . . .

population with pdf f(x).
Solution :
Let the cdf of Y, be denoted by F,(y). Then

Fa(y) =P(Yp<=y) =P (max (X< =P(X;=v. Xh=yv......X,=7)
=P(X,<v).P(X,<v) ... . P(X,<v)
= [F(y¥)]* (by independence).

Hence. the pdf f,(y) of Yy is

)= WO pr L p) = FO ().

Similarly . For pdf of the order statistic Y :

Let the cdf of Y, be denoted by F,(y). Then
Fi(y) =P(Y1<y) =P (min(X;)< y) =1- P(min (X;) > y)
=1-P(X,>y, Xh=>yv......X,>y)
=[1-P(X>y)]"=1-[1-P(X<y)]" =1- [1-F(¥)]"

independence).

Hence. the pdf fj(v) of Y, is

X, from a

(by

A = TFONY iy pp L F(y) =nl1- FOP™ 1),



Theorem 2-5-2 :
Let X;..... X, be a random sample from a population with pdf f£(x) . Then the

joint pdf of order statistics Yi.Y; suchthat 1 < k<r <n. is

n! Ykt . Yyr-ik
(A'—ll(?‘—l—)’\")!(n—k]![F(}k)] [I_F(}'k)]

fe.y, )= x[=Fy )" f(3) f(y,) for y, <y,

0 other wise

And the pdf of order statistics Yy suchthat 1 <k <n. 1s

n! k-1 n—k <k<n
f(}’h.): (;\ l} )[F( k) [l F(‘k) ( k) fOI' l—k—

0 other wise

Example 2-5-2:
Let X;. . ...X, be arandom sample from U [0. 1]. Find the pdf of the kth order
statistic Y.
Solution :
Since the pdf of Xj is f(-\‘)= 1.0Sx<1l.thecdfisF(x)=x.0<x<=1.Using
Theorem the pdf of the Ath order statistic Y reduces to

n!

fk(‘l) (i\' 1)(” ") - [1_1‘]}T 0=y=1

which is a beta distribution witha=kandp=n-k+ 1.




Example 2-5-3 :

A string of 10 light bulbs is connected in series. which means that the entire string
will not light up if any one of the light bulbs fails . Assume that the lifetimes of the
bulbs. X, . . .. Xjo . are independent random variables that are exponentially
distributed with mean 2. Find the distribution of the life length of this string of light
bulbs.

Solution :
Note that the pdf of X;is f(x)=2e¢™*. 0 < x < =, and the cumulative distribution of

X; is F[x):IZe_Z‘ =l-*
0

Let Y represent the lifetime of this string of light bulbs. Then.
Y = l]lil](X] ..... XIO)-
Thus.

Fo(y)=1-(1-1+e2 )",
Hence, the density of Y 1s obtained by differentiating F;(y)with respect to y . that 1s.
£.(5)= 10(1-1+e> f (267 )=207” ., 0<y<x

i 0 otherwise.

Example 2-5-4 :
Let Y, <Y, <Y, <Y, be the order statistics of R.S of size n =4 from a distribution

having a pdf f(x) . f(x)=2x . O0<x<l.
a) Find the pdf of I .

b) Find the joint pdf of Y; - ¥5 . XY3.%X, .
¢)Find P(0.5< ), <1)



Solution :‘
Arl.Xz -A?3-X4 be a RS

f(xl)=f(x2)=f('x3)=f(x4)=f(x)=2x
Y., YL, and Y, € (X,.X,.X,.X,)

. - 4! 31y _ 4-3 '
‘-g(ys)—(3_1“4_3]![1’(3*;)] -F(: )™ £(ys)

=12[V2F-¥IT (2y,)=24y] [1-7] . 0<y;<1

~.glys)=24y3 [1-)5] L0<y; <l

b)
g3 1y v vy ) = 27 (0) () (05 f () = 4 (23 (20, (235)(2,)

=384 .1'.1 .1".2 .-1:-3 .1‘4 -

c)
~glw)=n[1=Fly )" f(»)

=4[1-vT 'y L 0<y <1

SLP05s<Y <1)=

’ 2 - -(05
j4[1—yf]3Y1 dy, =—2I—2[1—y1‘]3y1 dy, = —2M =0— _2_[1 (0.5)]
©5 05 4 05 4

{ZMHQ _ 2 00527
4 214 512



Example 2-5-5

Let Xy x5 X5 be a random sample from G(1.1)

