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The Basic principle of counting

The Fundamental Counting Principle is a way of determining the number of possible ways
that we can perform two or more operations together. If operations were being
performed independent of each other instead of together, then we would NOT use the
Fundamental Counting Principle.

The Basic or Fundamental Counting Principle can be used to find the number of

possibilities when given several groups. How? By Multiply the number of elements in
each group together.

Def: Multiplication principle (Fundamental Principle of Counting):

Suppose an event E can occur in m different ways and associated with each way of
occurring of E, another event F can occur in n different ways, then the total number of
occurrence of the two events in the given orderism x n .

Def: Addition principle
If an event E can occur in m ways and another event F can occur in n ways, and suppose
that both can not occur together, then E or F can occur in m + n ways.



Example: Ice cream comes in either a cup or a cone and the flavors
available are chocolate, strawberry and vanilla.
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this diagram is called a tree diagram and
shows all of the possibilities. The tree
diagram could also be arranged in
another way. Both diagrams_have 6 total
outcomes.

To determine the total number of outcomes,
multiply the number of possibilities of the first
characteristic times the number of possibilities
of the second characteristic. In the example
above, multiply 3 times 2 to get 6 possible
outcomes.



Example: How many different license plates are there altogether?
Look at what's used to make a plate:

LETTER LETTER LETTER NUMBER NUMBER NUMBER

For each of the letters we have 26 choices. For each of the numbers we have 10 choices.

The number of The number of The number of The number of The number of The number of
ways to pick the  ways to pick the  ways to pickthe  ways to pick the  ways to pick the  ways to pick the
first letter second letter third letter first number second number third number
26 26 26 10 10 10

The Fundamental Counting Principle says that:
The total number of ways to fill the six spaces on a license plate is
26 x26x26x10x10x 10
which equals 17,576,000



Example 3: In a class, there are 27 boys and 14 girls. The teacher wants to select 1
boy and 1 girl to represent the class for a function. In how many ways can the
teacher make this selection?

Solution:

The teacher is to perform two operations:
1)Selecting a boy from among the 27 boys and
2) Selecting a girl from among 14 girls.

The first of these can be done in 27 ways and second can be performed in 14 ways.
So, By the fundamental principle of counting, the required number of ways is:
27 x 14 = 378

Example 4:

1) How many numbers are there between 99 and 1000 having 7 in the units
place?

2) How many numbers are there between 99 and 1000 having at least one of their
digits 7?



Solution:

1) First note that all these numbers have three digits. 7 is in the unit’s place.
The middle digit can be any one of the 10 digits from 0 to 9. The digit in
hundred’s place can be any one of the 9 digits from 1 to 9. Therefore, by the
fundamental principle of counting, there are 10 x 9 = 90 numbers between 99
and 1000 having 7 in the unit’s place.

1-9 0-9 7

hundred’s place The middle’s place the unit’s place

2) Total number of 3 digit numbers having at least one of their digits as 7 =
(Total numbers of three digit numbers) — (Total number of 3 digit numbers in
which 7 does not appear at all). = (9 x 10 x 10) — (8 x 9 x 9) =900 — 648 = 252.

1-9 0-9 0-9




NOTE:

If you have a problem where you can
repeat objects, then you must use the

Fundamental Counting Principle; you
cannot us Permutations or Combinations.

See you next Lecture



LECTURE 2#

Ex.1: How many numbers consist of two digits can be
create from {1,2,3,4,5} if:

1) We can repeat the number (with repetition).

2) We can not repeat the number(without repetition)

Sol:
1) The number of ways are 5 X 5=25.
2) The number of ways are 5 X 4=20.

Ex.2: How many ways that possible to set 5
persons on 5 chairs?

Sol: 51=5X4X3X2X1=120.



Permutations

A permutation is an arrangement of objects in a
definite order.

1)Permutation of n different objects: (without rep.)

-The number of permutations of n objects taken all at a
time, denoted by the symbol P, is given by:

P, =n!
-The number of permutations of n objects taken r at a
time, where 0 <r < n, denoted by P* is given by:

pn _ n!
T (n—-1)!




Permutations

EX.3 :As we saw in EX.1 part 2 and this is for case
without repetition.

EX.4 : The number of possible 3 per. of 5 objects is:
pS = —> =60
(5—3)!
2) When repetition of objects is allowed:

-The number of permutations of n things taken all at a
time, when repetition of objects is allowed is n™

- The number of permutations of n objects, taken r at a
time, when repetition of objects is allowed, is n”



Permutations

EX.5 : box containing 8 different balls. You have drawn 3 balls one
after the other. Find the number of ways to draw the three balls if the
drawing is:

1- without repetition
2 - With repetition
Sol: 1) Number of ways to draw the first ball= 8

Number of ways to draw the second ball =7

Number of ways to draw the third ball =6
So, the total number of ways to draw the three balls =8 X 7 X6=336
2) Number of ways to draw the first ball=8 |
Number of ways to draw the second ball=8 = the total number =
Number of ways to draw the third ball=8 | 8X8X8=512




Permutations

EX.6 : If we have the numbers 1, 2,3,4,5,6,7 .

1- How many 3-digit number can be formed from the previous
numbers without repeating?

2- How many numbers consisting of 3 odd numbers can be formed
from the previous numbers without repeating?

3- How many 3-digit number starting with 4 can be formed from the
previous numbers without repeating?

4- How many 3-digit number greater than 300 can be formed from
the previous numbers without repeating?



Permutations
Sol : I I

_pn _ n! _ - pn . nlb i i
1- P = oy 7 X6X5=210 ,Note: P"* = (n_r)!—n(n 1)...(n-r+1)
2- No. of ways=4 X6 X5=120
3- No. of ways =1 X 6 X 5=30 (A&lull 3 jaladll 8 JUall i)

4- No. of ways = 5X 6 X 5= 150 (A&ludl & yoalaall & JUall b )




Permutations

Homework:
1- If P*% = 1320, findr
2-I1f P8 = 6720, find (r+1)!

3-1F P = 14 X PP find n

4- In how many ways can 5 children be arranged in a line such that
(1) two particular children of them are always together

(2) two particular children of them are never together.

9-How many ways can five male and five female students sit in a row
of ten seats so that the students are side by side and the female
students side by side



See you next Lecture




LECTURE 3#
Combinations

A combination is a selection of some or all of a number of
different objects where the order of selection is immaterial. The
number of selections of r objects from the given n objects is
denoted by C*, and is given by:

on n! B (n)
" oritn—=1r)! \r
Notes:

1-Use permutations if a problem calls for the number of
arrangements of objects and different orders are to be counted.

2- Use combinations if a problem calls for the number of ways of
selecting objects and the order of selection is not to be counted.



Combinations

Ex.1: In how many ways a committee consisting of 2 persons, can
be chosen from 5 persons ?

.5 _ 5 5y
Sol: €3 = 512 = (5) = 10.
Note:

n! phl
1- C;} - ri(n—-r)! - T!
2- Gyt = Cy—y

3-1f C'=C' »r=sorr+s=n
4- Pt =y 4+ CP
5-nCrl=m-r+1)C",



Combinations

EX.3 : How many different two committees are possible made
from a group of 12 people such that each committee consistent
of 3 persons and there is no common person between these two

committees?
Sol: The possible ways for selecting the first committee is:

C3% = 220 ways
The possible ways for selecting the second committee is:
C; = 84 ways
So, the total required ways are: 220 X 84=18480

EX.3: Inhow many ways a committee consisting of 3 men and 2
women, can be chosen from 7 men and 5 women? HW (150)



Combinations

EX.4: If CT = CI, find CJ* ?
Sol.: By Note (3), C' = €} ——— n=5+3=8.
Therefore, C5 = 28.

EX.5:1f C12, = C)%. ., , find r ? You try to find r

Note: we denote by C;,, the number of possible
combinations with repetition of r objects from n,

= CnHr-1 = (n+r 1) (g:rn'?"

where, Cy, , =



Combinations

EX.6: the number of possible combination with
repetition of 3 objects from 5 is:

C§,3 = 35.
EX.7: How much can you distribute 12 different
books to three students, so that the first student

takes 5 books, the second student takes 4 books,
and the third student takes 3 books

Sol: C2% X C] % C3=792 X 35X 1=27720

Lo

Js¥) S &dl Qdall lsal) (§ ke dae



Homework

1- How many ways can committees be formed from among 18

students, so that the first committee consists of 3 students, the
second committee 4 students, and the third committee consists
of 6 students.

2- All the letters of the word ‘EAMCOT’ are arranged in different

possible ways. What is the number of such arrangements in
which no two vowels are adjacent to each other ?

3-In an examination there are three multiple choice questions
and each question has 4 choices. What is the number of ways in
which a student can fail to get all answer correct?



See you next Lecture




LECTURE 4#
A Review of Set Notation

- Let S denote the set of all elements under consideration: that is, S Is
the universal set.

- For any two sets A and B, we will say that A is a subset of B, or A
IS contained in B (denoted A < B), if every point in Aiis also in B.

- The null, or empty, set, denoted by @, is the set consisting of no
points. Thus, @ Is a subset of every set.

- The union of A and B, denoted by AU B, is the set of all points in A
or B or both. That is, the union of A and B contains all points that
are in at least one of the sets.

S

Venn diagram for Venn diagram for
AUB A ACB
B




A Review of Set Notation

- The intersection of A and B, denoted by A N B or by AB, is the set of all
points in both A and B.

- If Alis asubset of S, then the
complement of A, denoted by 4, is the set

of points that are in S but not in A.
- Two sets, A and B, are said to be
disjoint, or mutually exclusive, if AN B = @.

Ex. 1: let S denote the set of all possible
numerical observations for a single toss of a die.

Venn diagram for AB

S

Venn diagram for A

ThatisS={1, 2, 3,4,5,6}. LetA={1, 2}, 5
B={1, 3} and C={2, 4, 6}.

ThenAuB={1,2, 3}, AnhB={1}, and

A={3, 4,5, 6}. Also, note that B and C are ;
mutually exclusive, whereas A and C are not.




A Review of Set Notation

Venn diagram for
mutually exclusive

sets Aand B
S

- The distributive laws are given by
An(BUC)=(AnB)U(ANnC),
AUBNC)=(AUB)Nn(AUQCQ),

- DeMorgan’s laws:

(ANB)=AUB and (AUB)=ANB.




Probability

Def. 1:An experiment is the process by which an
observation is made.

Examples of experiments include coin and die
tossing.

Def 2: A simple event is an event that cannot be
decomposed. Each simple event corresponds to
one and only one sample point. The letter E with
a subscript will be used to denote a simple event
or the corresponding sample point.



Probability

Some events associated with a single toss of a balanced die are these:

- Event A, which can be decomposed into three

other events, is called a compound event.

- theevents E1, E2, E3, E4, E5, and E6 cannot
be decomposed and are called simple
events.

- Aneventis simple if it consists of just a
single outcome, and is compound

A: Observe an odd number.

B: Observe a number less than 5.
C: Observe a2 or a 3.

E,: Observe a 1.

E>: Observe a 2.

E5: Observe a 3.

E,: Observe a 4.

otherwise
Es: Observe a 5. - Because sets are collections of points, we
Es: Observe a 6. associate a distinct point, called a sample point

Venn diagram for the
sample space
associated with

the die-tossing
experiment




Probability

 The sample space associated with an experiment is the set
consisting of all possible sample points (outcomes). A sample space
will be denoted by S.

EX.1: If | toss a coin three times and record the result, the sample
space is
S ={HHH,HHT,HTH,HTT,THH,THT,T TH,TTT}
* An event is a subset of S. We can specify an event by listing all the
outcomes that make it up.

EX. 2: In the above example, let A be the event ‘more heads than tails’
and B the event ‘heads on last throw’. Then

A = {HHH,HHT,HTH,THH}, B = {HHH,HTH,THH,TTH}.

No.A

No.S’

In our example, both A and B have probability P(A) =P(B)=§ = 0.5.

So, if all outcomes are equally likely, we have P(A) =



Probability

* InEx. 2, Aand B are compound events, while the event ‘heads on every
throw’ is simple (as a set, it is {HHH}).

 |f A={a}is asimple event, then the probability of A is just the probability
of the outcome a, and we usually write P(a), which is simpler to write than

P({a}).
 Note that ais an outcome, while {a} is an event, indeed a simple event.
We can build new events from old ones:

e AU B (read ‘A union B’) consists of all the outcomes in A or in B (or both!)
e AMB (read ‘A intersection B’) consists of all the outcomes 1n both A and B;
e A\ B (read ‘A minus B’) consists of all the outcomes in A but not in B;

e A’ (read ‘A complement’) consists of all outcomes not in A (that is, .S \A);

e () (read ‘empty set’) for the event which doesn’t contain any outcomes.



Probability

Remember that an event i1s a subset of the sample space .. A number of events,
say A1,Az,. .., are called mutually disjoint or pairwise disjoint if A; A ; = 0 for
any two of the events A; and A js that i1s, no two of the events overlap.

According to Kolmogorov’s axioms, each event A has a probability P(A),
which i1s a number. These numbers satisty three axioms:

According to Kolmogorov’s axioms, each event A has a probability P(A),
which is a number. These numbers satisty three axioms:

Axiom 1: For any event A, we have P(A) > 0.

Axiom 2: P(S5) = 1.

Axiom 3: If the events Aj,A,, ... are pairwise disjoint, then
P(AfUAU---) =P(A|)+P(A) +---

Next Lecture: You can prove simple properties of probability from
the axioms.



See you next Lecture




LECTURE 5#
Proving things from the axioms

Proposition 1.1 If the event A contains only a finite number of outcomes, say
A ={ay,a,...,a,}, then

P(A) =P(a))+P(az) +---+ P(ay).

To prove the proposition, we define a new event A; containing only the out-
come a;, that is, A; = {a;}, fori=1,...,n. Then Ay,...,A, are mutually disjoint

(each contains only one element which is in none of the others), and A{ UA,; U
---UA, = A; so by Axiom 3a, we have

P(A)=P(a1)+Plaz)+ -+ P(ay).

Corollary 1.2 [f the sample space S is finite, say S = {ay,...,a,}, then
Play)+P(ay)+---+Pla,) = 1.

For P(a;)+ P(ay) +---+ P(a,) = P(S) by Proposition 1.1, and P(S) = 1 by
Axiom 2.



Note: Notice that once we have proved something, we can use it on the
same basis as an axiom to prove further facts.

Proposition 1.3 P(A") = 1 — P(A) for any event A.

LetA; =A and A, = A’ (the complement of A). Then Aj NA; = 0 (that is, the
events A| and A, are disjoint), and A UA; = S. So

P(A;)+P(Ay) = P(AjUA) (Axiom 3)
= P(S)
= 1 (Axiom 2).

So P(A) = P(A1) = 1 — P(A»).

Corollary 1.4 P(A) < 1 for any event A.

For 1 — P(A) = P(A") by Proposition 1.3, and P(A") > 0 by Axiom 1; so 1 —
P(A) > 0, from which we get P(A) < 1.

Remember that if you ever calculate a probability to be less than 0 or
more than 1, you have made a mistake!



Corollary 1.5 P(0) =0.

For 0 = $’, so P(0) = 1 — P(S) by Proposition 1.3; and P(S§) = 1 by Axiom 2,
so P(0) =0.

Proposition 1.6 [fA C B, then P(A) < P(B).

This time, take A = A, A» = B\ A. Again we have A; N A = 0 (since the
elements of B\ A are, by definition, not in A), and A UA2 = B. So by Axiom 3,

P(A;)+ P(A2) =P(A1UA2) = P(B).
In other words, P(A) +P(B\A) = P(B). Now P(B\ A) > 0 by Axiom 1; so
P(A) < P(B),

as we had to show.



Proposition 1.7
P(AUB)=P(A)+P(B)—P(ANB).

We now prove this from the axioms, using the Venn diagram as a guide. We
see that A U B 1s made up of three parts, namely

A1 =ANB, AgZA\B} A3:B\A.
AUB=A|UA> UA;3

AjUA>, =A ‘
Ai1UA3 = B

The sets A;,A>, A3z are mutually disjoint. (We have three pairs of sets to check.
Now A; NA; = 0, since all elements of A| belong to B but no elements of A; do.




So, by Axiom 3, we have
P(A) = P(A;)+P(A2),
P(B) = P(A1)+P(A3),
P(AUB) = P(A;)+P(Ay)+P(A3).
From this we obtain
P(A)+P(B)—P(ANB) = (P(A1)+P(A2))+(P(A1)+P(A3)) — P(A1)
= P(A1) +P(A2) + P(A3)
= P(AUB)

as required.

Proposition 1.8 For any three events A, B,C, we have

P(AUBUC) = P(A)+P(B)+P(C)—P(ANB)— P(ANC) — P(BNC)+P(ANBNC).



Independence

Def: Two events A and B are said to be independent if:

P(ANB)=P(A)-P(B).

Example: If we toss a coin more than once, or roll a die more
than once, then you may assume that different tosses or rolls are
independent.

More precisely, if we roll a fair six-sided die twice, then the
probability of getting 4 on the first throw and 5 on the second is
1/36, since we assume that all 36 combinations of the two
throws are equally likely. But (1/36) = (1/6):(1/6), and the
separate probabilities of getting 4 on the first throw and of
getting 5 on the second are both equal to 1/6. So the two events
are independent.



Independence

* Note: In general, it is always OK to assume that the outcomes
of different tosses of a coin, or different throws of a die, are
independent,

 Example: | have two red pens, one green pen, and one blue
pen. | choose two pens without replacement. Let A be the
event that | choose exactly one red pen, and B the event that |
choose exactly one green pen. Is A and B are independent?

Sol: If the pens are called R1,R2,G,B, then:
S ={R1R2,R1G,R1B,R2G,R2B,GB},

A = {R1G,R1B,R2G,R2B},

B ={R1G,R2G,GB}

We have P(A)=4/6=2/3,P(B)=3/6=1/2, P(AnB)=2/6=1/3 =
P(A)P(B), so A and B are independent.



Note: before you say ‘that’s obvious’, suppose that |
have also a purple pen, and | do the same experiment.
This time, if you write down the sample space and the

two events and do the calculations, you will find that
P(A) =6/10=3/5, P(B) =4/10 = 2/5,

P(A N B) =2/10 = 1/5 #P(A)P(B).

That means, adding one more pen has made the
events hon-independent.

H.W. Consider the experiment where we toss a fair
coin three times and note the results. Let A be t

event ‘there are more
event ‘the results of t
same’. Are A and B inde

neads than tails’, and B t
ne first two tosses are t

nendent?

ne
ne

ne



See you next Lecture




LECTURE 6#
Properties of independence

Proposition 1.11 Ler A;,... A, be mutually independent. Then

P(A;1NAxN---NA,) = P(A})-P(Ay)---P(A,).

Proposition 1.12 [f A and B are independent, then A and B’ are independent.

We are given that P(ANB) = P(A) - P(B), and asked to prove that P(ANB') =
P(A)-P(B).

From Corollary 4, we know that P(B") = 1 — P(B). Also, the events AN B and
AN B are disjoint (since no outcome can be both in B and B’), and their union

is A (since every event in A is either in B or in B'); so by Axiom 3, we have that
P(A) =P(ANB)+P(ANB'). Thus,

P(ANB') = P(A)—P(ANB)
= P(A)—P(A)-P(B)
(since A and B are independent)
P(A)(1 - P(B))
P(A)-P(B'),

which is what we were required to prove.



Independence

Corollary 1.13 If A and B are independent, so are A" and B'.

Apply the Proposition twice, first to A and B (to show that A and B’ are inde-
pendent). and then to B’ and A (to show that B and A are indenendent).

Proposition 1.14 Let events A, B, C be mutually independent. Then A and B(\C
are independent, and A and BUC are independent.

Example :The electrical apparatus in the diagram works so long
as current can flow from left to right. The three components are
independent. The probability that component A works is 0.8; the
probability that component B works is 0.9; and the probability
that component C works is 0.75. Find the probability that the
apparatus works.



Independence

Sol: At risk of some confusion, we use the letters A, B and C for the events
‘component A works’, ‘component B works’, and ‘component C works’,
respectively. Now the apparatus will work if either A and B are working, or C
is working (or possibly both). Thus the event we are interested in is (ANB)UC.

Now
P((ANB)UC)) = P(ANB)+P(C)—P(ANBNC)
(by Inclusion—Exclusion)
= P(A)-P(B)+P(C)—P(A)-P(B)-P(C)
(by mutual independence)
(0.8)-(0.9)+(0.75) — (0.8) - (0.9) - (0.75)

0.93.

4@7



'y

Conditional probability

The conditional probability of an event A, given that an event B has occurred,
is equal to

P(AN B)
P(B)
provided P(B) = 0. [The symbol P(A|B) is read “probability of A given B.”|

P(A[B) =

Ex: Suppose that a balanced die is tossed once. Find the probability of a 1,
given that an odd number was obtained

Solution Define these events:

A: Observe a 1.
B: Observe an odd number.

We seek the probability of A given that the event B has occurred. The event A N B
requires the observance of both a 1 and an odd number. In this instance, A C B,

so ANB = Aand P(AN B) = P(A) = 1/6. Also, P(B) = 1/2 and, using
Definition 2.9,

T P(A|B) = - -




Conditional probability

Note :There is a connection between conditional probability and

independence:

Proposition 2.1 Let A and B be events with P(B) # 0. Then A and B are indepen-
dent if and only if P(A | B) = P(A).

Proof The words ‘if and only if” tell us that we have two jobs to do: we have to
show that if A and B are independent, then P(A | B) = P(A); and that if P(A | B) =
P(A), then A and B are independent.
So first suppose that A and B are independent. Remember that this means that
P(ANB)=P(A)-P(B). Then
P(ANB) P(A)-P(B)
PAIB) =55 = — b =P,

that is, P(A | B) = P(A), as we had to prove.
Now suppose that P(A | B) = P(A). In other words,

P(ANB)
P(B)
using the definition of conditional probability. Now clearing fractions gives

P(ANB) = P(A)-P(B),

= P(4),

which is just what the statement ‘A and B are independent’ means.