Let U=Y, .V=Y,-Y, .Provethat U and V are indep.
Solution :

We find the joint pdfof Y, and ¥,

o X~G(1.1) 3}”(.\')=e"r x>0
- F(x)= Ie""du': -

0
Now.n=5 . k=2

f( V.V )
*7(2-1)(4-1-2)(5-4)
=5![1-e™] [e g ]e‘2~""e'y2 for0< y, <y, <o

Since we are with cont. distribution we use the Jacobian trans.
u=y, = yy=u=h'w,v) , v=y,—v, = y,=v+u=h;'(u,v)

-~ -
cu cv

Jo= :‘

pn} . ﬁ .

) / C’."‘%
- -
cu cu

R k
. — &

[1 g ] [e e k'-‘% e Ve

10‘
=1

g(uv)=r(n . nt )| J|=5[1—e™] [1 —e?“’]e‘z"e“‘“ .O0=#2r=o . O=v<=oo

coglu )=I- St[1—e™] [l—e"]e'”e_"'” dv =20e™* (l—e_" ) . O<wu<omo
0

gy )=T St [1-e™] [1-e]e>e™ du=6e(1—e") . 0<v<w
0

g(u)g(v) =(20e™ (1-e™)).(6e™(1-¢™)) =120 [1—e™] [1—e™]ee™
=5t[1-e™] [l-e™]e™e™ —g(u.v)

Thus . that U and V are indep. .



EXERCISES :

2-5-1-Let X;. . .. . X, be a random sample from U [0. 1]. Find the joint pdf of Y, and

Y5
2-5-2-Let X;. . . .. X, be a random sample from exponential distribution with a
mean of 6. Show that Y; =min (X;.X,5 . . . . X,) has an exponential

distribution with mean 6/n. Also, find the pdf of Y, =max (X.Xs. . . .. Xo).

2-5-3-Let X;. . . .. X, be a random sample from the uniform distribution
f(x) =1/2 .0 <x <2 . Find the probability density function for the range

R=(Xu—Xqu) .

2-5-4-Let X;. . ... X, be a random sample from a beta distribution with o = 2 and
B = 3. Find the joint pdf of Y; and Y, .

2-5-5-Let Xy. . . .. X, be a random sample from an exponential population with
parameter 6. Let Yy.. ... Y, be the ordered random variables .
(a) Show that the sampling distributions of Y, and Y, are given by
)
flx)= %e R .
0 other wise
2-5-6- LetX;.,.... X, be a random sample with f(x) = 3x7.0<x<1 . prove

that U=Y,/Y4 and V=Y, are indep.



2-7 Limiting Distribution
2-7-1 Convergence in Probability

In this section, we formalize a way of saying that a sequence of random
variables is getting "'close’ to another random variable. We will use this
concept throughout the lecture .

Definition 2-7-1 Let {X,} be a sequence of random variables and let X be a

random variable defined on a sample space. We say that X, converges in prob-
ability to X if foralle > 0

lim P[| X, — X|>¢€ =0,
n—00

or equivalently,
lim P[|X, - X|<¢=1.
n—o0

If so, we write

X, 5 X.

One way of showing convergence in probability is to use Chebyshev’s Theorem

CHEBYSHEV’S THEOREM :
Theorem 3-1-1: Let the random variable X have a mean p and standard deviation
. Then for K > 0. a constant.

P

Xn—;1|x:f\'0‘ }2 l_kil



Example 2-7-1 Let X denoted the mean of aR.S. of sizen from distribution

having the mean 1 and the variance &3 . Show that X. C.S in probability to
u .
Solution :

E(X)=E(X)=u
1 5

var(f):%var()( )=; oy

Oy . Jne
For any &£>0 let e=k—= = k=
Jn Ox

lim P{

n—so0

fn—;f‘f::a}

n—w

:limP{ f,.—,u|<Kﬁ } > lim 1—; =1 ( byChebyshev’s)

T e

Oy

‘. lim P}

n—x

E’n—,u|<s }zl = X —S5u




Example 2-7-2 Let Y,~b(n.p) .Show that Y% —=>5p .