Ex: Consider the following events in the toss of a single
die:
A: Observe an odd number.

B: Observe an even number.
C: Observe a1 or 2.

a) Are A and B independent events?
b) Are A and C independent events?
Sol:

a ) To decide whether A and B are independent, we must see whether they
satisfy the conditions of Proposition 2.1 . In this example, P(A) = 1/2, P(B) =
1/2, and P(C) = 1/3. Because A n B =@, P(A|B) =0, and it is clear that P(A|B)
#P(A). Events A and B are dependent events.

b JAre A and C independent? Note that P(A|C) = 1/2 and, as before, P(A) =
1/2. Therefore, P(A|C) = P(A), and A and C are independent



H.W: Three brands of coffee, X, Y, and Z, are to be ranked
according to taste by a judge. Define the following events:

A: Brand X is preferredto Y .

B: Brand X is ranked best.

C: Brand X is ranked second best.
D: Brand X is ranked third best.

If the judge actually has no taste preference and
randomly assigns ranks to the brands, is event A
independent of events B, C, and D?



See you next Lecture




LECTURE 7#

Example. The following diagram shows two events A and B in
the sample space S. Are the events A and B independent?

Answer: There are 10 black dots in S and
event A contains 4 of these dots So the

probability of A, is P(A) =—. Similarly,

event B contains 5 black dots. Hence P(B)

= 1—50. The conditional probability of A

given B is
P(ANB) 2
P(4/B) = {P(B] ' = 5

This shows that P(A|B) = P(A). Hence A and B are independent.



Two Laws of Probability

The following law give the probabilities of unions of events.

THEOREM 1: (The Multiplicative Law of Probability )

The probability of the intersection of two events A and B is
P(A n B) =P(A)P(B|A) = P(B)P(A|B).

If A and B are independent, then P(A n B) = P(A)P(B)

Proof: HW.

Theorem 2: (Theorem of Total Probability )
Let A1,A2,...,An form a partition of the sample space with
P(Ai) # 0 for all i, and let B be any event. Then

P(B) m P(A).
i=1




Proof By definition, P(B | A;) = P(BNA;)/P(A;). Multiplying up, we find that
P(BNA;) = P(B|A;)-P(A)).

Now consider the events BNA;,BMNA,,....BMNA,. These events are pairwise
disjoint; for any outcome lying in both BMA; and BNA; would lie in both A; and
Aj, and by assumption there are no such outcomes. Moreover, the union of all
these events 1s B, since every outcome lies in one of the A;. So, by Axiom 3, we
conclude that

iP(B NA;) = P(B).
i=1

Substituting our expression for P(BMA;) gives the resullt.

71 D




Example 1: An ice-cream seller has to decide whether to order
more stock for the Bank Holiday weekend. He estimates that, if
the weather is sunny, he has a 90% chance of selling all his stock;
If it 1s cloudy, his chance is 60%; and if it rains, his chance is only
20%. According to the weather forecast, the probability of
sunshine Is 30%, the probability of cloud is 45%, and the
probability of rain is 25%. (We assume that these are all the
possible outcomes, so that their probabilities must add up to
100%.) What is the overall probability that the salesman will sell
all his stock?

Sol: Let Al be the event ‘it is sunny’, A2 the event ‘it is cloudy’,
and A3 the event ‘it is rainy’. Then A1, A2 and A3 form a partition
of the sample space, and we are given that:
P(A1) = 0.3, P(A2) = 0.45, P(A3) = 0.25.

Let B be the event ‘the salesman sells all his stock’. The other
information we are given is that P(B | A1) = 0.9, P(B | A2) = 0.6,
P(B | A3) = 0.2. By the Theorem of Total Probability, P(B) =
(0.9%0.3) + (0.6x0.45) + (0.2x0.25) = 0.59.



Bayes’ Theorem

Theorem : Let A and B be events with non-zero probability. Then

P(A | B) =P(B L(g))P(A)

Proof: P(A | B)-P(B) = P(ANnB) =P(B | A)-P(A),

Ex : For same Example 1, we are asked for P(Al | B). We were given
that P(B | A1) = 0.9 and that P(Al) = 0.3, and we calculated that P(B)
= 0.59. So by Bayes’ Theorem,

P(B|A))P(A;) 0.9x0.3
P(B) - 0.59

P(A; | B) = — 0.46



Conditional probability

Example 2: 2% of the population have a certain blood disease in a serious
form; 10% have it in a mild form; and 88% don’t have it at all. A new blood
test is developed; the probability of testing positive is 9/10 if the subject has
the serious form, 6/10 if the subject has the mild form, and 1/10 if the subject
doesn’t have the disease. | have just tested positive. What is the probability
that | have the serious form of the disease?

Sol:

Let A; be ‘has disease in serious form’, A> be ‘has disease in mild form’, and
A3z be “doesn’t have disease’. Let B be ‘test positive’. Then we are given that Ay,
Aj, Az form a partition and

P(A;) =0.02 P(A>) =0.1 P(A3) =0.88
P(B|A;)=09 P(B|A;)=0.6 P(B|A3)=0.1
Thus, by the Theorem of Total Probability,

P(B)=0.9x0.02+0.6 x0.1+0.1 x0.88 =0.166,

and then by Bayes’ Theorem,

P(B|A1)P(A;)  0.9x0.02

- =0.108
P(B) 0.166

P(A1|B) =




See you next Lecture




LECTURE 38#
The cumulative distribution function

Definition 1. The cumulative distribution function(CDF) F(x) of a random variable X
is defined as
Flz)=PX <z)  for all real numbers x

Theorem 1. If X is a random variable with the space Ry, then

F(x) = Y;<,p(t) forallt € Ry.
Example 1. If the probability density function of the random variable X is given by

1
— (2z - 1) forr=1,2,3,...,12
144

then find the cumulative distribution function of X.
Answer: The space of the random variable X is given by Ry ={1.2,3,..., 12}



Then

1 3 4

F2) =) fO)=f0)+f2) =17+ 15= 10

o B gy L 43 % _ 9
F@) =Y fO=fW)+f@)+f3) =17+ 17+ 11 = 103

Theorem 2. Let X be a random variable with cumulative distribution function F(x).
Then the cumulative distribution function satisfies the followings

(a) F(—o0) =0,

(b) F(oo) = 1, and

(c¢) F(z) is an increasing function, that is if z < y, then F(z) < F(y) for
all reals =, y.



Theorem 3 If the space Ry of the random variable X is given by Ry = {x; < x,
< x3 < < x,}then

f{ll}zF(Il} F{x4}‘1  ——
ra ) — . ! f(x4)
f(z2) = F(z2) F[-iﬂ‘l:} )
f{.‘l‘:;} = Fli.‘l‘:;} Fl:l"g]' F(x2) f(x3)
f(x2)
.......... F(x1) 1
.......... G f{x1:| »>
%1 x2 x3 x4 X

flxn) = F(x,) — Flr,_1).

Theorem 1 tells us how to find cumulative distribution function from the probability

density function, whereas Theorem 2 tells us how to find the probability density
function given the cumulative distribution function.

Example 2. Find the probability density function of the random variable X whose
cumulative distribution function is



(0.00 ifx<—1
025 if-1<z<1
F(z)={ 050 ifl<z<3

0.7 if3<z<H

Also, find (a) P(X < 3), (b) P(X = 3), and (¢) P(X < 3).
Answer: The space of this random variable is given by
Rx ={-1, 1, 3, 5}.
By the previous theorem, the probability density function of X is given by
f(—-1) =0.25
f(1) =0.50 —0.25 = 0.25
f(3) =0.75 — 0.50 = 0.25
f(5) = 1.00 — 0.75 = 0.25.

The probability P(X < 3) ecan be computed by using the definition of F.

Hence
P(X <3) = F(3) =0.75.



The probability P(X = 3) can be computed from
P(X =3)=F(5) - F(3) =1-0.75 = 0.25.
Finally, we get P(X < 3) from P(X<3)=P(X<1)=F(1) =0.5.

Moments of Random Variables

Definition 4.1. The n'" moment about the origin of a random variable X

as denoted by E(X™), is defined to be

r Z " f(x) if X is discrete
E(X") = zeRx

fx " f(x)dz if X is continuous
DD

- If n =1, then E(X) is called the first moment about the origin.

-If n = 2, then E(X?) is called the second moment of X about the
origin

- In general, these moments may or may not exist for a given random
variable.



Expected Value of Random Variables
Definition 4.2. Let X be a random variable with space Rx and probability

density function f(z). The mean px of the random variable X is defined as

Z r f(z) if X is discrete
Ly = 4 reERx
fx T flx)dr if X is continuous
S

if the right hand side exists.

The mean of a random variable is a composite of its values weighted by the
corresponding probabilities. The mean is a measure of central tendency: the value
that the random variable takes “on average.” The mean is also called the expected
value of the random variable X and is denoted by E(X). The symbol E is called the

expectation operator. The expected value of a random variable may or may not
exist.

Let Y be a discrete random variable with the probability function p(y). Then the
expected value of Y, E(Y ), is defined to be E(Y) =) yp(y).



Example: The probability distribution for a random variable Y is
given in Table 3.3. Find the mean.

Table 3.3 Probability distribution for ¥

y p(y)

0 1/8

1 1 /4

2 3/8

3 1 /4
Solution

3

nw=E(Y)= Z_\‘_f}{_‘.‘j = (O)(1/8) +(1)(1/4) + (2)(3/8) + (3)(1/4) = 1.75,

y=0



X 0 1 2 3
f(x) | 001 | 032 | 046 | 021
x 0 1 2 3
p(x) | 01 | 032 | 046 | 0.21
X 0 1 2 3
7(x) | 001 | -032 | 046 | 0.21




See you next Lecture




LECTURE 9#

Example 1 In how many ways a committee consisting of 3 men and 2 women, can
be chosen from 7 men and 5 women?

Example 2 A group consists of 4 girls and 7 boys. In how many ways can a team of 5
members be selected if the team has

(i) no girls

(ii) at least one boy and one girl

(iii) at least three girls.

Example 3  In how many ways can a supermarket manager display 5 brands of
cereals in 3 spaces on a shelf?



Example 4 There are 15 balls numbered 1 to 15, in a bag. If a person
selects one at random, what is the probability that the number printed on the
ball will be a prime number greater than 57

Example 5: Let A denote the event 'student is female' and let B denote the
event 'student is French'. In a class of 100 students suppose 60 are French,
and suppose that 10 of the French students are females. Find the probability
that if | pick a French student, it will be a girl, that is, find P(A|B)

Example 6: What is the probability that the total of two dice will be greater
than 8, given that the first die is a 67

Example 7 It is known that the probability of obtaining zero defectives in a
sample of 40 items is 0.34 while the probability of obtaining 1 defective item
In the sample is 0.46. What is the probability of

(a) obtaining not more than 1 defective item in a sample?

(b) obtaining more than 1 defective items in a sample?



See you next Lecture




LECTURE 10#
continuous random variable

Definition 3.7. Let X be a continuous random variable whose space is the
set of real numbers R. A nonnegative real valued function f : R — R is said
to be the probability density function for the continuous random variable X
if it satisfies:

(a) [~ f(z)dzr =1, and

(b) if A is an event, then P(A) = [, f(z)dz.