Solution :
<& } =P{

.4
P{ 4—‘0

For any &>0.Let né=kynp(l-p) = k=

,,—np|<n£}

ne _ ne

Jmpl-p) | pli-p)

where var(Y, )=np(1- p)

{ Y/ <€} |Y—np|<n£} {|Y;—np|<k\/np(17—p)}

>1- : ( by Chebyshev’s theorem )
\/E £ ]
pll-p)
P{ Y""_p<£}21— : 5
pll-p)
Take the limit of two sides
limP{ Y%—p <5}2lim 1- 1 = | =1
n—x n—x ‘\/; & ]
p(l-p)
limP{ L, , ~P|<¢€ }=l

)
Hence . %L) p



Example 2-7-3 : Let Y, ~b(n.p) . Show that I—Y% —<2 51—p
Solution :

e A R R [ e S S I R A =Y
e |05 ) e {1 (5 p ) e {50 |

=P{ | Y, —np|<ne }
By last example we get :

-

]unP{ |1— " (l-p)|<€ }— li:nP{
Y, c.s
Hence . A—J'

Y b
%—p|<£ r=1

. lim P
72—

S+ cs 2
Example 2.7-4 : Show that : 1 > o ?
Solution :
(n—1)e
(n—l)s: > . — 0'2 - =1 —
Ve=0. ler - ky2(n—-1) = k :g=1—p
c” 2(m—1)
PﬂnS‘ —c?| < a} =P{n.5;‘ —(n (n_})g}
n—1 e fo
apply chebyshev's mnequality
52 —1)s 52 : 1
::'P{naz —(n—1)| = ("62_ }zp{"o_z —(n—-1)| <k 2(n—1)} z1—- e
__o*
J2(n—1)
2
lunP{ S - o? 43} Iim | 1-— 1 =1-0=1
e Un—1 " [ 1 (n—1)s
J2n—-1) o°




2-8 Limitine moment generating functions
Definition 2-8-1 Letther.v. Y, have the distribution function fy(v) and the mgf
M(t.n) . If there exists a distribution function f(y) with mgf M(t) such that

lim M(r,n) = M(t)
H—x
Then . Y, has a limiting distribution with distribution function f(y) .

- Useful remarks :
\\d'ﬂ
ax

1- lim[1+1 =e
n

n—=x
N

A

2- 11111( l—i] =e ™ .

n—x H

3- h.m 1+= +@[n}] =e* ,on)—0 asnos= .

| 1-——+— | =e on)—>0 asn—o=

Example 2-8-2 Let Y,~b(n.p) .Show that the limit of Y, as n—w»

becomes a passion .
Solution :

)£ b [1-p)epe T e = pt
:U -4 ]+£e" 'l" :{I—E(l—e')}“
n) n | | nm

].'I.‘Ill[ 1—£[l— e’) i| =1~

= n
Hence .

lim M, (z.n) ) =e1-)
H—»0

The limit of ¥, ~ b(n. p ) becomes a passion when n—»=
That 1s the r.v whichis b(n.p ) has a limiting passion distribution with mean A .



Z —n
Example. 2-8-3 Let Y:Fﬁ .where Z, ~ i, .Find the limitof ¥, as

n—= becomes a N(0.1) .
Solution :

Since Z, ~ /;,,, = E( )— n Val‘(:,,): 2n

wtenr=se e ol (58 n e[ 5
()] (= (5 )

Now . by Taylor's formula [ e’ =1+x+%x2+ ]

SN EATE IEANTEA R

Hence .

( > > ) > ( 2 2
Mr_(t.n)—{;l+g+%[g}+ ..... J-r i;]+ﬁr+%[\5t]+ ] ]

\

_ (1 _r11+§9("] Jz
L n n
. ,1 qp(n} T ‘%
lim My (t.n ) :lnn 1 —ti—+—= = e’ Len)—=0
n—wo n—x n n

The limit of ¥, becomes a standard normal when n—es



EXERCISES :

1 Let Z,~b(n.p) .Find the limiting distribution of Yn=ﬂ
np(1-p)
Z —n

2 Let Z,~P(n) .Find the limiting distribution of ¥ = %=
0
3 Let X denoted the mean ofa R.S. ofsizen from a passion distribution
with mean £ =1 . Show that the mgf of
ev: -1 J }

Y,,=M=Jn_(f,.—1] is given by Elp{ ~tn +n
a

2-9 LARGE SAMPLE APPROXIMATIONS

Theorem 2-9-1 Let X, X5, ... be a sequence of independent and identically
distributed random variables with z = E(X;) and 0% = Var(X;) < o for
i=1,2,...,00. Then

REH;P(‘gn —pul=¢€)=0

for every . Here S, denotes X1tattXs

Proof: we have

Q

%!

E(S,) =n and Var(

n)=_-



By Chebychev’s inequality

- — Var(S,
P([Ba — B(Sa) 2 ©) < L2E)
for £ > 0. Hence
P([S >¢€) < o
(| n /‘I'I — g — n€2'
Taking the limit as n tends to infinity, we get
o2

lim P(|Sp, — p| > ¢) < lim

n— oo n€2

which yields
lim P(|Sp —p|>€)=0

n—oo

and the proof of the theorem is now complete.

2-10 Central Limit Theorem

Theorem 2-10-1 Let X, X5, . . .. X, be hldepslldellt and identically distributed
random variables with E(X; ) = p and Var(X; ) = ¢ < . Define

_ Jn (A_’—/z)

c

 §

The central limit theorem implies that probability statements about Y, can be
approximated by corresponding probabilities for the standard normal random
variable if » is large. ( Usually. a value of » greater than 30 will ensure that the
distribution of Y, can be closely approximated by a normal distribution ) .

As a matter of convenience, the conclusion of the central limit theorem is often
replaced with the simpler statement that Y is asyvmptotically normally distributed
with mean u and variance ¢°/n.

The central limit theorem can be applied to a random sample X3, X5, . .., X}, from
any distribution as long as E(X; ) = i and Var(X; ) = o” are both finite and the sample
size 1s large.

We will give some examples of the use of the central limit theorem but will defer
the proof until the next section (coverage of which is optional). The proof is not
needed for an understanding of the applications of the central limit theorem that
appear in this text .



Example 2-10-1 Let X~ N(6.1) and Y~ N(7.1).Find P(X>Y) .
Solution :

Since PX>Y) =P(X-Y>0)=1- P(X-Y<0)

L X-Y~N(6-7.1+1)=> X-Y ~N(-1.2)

. iy DXV <0 1. (X-Y)—(—l){O-(-l))
L PX>Y)=P(X-Y>0)=1-P(X-Y=0) =1 P( 7 =7

= l-P{iZE%} = 1—N{%J =0.24

Example 2.10-2 Let X denoted the mean ofa R.S. ofsizen from N(.100).

Find n . such that P(u-5 < X < o +5)=0.954. :N(2) =0.977

Solution :

P(,u—5<f <U+S )=0.977

((u=5)=pu)n Jf-/u)ﬁ _((u+5)—p)Jn
10 10 10

_s5Jn 5n

<Z< =0.954
10 0 }

—/n Vn

<Z <—— |=0.954
2 2

—/n
2

—P ]=0.954

} =0.954

—[I—P[ Z <% J]=0.954

— o X 120954 = n —=0.977
2 2
2



Example 2-10-3 Let X denoted the mean of a R.S. ofsize 75 from distribution

having the pdf fix)=1.0<x<1.Find P(0.45 < X < 0.55 ).
Solution :

P(0.45< X < 0.55)
_ P[ (0.45-uWn _(X-puln _(055-u)¥n

Ox Ox Ox
1 1 1 1
:>;1:E(.T):I.rf(.r)dr :jxdr 1 E(x? ):J‘wr2 fx)dx :_[r dx =2
0 0 2 0 0 3
4

11
=l =E(x)-(E(x)) =————=—Z=—
1 = Ex*)- (E(x)) FRETIT

=75 = Jn =75 =53

= P(0.45< X < 0.55) =P{

(0.45-0.5)543 ((E—o.s).s\/? . (0.55-0.5)5v3
| 1/12 1/12 1/12
=P(-15<Z<15)=P(Z<15)-P(Z<-15)
=P(Z<15)-(1-P(Z<1.5))=0.954

= 2P(Z<1.5)-1=0.866

Example 2-10-3 et X;, X, . ... X, be independent and identically R.S from b(1.p)

Let Y=X;+X)+...+X, .Byusing CLT show that

\/;(‘Y-/UX)
Oy

~ N(0.1)

Solution :
Since Y=X;+Xp+...+X,
EY)=E(X;+Xp+...+ X, )=nEX)=n(p)=np
var(Y) =var( X;+ Xp+. ..+ X, )=nvar(x) =n ( p(1-p) ) = np(1-p)
By CLT we get
Y—np

\/;(f_p)" or —/—
Ji-p)p vol) np(1-p) v{ol)




Example 2104 LetY = X; + X5 + ... 4+ X5 be the sum of a random
sample of size 15 from the distribution whose density function is

%-ﬁ if - l<z<l1
f(x) =
0 otherwise.