Example 3.10. Is the real valued function f :R — R defined by

f(z) = 2x72 fl<z<?2
700 otherwise,



a probability density function for some random variable X7

i) The Density Function
o .
1.5
1
0.3 T
X
1 2 3 4

Answer: We have to show that f is nonnegative and the area under f(z)
is unity. Since the domain of f is the interval (0,1), it is clear that f is

nonnegative. Next, we calculate

oo 2
[ flz)de = [ 22 %dx
S —og <1

1
_ _]
LT
1
— -2 ——1]
|2

Thus f is a probability density function.



Example 3.11. Is the real valued function f :RR — R defined by

f(a) = I1+jz| f-1<z<1
N 0 otherwise,

a probability density function for some random wvariable X7

This is not a Density Function
2 y

=
1

0.5

-2 -1 1 2




Answer: It is easy to see that f is nonnegative, that is f(z) > 0, since
f(z) = 1+ |z|. Next we show that the area under f is not unity. For this we

compute
1 1

f f(m)d;r::/ (1+ |x|)dx

-1 1

=/ﬂ(1—m)dm+/1(1+$]dl‘

—1 ]
0 1
L L 5
=|z—=x T+ -z
5] s

0

1 1
=14 — 14+ —
+2+ 2

= 3.

Thus f is not a probability density function for some random variable X.

Example 3.12. For what value of the constant ¢, the real valued function
f R — R given by

flx)

B c
14+ (z—0)2

—00 < T < 00,

where 0 is a real parameter, is a probability density function for random
variable X7



Definition 3.8. Let f(z) be the probability density function of a continu-

ous random variable X. The cumulative distribution function F(z) of X is

defined as ,
Flz)=P(X <z) = f(t)dt.

— o0

The cumulative distribution function F'(x) represents the area under the
probability density function f(x) on the interval (—oc, z) (see figure below).

Cumulative Distribution Function of X

Like the discrete case, the cdf is an increasing function of x, and it takes

value () at negative infinity and 1 at positive infinity.



Theorem 3.5. If F(z) is the cumulative distribution function of a contin-
uous random variable X, the probability density function f(z) of X is the
derivative of F'(x), that is

d

- F(z) = f(2).

Proof: By Fundamental Theorem of Calculus, we get

T @) =2 ([ s
- @)
- f(@)

This theorem tells us that if the random variable is continuous, then we can find
the pdf given cdf by taking the derivative of the cdf. Recall that for discrete random
variable



Example 3.15. What is the probability density function of the random
variable whose cdf is

F(x)

Answer: The pdf of the random variable is given by

d

1

gy —oo < x < oa?
e

F(&) = (@)
d 1
- E (l—l—e—m)
d 1
=——(1+e )

= (=1)(1+ e_I)_E% (1+e7)

. [
T Fer

Theorem 3.6. Let X be a continuous random variable whose cdf is F(z).
Then followings are true:

(a) P(X < z) = F(x),

(b) P(X >z)=1-— F(x),

(¢) P(X=z)=0,and

(d) Pla< X <b)=F(b) — F(a).



EXAMPLE 3.12 : (a) Find the constant c such that the function 4, — {”2 0 <x ‘f: 3
is a density function. 0 otherwise

(b) compute P(1 <X <2)

(c) Find the distribution function

(d) Use the result of (c)to find P(1< x<2).

Solution:

(a) Since f(x) satisfies Property 1 if ¢ = 0, it must satisfy Property 2 in order to be a density function. Now

3

o 3 3
J' f{x}d,t:chEcix:% = O¢
— 0 0
and since this must equal 1, we have ¢ = 1/9.
b Pi<x<y=|len=-2[ -8 _ 1_7
®) [ S R V] B VA YR ¥

[x

(c) We have F(x) = PX=x) = J () du

-

If x << 0, then F(x) = 0. If 0 = x < 3, then



If x = 3. then

3 X 3 X
F(x) = J'f(u)rfu + J flu)du = J .lu?—du + J Odu = 1
0 3 07 3

Thus the required distribution function is

0 x<0
Flx) = §x3/27 0=x<3
1 x=3
(d) We have
Pl <X=2)=PX=2)—PX=1)
= F(2) — F(1)
23 17

27 27 27



H.W.

1) Let Y possess a density function

2)

c2-y), 0<y<2,
fly) = {

elsewhere.

Find c.

Find F(y).

Graph f(y) and F(y).

Use F(y) in part (b) to find P(1 <Y < 2).

BE s T A

Let ¥ have the density function given by

2, —1l<=y=0
fM =41 24cy. 0<y=<l,
0, elsewhere.
Find c.
Find F(v).

Graph f(v) and F(y).
Use F(y) in part (b) to find F(—1), F(0), and F(1).
Find P(0 = ¥ = .5).

-T ~ PO = T = -



See you next Lecture




LECTURE 11#
Examples
1) Suppose that

0, fory <0,
Fly)=4y, forO=sy=<1I,
I, fory=>1.

Find the probability density function for ¥ and graph it.

Solution Because the density function f(y) is the derivative of the distribution function F(y),
when the derivative exists,

— =0, fory <0,
dy
dF(y d(v
fly) = ﬂ,?)Z* f};;]:l. for0 <y <1,
d(l
L:l.'ll, fory = 1,
dy

and f(y) is undefined at y = 0 and y = 1. A graph of F(y) is shown in Figure 4.4.

FIGURE 4.4 F(y)
Distribution function 1
F (y) for Example 4.2




2)

Let Y be a continuous random variable with probability density function given by

3yY, 0<y<lI,
for= [ 0573

0, elsewhere.

Find F(y). Graph both f(y) and F(y).

Fo)= [ rwa,

we have, for this example,

f:m 0dt =0, fory < 0,

F(y)y=1{ [’ 0dt + [ 32dt =0+ ] = 3, for0 =y = 1,

fi‘m(‘,‘ldr +f{]|] 3t° dt -|-f]-"(]d; =0+ -“3][‘j +0=1, forl < y.

fly)
3 |

%




3)

Given f(y) = cy>, 0 < y <2, and f(y) = 0 elsewhere, find the value of ¢ for which
f(y) is a valid density function.

4) Let the distribution function of a random variable Y be
[(0,. <0
\Y
§ O<y<2,
F(y) =1 \32
—, 2<y<d4,
16 Z
L1, y>4

Find the density function of Y.
Find P(1 < Y < 3).

Find P(Y = 1.5).

Find P(Y = 1|Y < 3).

.. N T o



Expected value and variance

Definition : Let X be a random variable with space S and probability density
function f(x). The mean pu (expected value) of the random variable X is defined

as
Z r f(x) if X is discrete
[ty = 4 TERX
fx x flx)dr if X is continuous
of — 30

Theorem :Let g(Y ) be a function of Y ; then the expected value of g(Y ) is given by

E[g(¥)] zf g(v) f(y) dy,

o0

Theorem Let ¢ be a constant and let g(Y), g,(Y), g2(Y), ..., 2, (Y) be functions of a
continuous random variable Y. Then the following results hold:

. E(c)=c.
2. E[cg(Y)] =cE[g(Y)].
3. E[g1(Y)+g2(Y)+ - +g(¥)] = E[g1(Y)]+E[g2Y)]+ - -+E[ge(Y)].



Expected value and variance

Definition : The variance of X is the number Var(X) given by

Var(X) = E(X%) — E(X)?.

Theorem 4.2. If X is a random variable with mean gy and variance 0%,
then

0% = E(X?) — (ux )

Proof:



Example:
we determined that f(y) = (3/8)y*for0 < y < 2, f(y) = 0 elsewhere

find u = E(Y) and 6> = V(Y).

Solution: E{F):f yF(y) dy
2 3 _
= | v(Z)y*ay
][;Jf(g)} >
)]
== — ]y = 1.5.
(5) ()]

The variance of ¥ can be found once we determine E(Y?). In this case,

E(Y?) = f V2 F(y) dy

o0

E 3) >
= vl —=1v dy
J, 7(5)7

4

Q)L

Thus, 02 =V (Y) = E(Y?) — [E(Y)]? =24 — (1.5)> = 0.15.



Theorem 4.3. If X is a random variable with mean px and variance o%,

then
Var(aX 4+ b) = a* Var(X),

where a and b are arbitrary real constants.

Proof:

Var(aX +b) = E([(a X +b) — #ak’+b]2)

B (
=E([a.x+b—E(ax+b}F)

B (

E



Example. Let X have the density function f(z) = {

For what value of k is the variance of X equal to 2?

Answer: The expected value of X is

Hence, the variance is given by
Var(X) = BE(X?) — (ux)?
= — k‘z —_ _ kz

Since this variance is given to be 2, we get

1
—k*=2
18
and this implies that & = +6. But £ is given to be greater than 0,

must be equal to 6.

0

2 for0<z<k

otherwise.

[
E(X?) =/ z* f(z)dx

0

ke
2x
2
= r° —dr

= k2
1

hence k



Example: If the probability density function of the random variable is

1—|z| for|z| <1
then what is the variance of X? f(z) = 0 otherwise.
Answer: Since Var(X) = E(X?) — u%, we need to find the first and second

moments of X. The first moment of X is given by

px = E(X)

=fx - f(x) drx

(1—|z])d

-/
/[1 d*;r‘-l-Ll:;r:{l—x}dﬂt
f
L
3

0 1
(z + %) dz + / (z — %) dx

1 0

1 |

3

ml
ml
.

= (.



The second moment E(X?) of X is given by

s ]

B(X?) = [ 22 f(z) dz

of — 20

=./_1 22 (1 — |z) de

1

— /D 2 (14 z)dz + /Dlrz(l—mjd:c

J—1

0 1
= (z? + 2°%)dz + f (z* — z2%) dx
~1 0

1111
“371737°1
1
=5
Thus, the variance of X is given by
Var(X) = BE(X?) — % = = —0 = =

6 6



See you next Lecture




LECTURE 12#

Expected value and variance

Definition : Let X be a random variable with space S and probability density
function f(x). The mean pu (expected value) of the random variable X is defined

as
Z r f(x) if X is discrete
[ty = 4 TERX
fx x flx)dr if X is continuous
of — 30

Theorem :Let g(Y ) be a function of Y ; then the expected value of g(Y ) is given by

E[g(Y}lzf g(y)f(y) dy,

o0

Theorem Let ¢ be a constant and let g(¥), g,(Y), g:(Y), ..., 2, (Y) be functions of a
continuous random variable Y. Then the following results hold:

. E(c)=c.
2. E[cg(Y)] =cE[g(Y)].
3. E[g1(Y)+g2(Y)+ - +g(¥)] = E[g1(Y)]+E[g2Y)]+ - -+E[ge(Y)].



Expected value and variance

Definition : The variance of X is the number Var(X) given by

Var(X) = E(X%) — E(X)?.

Theorem 4.2. If X is a random variable with mean gy and variance 0%,
then

0% = E(X?) — (ux )

Proof:



Example:
we determined that f(y) = (3/8)y*for0 < y < 2, f(y) = 0 elsewhere

find u = E(Y) and 6> = V(Y).

Solution: E{F):f yF(y) dy
2 3 _
= | v(Z)y*ay
][;Jf(g)} >
)]
== — ]y = 1.5.
(5) ()]

The variance of ¥ can be found once we determine E(Y?). In this case,

E(Y?) = f V2 F(y) dy

o0

E 3) >
= vl —=1v dy
J, 7(5)7

4

Q)L

Thus, 02 =V (Y) = E(Y?) — [E(Y)]? =24 — (1.5)> = 0.15.



Theorem 4.3. If X is a random variable with mean px and variance o%,

then
Var(aX 4+ b) = a* Var(X),

where a and b are arbitrary real constants.

Proof:

Var(aX +b) = E([(a X +b) — #ak’+b]2)

B (
=E([a.x+b—E(ax+b}F)

B (

E



Example. Let X have the density function f(z) = {

For what value of k is the variance of X equal to 2?

Answer: The expected value of X is

Hence, the variance is given by
Var(X) = BE(X?) — (ux)?
= — k‘z —_ _ kz

Since this variance is given to be 2, we get

1
—k*=2
18
and this implies that & = +6. But £ is given to be greater than 0,

must be equal to 6.

0

2 for0<z<k

otherwise.

[
E(X?) =/ z* f(z)dx

0

ke
2x
2
= r° —dr

= k2
1

hence k



Example: If the probability density function of the random variable is

1—|z| for|z| <1
then what is the variance of X? f(z) = 0 otherwise.
Answer: Since Var(X) = E(X?) — u%, we need to find the first and second

moments of X. The first moment of X is given by

px = E(X)

=fx - f(x) drx

(1—|z])d

-/
/[1 d*;r‘-l-Ll:;r:{l—x}dﬂt
f
L
3

0 1
(z + %) dz + / (z — %) dx

1 0

1 |

3

ml
ml
.

= (.



The second moment E(X?) of X is given by

s ]

B(X?) = [ 22 f(z) dz

of — 20

=./_1 22 (1 — |z) de

1

— /D 2 (14 z)dz + /Dlrz(l—mjd:c

J—1

0 1
= (z? + 2°%)dz + f (z* — z2%) dx
~1 0

1111
“371737°1
1
=5
Thus, the variance of X is given by
Var(X) = BE(X?) — % = = —0 = =

6 6



Theorem:

Chebyshev Inequality

Let X be a random variable with probability density function f(x).
If wand o > 0 are the mean and standard deviation of X, then

1
P(|X —pl<ko)>1—- —

ki’

for any nonzero real positive constant k.

The Normal Density Function

[~

E5%

The Normal Density Function

0.
e
"0.3

0.2
ARER
0.1

.

T =
- [

L=}




let mean u =0 and the standard deviation o = 1, and then the area
between the values u - o and u + o is 68%.

Similarly, the area between the values p-2cand u+ 20 is 95%.

In this way, the standard deviation controls the area between the
values u - ko and u + ko for some k if the distribution is standard
normal. If we do not know the probability density function of a
random variable, can we find an estimate of the area between the
values u - ko and p + ko for some given k? This problem was solved
by Chebychev, a well known Russian mathematician. He proved
that the area under f(x) on the interval [u - ko, p + ko] is at least 1 -
k~2. This is equivalent to saying the probability that a random
variable is within k standard deviations of the mean is at least 1 -

k2.



Proof: We assume that the random
variable X is continuous. If X is not
continuous we replace the integral by
summation in the following proof. From
the definition of variance, we have the
following:

0% = /DC (z — p)? f(x)dx

— 0
pu—k o n+k o
~ [ @-wr@d [
o — 0 - 'u,—kﬂ'

+ /x (z — p)? f(z) d.

pt+ko

at least 1-k

Mean - kK SD

Mean

Mean + k SD

(z —p)? f(z)dz




Since, f;L_Jr_,f ; (x — p)? f(x) dz is positive, we get from the above

>0

o [ et [ @ f@)de

J —oo . ,'_L—l—kﬂ'

If z € (—o0, p— ko), then
r<u—ko.

Hence

ko< u—=x

for
k2 o? < (u—x)>

That is (i — x)? > k? ¢2. Similarly, if z € (i + ko, oo), then

x>+ ko

(4.1)



Therefore

| T
Thus if z & (u — ko, p+ ko), then
(p—z)% > Ko (4.2)

Using (4.2) and (4.1), we get

o2 > k202 [/F_kgf(a:) d;r+fm f(m)d:t:] .

— 00 ut+ko

Hence
1 u—ko oo
2 > [ f(z)dz + [ f(z)dz| .
J—no . ,U.—I—k‘ﬂ'
Therefore |
5 >P(X<p—ko)+P(X >p+ko).
Thus .
2 > P(|X —p| =2 ko)
which is

1
P(|X—;L|<kcr)?_>1—k—2.

This completes the proof of this theorem.



See you next Lecture




LECTURE 13#

Example. Let the probability density function of a random variable

X be
630z (1 —2)* if0<z<1

0 otherwise.

What is the exact value of P(|X — pu| < 20)?7 What is the approximate value
of P(|X — | < 20) when one uses the Chebychev inequality?

Answer: First, we find the mean and variance of the above distribution. The mean of X
is given by

1
E(X)= [ x f(x)dx

5141
5+4+1)!
51 41
10!

Jo
1

:/ 630z° (1 —z)*dz =630
Jo

= 630

1
5"



Similarly, the variance of X can be computed from

1
Var(X) = / z® f(x)dr — p5
J0

1 _ 1 6! 4! 1

— 6302 (1 —)4dr— = =630 — —

£ m (= adr =g =00 T T ) T g
Therefore, the standard deviation of X is o= 11 = (.15.

Thus
P(|X —p|<20)=P((X —0.5]<0.3)

= P(-03< X —0.5<0.3)

= P(0.2< X <0.8)

0.8
= [ 6302*(1-2)*dz

0.2

= 0.96.



If we use the Chebyshev inequality, then we get an approximation of the exact
value we have. This approximate value is

Hence, Chebychev inequality tells us that if we do not know the distribution

of X, then P(|X — u| < 20) is at least 0.75.

Variation of Spread with SD

1

ED=0.2
0.2
0.6
. SD=0.4
0.4 /
/I;" "ul.\
0.2 oy \ 1 8D=0.6
& ! s
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Moment Generating Functions

Some cases , the moments are difficult to compute from the definition. A
moment generating function is a real valued function from which one can
generate all the moments of a given random variable. In many cases, it is
easier to compute various moments of X using the moment generating
function.

Definition . Let X be a random variable whose probability density function is
f(x). A real valued function M :R -R defined by

M(t)=E (')

is called the moment generating function of X if this expected value exists for all
tin the interval -h <t < h forsome h>0

In general, not every random variable has a moment generating function. But if
the moment generating function of a random variable exists, then it is unique.



Using the definition of expected value of a random variable, we obtain the
explicit representation for M(t) as

Z e'” f(x) if X is discrete
ﬁf(f) — reRx
[Z et® f(x)dxr  if X is continuous.

Example. Let X be a random variable whose moment generating function is M(t)
and n be any natural number. What is the nth derivative of M(t) at t = 0?

d d

Answer: Z M) = —F (X
S M(t) = — F (')
d
— E( — Jt}f
=E(Xe)
Similarly ‘

' d? d’ ¢ X
dtzjf(t):dth(r )



Hence, in general we get

dn dﬂ.
T M(t) = ——F (')

dn
) tX
()

=FE (X"e').

If we set t = 0 in the n'® derivative, we get

dﬂ.
dtn

M) =E(X"eY)|,_,=E(X").

t=0

Hence the n'® derivative of the moment generating function of X evaluated

at t = 0 is the n*" moment of X about the origin.

This example tells us if we know the moment generating function of
a random variable; then we can generate all the moments of X by

taking derivatives of the moment generating function and then
evaluating them at zero.



Example. What is the moment generating function of the random

variable X whose probability density function is given by

e ™ forax >0
) = {

0 otherwise?

What are the mean and variance of X?

Answer: The moment generating function of X is

M(t) = E (')
_ / Et:ﬂ f(T) dr _ /MJ Ei b H E—ZL' d:]‘
J0)

J0

/ eI 0rgy 1 -tz
JO B i

]

0

1
=1 if 1—1>0.



The expected value of X can be computed from M(t) as

E(X)

Similarly,

d
—M(t)
dt 0
E(l — 1) = (1-1)77,_,
t=0 1
: (1 _t)z t=0
= 1.
d2
X?) = —M(t
)= 5 M(2) -
d2
= —(1—-t)7!
dfg( ) t=0
=2(1—1)73 -
t=0 = 3
(1—1)%,—o



Therefore, the variance of Xis:  Var(X) = E(X?) - (pn)*=2-1=1.

Moments From Moment Generating Function
/ -
4r ;‘ Fi
force)y 0 H(E)

2nd Moment jzl’

L)

H.W . Let X have the probability density function

< (%)I f'DI‘ €L :{]11:21-..-_.%-
0 otherwise.

What is the moment generating function of the random variable X?

o=



H.W. Let X be a continuous random variable with density function

f(z) = { be ?* forx >0

0 otherwise .

where b > 0. If M(t) is the moment generating function of X, then what is M(-6 b)?

Theorem. Let M(t) be the moment generating function of the random variable
X. If

ﬁﬂr(t):ﬂn—l—alﬁ—l—aztg—f—-.._{_aﬂt”+... (1)

is the Taylor series expansion of M(t), then

E(X") = (n!) a,

for all natural number n



Proof: Let M(t) be the moment generating function of the random variable X.
The Taylor series expansion of M(t) about O is given by
I”(O) + ﬂ'irm (U) 3 ﬂf{n}([)) mn

M'(0) :
TR T T S R

M(t) = M(0) +
Since E(X™) = M™(0) for n > 1 and M(0) = 1, we have

B,  BOO) p B 5 EX g

M(t) = 1 k)
(t)=1+—; o 31 nl

From (1) and (2), equating the coefficients of the like powers of t, we obtain

E (X'HJ

n!

a, —

which 1s

E(X™) = (n!) an.

This proves the theorem.



Example. What is the 479th moment of X about the origin, if the moment generating

) . 1 2
function of X is e

Answer The Taylor series expansion of M(t) = 1 /1+t can be obtained by using long
division

1
M(t) = 173
1
T 1 (=)
=1+ (—t)+ (—t)° + (=)’ +--- + ()" +---
=1—t+t* =t +tP+ -+ (=) + - -
Therefore a,, = (—1)" and from this we obtain as79 = —1.

And by above theorem, we get:

B (XY7Y) = (479!) asrg — — 479!



o0 3 —
e(ti—1)

Example. If the moment generating of a random variable Xis M (t) =

7l
Jj=0 J:

then what is the probability of the event X = 2?

Answer: By examining the given moment generating function of X, it is easy to
note that X is a discrete random variable with space RX = {0, 1, 2, - - - ,oo}.
Hence by definition, the moment generating function of X is

oo

M(t) =) €' f(5).

j=0

But we are given that

Hence, flj) = — for j=0,1,2,.., 00.

e ! 1

Thus, the probability of the event X = 2 is given by P(X =2) = f(2) = TREPS
. e



H.W.. Let X be a random variable with

E(X")=0.8 for n=1,2.3,...,00.