What is the approximate value of P(—0.3 < Y < 1.5) when one uses the
central limit theorem?

Answer: First, we find the mean p and variance o2 for the density function
f(x). The mean for this distribution is given by

1
3
,u=/ 3 dx
12

3 [z* !
ZE[T]_I

= 0.

Hence the variance of this distribution is given by
Var(X) = E(X?) - [E(X))?

1
=/ §;c4d-.r.
12
511
5 —1

C Ll N W



P(-03<Y <15)=P(-03-0<Y —-0<15-0)

=P( 03 _ Y-0 _ 15 )
V15(0.6) ~ 1/15(0.6) ~ /15(0.6)
= P(-0.10 < Z < 0.50)

= P(Z < 0.50) + P(Z < 0.10) — 1

= 0.6915 + 0.5398 — 1

— 0.2313.

Example 2-10-5 Let X, X5,..., X, be a random sample of size n = 25 from
a population that has a mean p = 71.43 and variance o2 = 56.25. Let X be

the sample mean. What is the probability that the sample mean is between
68.91 and 71.977

Answer: The mean of X is given by E (X) = 71.43. The variance of X is

given by

2
Varng—=%=2.25.

n
In order to find the probability that the sample mean is between 68.91 and

71.97, we need the distribution of the population. However, the population

distribution is unknown. Therefore, we use the central limit theorem. The

central limit theorem says that XL_“ ~ N (0, 1) as n approaches infinity.
/n

m

Therefore
P (68.91 <X < 71.97)

_ (68.91 —7143 X —T71.43 < 71.97 — 71.43)

<
V225  ~  J235 ~ 235
= P(—0.68 < W < 0.36)

=P (W <0.36) + P (W < 0.68) — 1
= 0.5941.




EXERCISES :

1-

2-

3-

-Compute an approximate probability that the mean of R.S of size 15 from a

distribution having pdf f(x)=3x* .0<x<1 _isbetween 3/5 and 4/5 .

If ¥~ b(100.0.5). approximate P(Y=50).[ Note P(Y=50)
= P(49.5<Y<50.5) ] .

Let X denoted the mean of a R.S. of size n=100 from ;{.ig, . Compute
an approximate value of P(49 < x<51) .

Let X denoted the mean of a R.S. of size n=128 from G(2.4) .
Compute an approximate value of P(7<X<9) .

Let X;. X5, .. .. Xpsand Y. Yo. . . .. Y55 be independent and identically

R.S from N(0.16) and N( 1.9) respectively . Let X . ¥ be the mean of
them resp. . Find P( X >Y ) .



2-12 Theorems on limiting distribution

Theorem 2-12-1 If x, —<£ 5¢ , then X% —£3 5 .

Proof :

lim {|X, —c|2¢ |= lim Xo—cl, e | | [Zaze]s e | iy £—1|zi
o SR Tl TR e ey TR e T e
Forany & >0 let & =ﬁ

L b a

",@,E{I‘Y"_Clzg}_,.h_l,jii - ll|z¢ )}

)(n—c|25}=0

Since X, —%*>c¢ then lilll{

Thus .
hm{ X -1 25'}:0
n—x c.
4
Hence .

.1’/ cs o4
L ——1 .

Theorem 2-12-2 If X, —<>—>c¢ _ then X, —<5 5 Je ic>0 |

Proof :

i {3, [z} = Jim | (VT O+ )| 2 = i {| (VT2 @[ (U4 )| =

n—»x

= i | (VX, e )| WX, +Ve )=¢ ="132{|{m_\,;-,| S
= i {| (% 6] =

n—sw>

£
Forany £ =0 let &8 =—+
Y Je

< lim {|X, —c|ze 2 lm || VX, — Ve |z &

"—

Since X, —=—>c then Lm { | X, —c|z¢ }=0

Thus .
lim | | /X, - Ve |z & =0
Hence .