What are the moment generating function and probability density
function of X?

Theorem. Let X be a random variable with the moment generating
function My (t). If a and b are any two real constants, then

ﬁf};+ﬂ (f) — Eﬂt JIX (f) (1)
ﬂilfbx(ﬁ) = Mx (f)f) (2)

a t



Proof: My +a(t) E( t(X-I—a})
E( tX—l—ta)
E( X ta)

= F (e )
=e'* Mx(t).

Similarly, we prove
Myx(t) = E (eff”“)

=F (E(t b)X)

= Mx(tb).

By above cases, we easily get

ﬂ«f%(f) —ﬂf}b._l_b( )

:Ebtﬂff%(t)

a t
:Ebtﬂffx (B) .



See you next Lecture




LECTURE 14#

Example. Let the probability density function of a random variable

X be
630z (1 —2)* if0<z<1

0 otherwise.

What is the exact value of P(|X — pu| < 20)?7 What is the approximate value
of P(|X — | < 20) when one uses the Chebychev inequality?

Answer: First, we find the mean and variance of the above distribution. The mean of X
is given by

1
E(X)= [ x f(x)dx

5141
5+4+1)!
51 41
10!

Jo
1

:/ 630z° (1 —z)*dz =630
Jo

= 630

1
5"



Similarly, the variance of X can be computed from

1
Var(X) = / z® f(x)dr — p5
J0

1 _ 1 6! 4! 1

— 6302 (1 —)4dr— = =630 — —

£ m (= adr =g =00 T T ) T g
Therefore, the standard deviation of X is o= 11 = (.15.

Thus
P(|X —p|<20)=P((X —0.5]<0.3)

= P(-03< X —0.5<0.3)

= P(0.2< X <0.8)

0.8
= [ 6302*(1-2)*dz

0.2

= 0.96.



If we use the Chebyshev inequality, then we get an approximation of the exact
value we have. This approximate value is

Hence, Chebychev inequality tells us that if we do not know the distribution

of X, then P(|X — u| < 20) is at least 0.75.

Variation of Spread with SD

1
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Moment Generating Functions

Some cases , the moments are difficult to compute from the definition. A
moment generating function is a real valued function from which one can
generate all the moments of a given random variable. In many cases, it is
easier to compute various moments of X using the moment generating
function.

Definition . Let X be a random variable whose probability density function is
f(x). A real valued function M :R -R defined by

M(t)=E (')

is called the moment generating function of X if this expected value exists for all
tin the interval -h <t < h forsome h>0

In general, not every random variable has a moment generating function. But if
the moment generating function of a random variable exists, then it is unique.



Using the definition of expected value of a random variable, we obtain the
explicit representation for M(t) as

Z e'” f(x) if X is discrete
ﬁf(f) — reRx
[Z et® f(x)dxr  if X is continuous.

Example. Let X be a random variable whose moment generating function is M(t)
and n be any natural number. What is the nth derivative of M(t) at t = 0?

d d

Answer: Z M) = —F (X
S M(t) = — F (')
d
— E( — Jt}f
=E(Xe)
Similarly ‘

' d? d’ ¢ X
dtzjf(t):dth(r )



Hence, in general we get

dn dﬂ.
T M(t) = ——F (')

dn
) tX
()

=FE (X"e').

If we set t = 0 in the n'® derivative, we get

dﬂ.
dtn

M) =E(X"eY)|,_,=E(X").

t=0

Hence the n'® derivative of the moment generating function of X evaluated

at t = 0 is the n*" moment of X about the origin.

This example tells us if we know the moment generating function of
a random variable; then we can generate all the moments of X by

taking derivatives of the moment generating function and then
evaluating them at zero.



Example. What is the moment generating function of the random

variable X whose probability density function is given by

e ™ forax >0
) = {

0 otherwise?

What are the mean and variance of X?

Answer: The moment generating function of X is

M(t) = E (')
_ / Et:ﬂ f(T) dr _ /MJ Ei b H E—ZL' d:]‘
J0)

J0

/ eI 0rgy 1 -tz
JO B i

]

0

1
=1 if 1—1>0.



The expected value of X can be computed from M(t) as

E(X)

Similarly,

d
—M(t)
dt 0
E(l — 1) = (1-1)77,_,
t=0 1
: (1 _t)z t=0
= 1.
d2
X?) = —M(t
)= 5 M(2) -
d2
= —(1—-t)7!
dfg( ) t=0
=2(1—1)73 -
t=0 = 3
(1—1)%,—o



Therefore, the variance of Xis:  Var(X) = E(X?) - (pn)*=2-1=1.

Moments From Moment Generating Function
/ -
4r ;‘ Fi
force)y 0 H(E)

2nd Moment jzl’

L)

H.W . Let X have the probability density function

< (%)I f'DI‘ €L :{]11:21-..-_.%-
0 otherwise.

What is the moment generating function of the random variable X?

o=



H.W. Let X be a continuous random variable with density function

f(z) = { be ?* forx >0

0 otherwise .

where b > 0. If M(t) is the moment generating function of X, then what is M(-6 b)?

Theorem. Let M(t) be the moment generating function of the random variable
X. If

ﬁﬂr(t):ﬂn—l—alﬁ—l—aztg—f—-.._{_aﬂt”+... (1)

is the Taylor series expansion of M(t), then

E(X") = (n!) a,

for all natural number n



Proof: Let M(t) be the moment generating function of the random variable X.
The Taylor series expansion of M(t) about O is given by
I”(O) + ﬂ'irm (U) 3 ﬂf{n}([)) mn

M'(0) :
TR T T S R

M(t) = M(0) +
Since E(X™) = M™(0) for n > 1 and M(0) = 1, we have

B,  BOO) p B 5 EX g

M(t) = 1 k)
(t)=1+—; o 31 nl

From (1) and (2), equating the coefficients of the like powers of t, we obtain

E (X'HJ

n!

a, —

which 1s

E(X™) = (n!) an.

This proves the theorem.



Example. What is the 479th moment of X about the origin, if the moment generating

) . 1 2
function of X is e

Answer The Taylor series expansion of M(t) = 1 /1+t can be obtained by using long
division

1
M(t) = 173
1
T 1 (=)
=1+ (—t)+ (—t)° + (=)’ +--- + ()" +---
=1—t+t* =t +tP+ -+ (=) + - -
Therefore a,, = (—1)" and from this we obtain as79 = —1.

And by above theorem, we get:

B (XY7Y) = (479!) asrg — — 479!



o0 3 —
e(ti—1)

Example. If the moment generating of a random variable Xis M (t) =

7l
Jj=0 J:

then what is the probability of the event X = 2?

Answer: By examining the given moment generating function of X, it is easy to
note that X is a discrete random variable with space RX = {0, 1, 2, - - - ,oo}.
Hence by definition, the moment generating function of X is

oo

M(t) =) €' f(5).

j=0

But we are given that

Hence, flj) = — for j=0,1,2,.., 00.

e ! 1

Thus, the probability of the event X = 2 is given by P(X =2) = f(2) = TREPS
. e



H.W.. Let X be a random variable with

E(X")=0.8 for n=1,2.3,...,00.

What are the moment generating function and probability density
function of X?

Theorem. Let X be a random variable with the moment generating
function My (t). If a and b are any two real constants, then

ﬁf};+ﬂ (f) — Eﬂt JIX (f) (1)
ﬂilfbx(ﬁ) = Mx (f)f) (2)

a t



Proof: My +a(t) E( t(X-I—a})
E( tX—l—ta)
E( X ta)

= F (e )
=e'* Mx(t).

Similarly, we prove
Myx(t) = E (eff”“)

=F (E(t b)X)

= Mx(tb).

By above cases, we easily get

ﬂ«f%(f) —ﬂf}b._l_b( )

:Ebtﬂff%(t)

a t
:Ebtﬂffx (B) .



The distribution function for a random variable X is

Find (a) the density function, (b) the probability that X = 2, and (c) the probability that —3 < X = 4,



A continuous random variable X has probability density given by

2e ™ x =10
fx) = {n x=0

Find (a) E(X), (b) E(X2).



See you next Lecture




LECTURE 15#
Joint Distributions

2. CONTINUOUS CASE. The case where both variables are continuous is obtained
easily by analogy with the discrete case on replacing sums by integrals. Thus the
joint probability function for the random variables X and Y (or, as it is more
commonly called, the joint density function of X and Y ) is defined by

L. flx,y) =0
2. JJ& r: f(x,y)dxdy = 1

— o — o

Example. Let the joint density function of X and Y be given by

k xy? fo<zr<y<l
flz,y) =

0 otherwise.

What is the value of the constant k ?



Answer: Since f is a joint probability density function, we have

lzf / f(z, y)drdy
Y
:f / k:cyﬂd:rdy
o Jo
1 Y
:f kyE/ rdrdy
0 0

E [,
= d
2/0*9 Y

Hence k = 10.



Note :If we know the joint probability density function f of the random variables
X and Y, then we can compute the probability of the event A from

PU) = [ [ 1@ p)dzdy.

Example :Let the joint density of the continuous random variables X and Y be

F](ﬂ?2+233’y) if0<z<1;0<y<1

flz,y) = { ’

0 clsewhere.

What is the probability of the event (X <Y) ?



Answer: Let A = (X <Y). we want to find

P = [ [ s wzay

:fﬂl U:g (z* +2zy) d:c] dy

6 1:1:3 ) T=y
= — — d
AR
6 (14 ,

= — —y~d
5/{}39‘ Y

2 41

:g[y}n

ey I



Definition : Let (X, Y ) be a continuous bivariate random variable. Let f(x, y) be the
joint probability density function of X and Y . The function

filz) = /_ fle y)dy

is called the marginal probability density function of X. Similarly, the function

foly) = [ S, y) da

is called the marginal probability density function of Y .

Example : If the joint density function for X and Y is given by

3 . 2
i for 0 <y - <z <1

f(Ty) —

0 otherwise,

then what is the marginal density function of X, forO<x<17?



Answer: The domain of the f consists of the region bounded by the
curve = =vy? and the vertical linex=1

¥ Domain of the Joint PDF

! sqri(x ]J_,fr""

.-"
-
-

0.75

-"
Jf
-

0.3

025 /’}U<y"‘2<x<l

. 0.2 04 06 |08 1
-0.25} "

Hence VT g o |
@ = [ Sy
—Jz
vV
3 3
— —_ —— x€T.
1Y 5 Ve



Example : Let X and Y have joint density function

(2e 7Y for 0 < x <y <

flz,y) =4

0 otherwise.
What is the marginal density of X where nonzero?

Answer: The marginal density of X is given by

fl(ﬂ’:):/_ f(x, y)dy 2/ 2e " dy

I

=2e ” /me_ydy =2e " [—e_y]DO:Qe_Ie_m

— e 2% 0 < < 0.



Definition: Let X and Y be the continuous random variables with joint probability
density function f(x, y). The joint cumulative distribution function F(x, y) of Xand Y
is defined as

’y. T
Fay=PX <oy <y =[ [ fuo)dudo

O°F
From the fundamental theorem of calculus, we again obtain ~ f(, ¥) = 020y

Example:. If the joint cumulative distribution function of X and Y is given by

: (223y + 322 y?) for0 < z,y <1

F(x,y) =
0 elsewhere,

then what is the joint density of Xand Y ?



Answer:

(23:33;4—3:1:2 yg)

—
o
8
<
S—

|
Q
S

223 —|—6:z:2y)

AN

= o TP

> + 12z y)

SH Ul = Ot —= O

Zg( *+2zy).

Hence, the joint density of X and Y is given by

’g(:ng—!—Qxy) for 0 < x,y < 1

flz,y) =

. 0 elsewhere.



See you next Lecture




LECTURE 106#
Conditional Distributions

Definition. Let X and Y be any two random variables with joint density f(x, y) and
marginals f1(x) and f2(y). The conditional probability density function g of X, given
(the event) Y =, is defined as

oy flzy)
g(z /y) = 00 f(y) > 0.

Similarly, the conditional probability density function h of Y, given (the event)
X =X, is defined as

hy/z) = f(z, y)

filz) fi(z) > 0.



Example. Let X and Y be discrete random variables with joint probability function

\ {311(-1""‘3') forx=1,2.3; y=1,2.
T, Y) =
0 elsewhere.

What is the conditional probability density function of X, givenY =27

Answer: We want to find g(z/2). Since

f(z,2)

/2 =75

we should first compute the marginal of Y, that is f2(2). The marginal of Y
is given by

fz(y)=Z;—1 (z +y)



Hence f5(2) = % Thus, the conditional probability density function of X,
given Y = 2, is

i, 2)
f2(2)
ﬁ (z+2)

g9(z/2) =

— _— (x+472), r=1,23.

Example :Let X and Y be discrete random variables with joint probability density

function
11 - . _ a a9
S50 forx=1,2; y=1,2,3,4
flz,y) =

0 otherwise.

What is the conditional probability of Y given X =x ?



Answer:

Therefore

Thus, the conditional probability Y given X = x is

Ity . ) o v
T forr=1,2;, y=1,23.4

h(y/x) = {

0 otherwise.



H.W : Let X and Y be continuous random variables with joint pdf

12x for0<y<2zr <1
flz,y) =
() otherwise .

What is the conditional density function of Y given X =x ?

Independence of Random Variables

we define the concept of stochastic independence of two
random variables X and Y . The conditional probability density
function g of X given Y = y usually depends on y. If g is
independent of y, then the random variables X and Y are said to
be independent. This motivates the following definition



Definition. Let X and Y be any two random variables with joint density
f(x, y) and marginals f1(x) and f2(y). The random variables X and Y are
(stochastically) independent if and only if

f(x, y) = f1(x) f2(y)

Example. Let X and Y be discrete random variables with joint density

36

L forl<z=y<6
flz.y) =

2 - . -
T forl <z <y<6.

Are X and Y stochastically independent?



Answer: The marginals of X and Y are given by

6
= flz.y)
y=1
= flz.z)+ Y _ flz.y)+ > flz,y)
y>x y<T
1
= ih+(ﬁ_m)_+u
13 — 2z .
= 36 for z=1,2,....6
and
6
=1
=fwy)+ > flzy)+ ) flzy)
ey LAY
1 2
=2y3;1 for y=12,..,6
Since
B 11 1
f(L,1) = — #‘ 3636 = f1(1) f2(1),

we conclude that f(z,y) # fi (:1.') fa(y), and X and Y are not independent.



However, if one knows the marginals of X and Y, then it is not possible to find the
joint density of X and Y unless the random variables are independent

Example : Let X and Y have the joint density

e~ (z+y) for 0 < z,y < o0
fz,y) =

() otherwise.
Are X and Y stochastically independent?

Answer: The marginals of X and Y are given by

fl'[-T) — f f(:r:,y) dy = f e~ (T+y) dy = e @
( 0

)

and

f:z'[’!f)=f f(:ruy)fiff=f e~V dx = eV,
(

) 0
Hence

flz,y) =e V) =e eV = fi(z) foly).

Thus., X and Y are stochastically independent.



If X and Y are independent, then the random variables U = ¢(X) and V = (Y ) are
also independent. Here ¢, U : Rl = Rl are some real valued functions

Definition :The random variables X and Y are said to be independent and
identically distributed (IID) if and only if they are independent and have the same
distribution.

Example. Let X and Y be two independent random variables with identical
probability density function given by { e for x> 0

flz) =

(] elsewhere.

What is the probability density function of W =min{X, Y } ?



Answer: Let G(w) be the cumulative distribution function of W. Then

Glw) = P(W < w)
=1—-P(W > w)
=1— P(min{X,Y} > w)
=1—-P(X >wandY > w)
=1-P(X >w)P(Y >w) (since X and Y are independent)

o ([ ) ([

=1- (fz_t”)z

=1—e 2w,

Thus, the probability density [unction of W is

d d 9w — 2w
g(ﬂ,r)=at?(w]=£(l—e W) =2e%.

2 e 2w for w > 0
g(w) =

(0 elsewhere.

Hence



See you next Lecture




Cova

LECTURE 17#
riance of Bivariate Random Variables

Definition. Let X and Y be any two random variables with joint density function

f(x, y). The product m

E(XY) =«

oment of Xand Y, denoted by E(XY ), is defined as

f Z Z zy f(z, y) if X and Y are discrete

reERx yeRy

\ f_:i: ff; zy f(z,y)dxdy if X and Y are continuous.

Here, Rx and Ry represent the range spaces of X and Y respectively.

Definition. Let X and Y be any two random variables with joint density function f(x,
y). The covariance between X and Y, denoted by Cov(X, Y ) (or ayy), is defined as

Cov(X, Y) = E((X — px) (Y — py)).

where px and py

are mean of X and Y, respectively.

Notice that the covariance of X and Y is really the product moment of

X — nux and Y — puy. Further, the mean of pux is given by



,usz(X)zlf_ v il dr—/ [ f(,y) dz dy,

and similarly the mean of Y is given by
py = E(Y) = / y f2(y) dy = [ [ y f(z,y)dydx.
Theorem. Let X and Y be any two random variables. Then Cov(X, Y ) = E(XY ) = E(X) E(Y ).

Proof:

Cov(X,Y)=E(X —pux) (Y —py))
=E(XY —puxY — py X + px py)
= E(XY) — px E(Y) — py E(X) + px py
= BE(XY) — px py — py px + px py
= F(XY) — pux py
— E(XY) — E(X) E(Y).



Corollary : C{]’U(X:X) — JE{.

roof:
F Cov(X,X)=FEXX)-FEX)EX)
= E(X?) — px
= Var(X)
_ 2
=0%.

Example. Let X and Y be discrete random variables with joint density

r+2y _ . _
= forx=1,2; y=1,2

f(ﬂ?-_.y) - {

0 elsewhere.

What 1s the covariance o xy between X and Y.



Answer: The marginal of X is

2
T+ 2y 1
filz)=>" T :18(2$+ﬁ).
y=1

Hence the expected value of X is

2
E(X)=) = fi(x)
r=1

=1f1(1) +2f1(2)
8 10
+

2
f2(y) =) At 8 15 B+ 4).



Hence the expected value of Y is

2
= nyz(y)
y=1

=1 f2(1) + 2f2(2)
7 11

18 T2 18

_ 2

18

Further, the product moment of X and Y is given by

E(XY) = szyf(fﬁ Y)

r=1y=1
= f(L,1)+2f(1,2) +2f(2,1) +4 f(2,2)
3 5 4 6
2l

R TR TR
341048+ 24
= 18

45



Hence, the covariance between X and Y is given by

Cov(X,Y)=E(XY)— EX)E(Y)

45 28\ /29
-5~ (1) (i)
(45) (18) — (28) (29)
(18) (18)
810 — 812
324
2

= "391 = —0.00617.

Note: The covariance between two random variables may be negative

H.W. Let X and Y have the joint density function

r+y if0<zr,y<l1
f(ﬂrny={

0 elsewhere .

What is the covariance between X and Y 7



Theorem. If Xand Y are any two random variables and a, b, ¢, and d are real
constants, then

Cov(aX +b,cY +d) =acCov(X,Y).

Proof:

Cov(aX +b, cY +d)
= FE((aX +b)(cY +d)) — E(aX +b) E(cY +d)
= F (acXY + adX + bcY + bd) — (aE(X) +b) (cE(Y) + d)
— ac E(XY) + ad E(X) + be E(Y) + bd
—[acE(X)E(Y)+ad E(X)+ bc E(Y) + bd]
— ac [E(XY) — E(X) E(Y)]
=acCov(X,Y).



Example. If the product moment of X and Y is 3 and the mean of X and Y are both
equal to 2, then what is the covariance of the random variables 2X + 10 and

(-5/2)Y+37?
Example : Let X and Y have the joint density

ftr-y){

e~ (z+y) for 0 < z,y < o0

)] otherwise.

Are X and Y stochastically independent?

Answer: Since EF(XY) = 3 and E(X) = 2 = E(Y), the covariance of X

and Y is given by
Cov(X,Y)=FXY)-FEX)E(Y)=3—-4=—1.

Then the covariance of 2X + 10 and —EJ Y + 3 is given by

=

C'ov (QX + 10, —%Y —|—3> = 2 (—%) Cov(X,Y)
(=5) (=1)

5.



Remark. Notice that the above Theorem can be furthered improved. That is, if X, Y
, Z are three random variables, then

Cov(X+Y,Z)=Cov(X,Z)+ Cov(Y, Z)

and

Cov(X,Y +2)=Cov(X,Y)+ Cov(X, Z).

The first formula can be established as follows. Consider
Cov(X+Y,Z)=FE(X+Y)Z)-EX+Y)FE(Z)
EXZ+YZ)-FEX)E(Z)—-E(Y)E(Z)
EXZ)-EX)E(Z)+E(YZ)-EY)E(Z)
=Cov(X,Z2)+ Cov(Y, Z).



Theorem. If Xand Y are independent random variables, then
E(XY ) = E(X) E(Y ).
Proof: Recall that X and Y are independent if and only if

f(z.y) = fi(x) f2(y).

Let us assume that X and Y are continuous. Therefore

E(XY) = /_i /_i zy f(z,y)dz dy

= [ [ svn@ pwdd
— (/_Za:fl(:r)d:r> (f_iyfz(y)dy)
— B(X)E(Y)

If X and Y are discrete, then replace the integrals by appropriate sums to

prove the same result.



Example. Let X and Y be two independent random variables with respective

densitv functions:
32 Hfo<z<l1
f(z) =

0 otherwise What is E (%) 2

and

493 ifo<y<1
g(y) =

0 otherwise .
Answer: Since X and Y are independent, the joint density of X and Y is
given by

h(z,y) = f(x)g(y)-

E(é) = [m /m L Wz, y) dz dy

7 f z) g(y) dz dy

i
[ [ L 342 443 da dy

_ (

e

Therefore

[) (o)
) (2)-



Remark:

The independence of X and Y does not imply E (% — —géi‘
but only implies £ (%) =FEX)FE (Y_l). Further, note that E (Y‘l) is not

1
E(Y)"

equal to

Theorem. If Xand Y are independent random variables, then the
covariance between X and Y is always zero, that is Cov(X, Y ) = 0.