E—MS JF =0



Theorem 2123 If X, —=—>X  then X,-XY —5550
Proof :
]jm{|X,—r|2£}:,}iﬂ{|[X,—X]—0|2£}

Since X, —<*>X then EHX” ~X|z&}=0

Thus .
lim {|(X, - X )-0|z & =0

H—*xX

Hence .
X - X —5550

H

Theorem 2124 If X, —=>X and ¥, —=>>Y , then
X +Y —S 5X+Y |

Proof :
lim { X, +7, - (X +7)[22¢ | = lmm {|X, +7, - X-¥|22¢ | = lim {|X, - X + ¥, -¥|>2¢ |

< H111{|X,—X|+|I’_-Y|225}= El:{

=X

X,-X| ze}+ lIm Y,-Y|2¢)
Since X, —<%* > X then ?}t_&g“Xﬂ ~X|ze}=0

Also . Since ¥, —%% Y then ,!J_l;ll{ 1’;—1"|:_>£}:0

Forany & >0 let & =2¢
Thus .
lim { |X, +¥, - (X +Y)|z& | =0

n—®
Hence .

X, +Y, —< 5x+Y

Theorem 2124 1f X, —<> 5> X and if kis constant , then X, k—5 > Xk .
Theorem 2125 If X L}O,then X550 .

Theorem 2-12-6 If X, —<° 5a and Y, —% 5b - a.bare constants . then
X, Y, —<5ab .

- cs - cs
Theorem 2-12.7 If X, ———> @ and ¥, ———>b :a.b#0 are constants .

-

then Xy Y, — %



Y ‘ Y ,
Example 2121 If % — 5> pand 1- % A)l—}’,then

(415t

Solution :
By theorem ( 2-12-6 ) the proof is complete .

Y Y
Example 2-122 If % L)P and 1— % L’l—}),then

A

Solution :
By theorem ( 2-12-6 | and theorem ( 2-12-7 ) the proof is complete .



CHAPTER 3

Point Estimation

INTRODUCTION

The field of statistical inference consists of those methods used to make decisions or
to draw conclusions about a population. These methods utilize the information
contained in a sample from the population in drawing conclusions. This chapter
begins our study of the statistical methods used for inference and decision making.
Statistical inference may be divided into two major areas: parameter estimation
and hypothesis testing . As an example of a parameter estimation problem. suppose
that a structural engineer is analyzing the tensile strength of a component used in an
automobile chassis. Since variability in tensile strength is naturally present between
the individual components because of differences in raw material batches.
manufacturing processes, and measurement procedures (for example). the engineer
1s Interested in estimating the mean tensile strength of the components. In practice,
the engineer will use sample data to compute a number that is in some sense a
reasonable value (or guess) of the true mean. This number is called a point estimate
.We will see that it is possible to establish the precision of the estimate.

Now consider a situation in which two different reaction temperatures can be used in
a chemical process. say and . The engineer conjectures that results in higher yields
than does . Statistical hypothesis testing is a framework for solving problems of this
type. In this case. the hypothesis would be that the mean yield using temperature is
greater than the mean yield using temperature Notice that there is no emphasis on
estimating yields: instead. the focus is on drawing conclusions about a stated
hypothesis .

Suppose that we want to obtain a point estimate of a population parameter . We
know that before the data is collected. the observations are considered to be random
variables . say Therefore. any function of the observation. or any statistic, is also a
random variable . For example. the sample mean and the sample variance are
statistics and they are also random variables.

Since a statistic i1s a random variable, it has a probability distribution. We call the
probability distribution of a statistic a sampling distribution . The notion of a
sampling distribution is very important and will be discussed and illustrated later in
the chapter.

When discussing inference problems, it is convenient to have a general symbol to
represent the parameter of interest. We will use the Greek symbol (theta) to
represent the parameter. The objective of point estimation is to select a single
number, based on sample data. that is the most plausible value for . A numerical
value of a sample statistic will be used as the point estimate.

In general. 1f X 1s a random variable with probability distribution . characterized by
the unknown parameter . and if is a random sample of size » from X the statistic is
called a point estimator of . Note that is a random variable because it is a function



of random variables. After the sample has been selected. takes on a particular
numerical value called the point estimate of .

Definition 3-1 Let X ~ f(z;0) and Xy, X»,..., X,, be a random sample
from the population X. Any statistic that can be used to guess the parameter
f is called an estimator of #. The numerical value of this statistic is called
an estimate of . The estimator of the parameter # is denoted by g,

One of the basic problems is how to find an estimator of population
parameter §. There are several methods for finding an estimator of . Some
of these methods are:

(1) Moment Method

(2) Maximum Likelihood Method

(3) Bayes Method

(4) Least Squares Method

(5) Minimum Chi-Squares Method

(6) Minimum Distance Method






















