Proof:. Suppose X and Y are independent, then by above theorem, we
have  E(XY ) =E(X) E(Y ). Consider
Cov(X,Y ) =E(XY)-E(X)E(Y)
= E(X) E(Y ) — E(X) E(Y)
=0.



Example. Let the random variables X and Y have the joint density
: if (z,y) €4(0,1), (0,—1), (1,0), (—1,0) }
flz,y) =

0 otherwise.

What is the covariance of X and Y 7 Are the random variables X and Y

independent?

Answer: The joint density of X and Y are shown in the following table with

the marginals fi(x) and f5(y).

(z,y) | —1 0 1| faly)
From this table, we see that -1 ol L]0 1
2\ /2\ 1 0 1 0 | 1 2
0=10.0) #5020 = (3) (§) =3 ; i 4
1 0 10 !
and thus s i % i
f(z,y) # fi(z) f2(y)



for all (x, y) is the range space of the joint variable (X, Y ). Therefore X and Y are not
independent. Next, we compute the covariance between X and Y . For this we need

E(X), E(Y) and E(XY). The expected value of X is

1

E(X)= > afilz) = (=1) fi(=1)+ (0)£1(0) + (1) f1(1)

rT=—

Similarly, the expected value of Y is

E(Y) = _Z_ ufay) = (=1) f2(=1) + (0) f2(0) + (1) f2(1)
| = —% +0+ % = 0.

The product moment of X and Y is given by



1

1
E(XY)= ) :ryj(?: y)

rT=—1 Y=—

:(1)f( —1) +(0) f(=1,0) + (=1) f(=1,1)
+(0) £(0, ) (0) £(0,0) +(0) f(0, 1)
+(=1) f(1,=1) + (0) £(1,0) + (1) f(1,1)

= 0.

Hence, the covariance between X and Y is given by
Cov(X,Y)=FEXY)-FEX)E(Y)=0.

Remark. This example shows that if the covariance of Xand Y is zero
that does not mean the random variables are independent. However,
we know from Theorem that if X and Y are independent, then the
Cov(X, Y ) is always zero.



See you next Lecture




LECTURE 18#
Variance of the Linear Combination of Random Variables

Theorem. Let X and Y be any two random variables and let a and b be any two real
numbers. Then

Var(aX +bY) =a*Var(X) +b*Var(Y) +2abCov(X,Y).
Proof:
Var(aX +bY)
-y (jaX LY — E(aX + bY)]Q)

= B ([aX +bY —a B(X) - bE(Y)P)

- E(:n,(X—;f.X)er(Y—HYﬂQ)

=E(a®(X —px)?4+0* (Y —py)* +2ab(X — px) (Y — py))

=a’E (X —px)?) + VB (X — px)?) +2abE((X — px) (Y — py))
=a*Var(X)+b*Var(Y) +2abCov(X.,Y).



Example. f Var(X+Y)=3,Var(X-Y)=1, E(X)=1and E(Y ) =2, then what is
E(XY)?

Answer:

Var(X +Y)=0% + 03 +2Cou(X,Y),
Var(X —Y) =o% + 03 —2Cov(X,Y).

Hence, we getl

Cov(X,Y) = —[Va:r X+Y)—Var(X -Y)]

_ Ll

Therefore, the product moment of X and Y is given by
E(XY)=Cov(X,Y)+ E(X)E(Y)



Example. Let X and Y be random variables with V ar(X) = 4, V ar(Y ) =
9andVar(X-Y)=16. Whatis Cov(X,Y) ?

Answer:
Var(X —=Y)=Var(X)+Var(Y) —2Cou(X,Y)
16=449—-2Cov(X,Y).

Hence

Cov(X,Y) = —%.

Remark. The last Theorem can be extended to three or more random
variables. In case of three random variables X, Y,Z, we have

Var(X +Y + Z2)
=Var(X)+Var(Y)+ Var(Z)
+2Cov(X,Y)+2Cov(Y, Z) + 2Cov(Z, X).



To see this consider

Var(X +Y + Z)

=Var(X+Y)+ Z2)

=Var(X+Y)+Var(Z)+2Cov(X +Y, 7)

—Var(X +Y)+Var(Z) +2Cov(X, Z) 4+ 2Cou(Y, Z)

=Var(X)+ Var(Y)+2Cov(X,Y)
+Var(Z)+2Cov(X,Z) + 2Cov(Y, Z)

=Var(X)+ Var(Y)+ Var(Z2)
+2Cov(X,Y)+2Cov(Y, Z) +2Cov(Z, X).

Theorem. If X and Y are independent random variables with E(X) = 0 = E(Y ), then
Var(XY ) = Var(X) Var(Y ).



rrooil

Var(XY) = E ((XY)?) - (E(X) E(Y))
- B ()
— I (X*Y?)
=F (X 2) E(Y?) (by independence of X and Y')
=Var(X)Var(Y).

Example. Let X and Y be independent random variables, each with
density

% for -0 <x<¥b
flz) =

0 otherwise.

If the Var(XY) = %, then what is the value of 6 7



Answer:

0 50
1 1 |z
EX)= [ —zde=— |Z| =o.

Since Y has the same density, we conclude that E(Y) = 0. Hence

69—4 = Var(XY)

— Var(X) Var(Y)
_ (/1 %:Bzd:r) (./Z %yzdy)
-(3) (3)

Hence, we obtain

0% = 64 or 0 = 2\/5.



Correlation and Independence

The functional dependency of the random variable Y on the random variable X can be

obtained by examining the correlation coefficient. The definition of the correlation
coefficient p between X and Y is given below.

Definition Let X and Y be two random variables with variances o%

and 0%, respectively. Let the covariance of X and Y be Cov(X,Y). Then
the correlation coefficient p between X and Y is given by

- Cov(X,Y)
P = gx Oy '

Theorem. If X and Y are independent, the correlation coefficient between X and Y is
zero.

Proof: p— Cov(X,Y)

OxX Oy
0
Ox Oy

= ().




Remark. The converse of this theorem is not true. If the correlation coefficient of X
and Y is zero, then X and Y are said to be uncorrelated.

Theorem :For any random variables X and Y, the correlation coefficient p satisfies

—1<p<1,

Moment Generating Functions

Definition. Let X and Y be two random variables with joint density
function f(x, y). A real valued function M :R? — R defined by

M(s, t) = E (e* )



It 1s easy to see from this definition that
M(s,0) = E (e°)

and

M(0,t) = E (')

From this we see that

k
p(xty = ZHED| 0 gy
Os (0,0)
for k=1,2,3,4,...; and
0°M (s, 1)
B(xY)= Js Ot *
) (0,0)




Example. Let the random variables X and Y have the joint density

e Y for0<ax<y< oo
flz,y) =

0 otherwise.

What is the joint moment generating function for Xand Y ?

Answer: The joint moment generating function of X and Y is given by
ﬂ/f(‘i' 'f . EX—i—tY)

/ / et f(x,y) dy dx
/ / 5:1:+t’y —'y d‘yd?ﬁf
_/ [/C’G STHiY— ”d?]d?:

B 1
C(1—-s—t)(1—1)

provided s+t<1 and ¢ <1.



Example :If the joint moment generating function of the random
variables Xand Y is

M(s,t) = F(s—|—3t+252—|—18t2+123t)

what 1s the covariance of X and Y 7
Answer:

M(s,t) = F(s+3t—|—232—|—18t2—i—123t)
g : -

%ﬂ = (1+4s+12¢) M (s,t)
S
a7 IM
% _ 1 M(0,0) S = (3+ 36t +125) M(s,1)
> 100 OM
_q G =3 M(0,0)
- I |50

| D = 3.



Hence

px =1 and py = 3.

Now we compute the product moment of X and Y.

2M(s,t) O (GM)

Asot Ot \ Os
= % (M(s,t) (1 +4s+12t))
Therefore 520/ (5. 1)
S.1
) =1(3)+1(12).
aS 8?3 (0,0)
Thus

E(XY) = 15



and the covariance of X and Y is given by

Cov(X,Y) = E(XY) — E(X) E(Y)

=15-(3) (1)
= 12.

Theorem. If Xand Y are independent and let a and b real parameters then

ﬂ/fax_}_by(t) = ﬂfx(&f) f'vfy(bt),
Proof: Let W = aX + bY. Hence
M, x vy (t) = My (t)
— B (V)
_E (Et(aXerY))
_E (me Eth)
_ B (Em}f) E (Etb}’)
= Mx (&f) My (bt)

This theorem is very powerful. It
helps us to find the distribution
of a linear combination of
independent random variables.
The following examples illustrate
how one can use this theorem to
determine distribution of a linear
combination.




Exercises

1. Suppose that X; and X5 are random variables with zero mean and unit

variance. If the correlation coefficient of X; and X5 is —0.5, then what is the
variance of Y = Zi:l k2X), ?

2. If the joint density of the random variables X and Y is

f('ray) -

0 otherwise,
what is the covariance of Xand Y ? Are X and Y independent?

3. Suppose the random variables X and Y are independent and identically

distributed. Let Z = aX + Y. If the correlation coefficient between X and

Z 18 %, then what is the value of the constant a 7



7. If the joint probability density function of X and Y is

1 ifo<z<1l; 0<y<l1
f@ﬂ%—{

0 elsewhere,
then what is the joint moment generating function of X and Y 7

8. Let the joint density function of X and Y be

+  fl<z=y<6
flz,y) =

= ifl<z<y<é.

What is the correlation coefficient of X and Y 7

14. Let Y and Z be two random variables. If Var(Y) = 4, Var(Z) = 16,
and Cov(Y, Z) = 2, then what is Var(3Z — 2Y)?



7 The joint density function of two continuous random variables X and Y is

o y) {c_x:}-' 0<x<41<y<>5
X ¥y = )

) 0 otherwise
(a) Find the value of the constant c. (c) Find PIX=3,Y=2).

(b) Find P(1 <X <2,2<Y<3).

3

. The joint probability function of two discrete random variables X and Y is given by f(x, y) = ¢(2x + y), where
x and y can assume all integers such that 0 = x = 2,0 = y = 3, and f(x, y) = 0 otherwise.

(a) Find the value of the constante.  (¢) Find P(X = 1,Y = 2).
(b) Find PX =2, Y =1).



See you next Lecture













LECTURE 19#
Miscellaneous Problems

1) Find the expectation of the sum of points in tossing a pair of fair dice.

2) Suppose that the random variables X and Y have a joint density function given by

c2x+y) 2<x<60<y<S5

0 otherwise

flx,y) = {

Find (a) the constant ¢, (b) the marginal distribution functions for X and Y, (c) the marginal density func-

tions forXand ¥, (d) P3 <X <4,Y = 2),(e) P(X = 3),(f) P(X + Y = 4), (g) the joint distribution func-
tion. (h) whether X and Y are independent.

3)
If X and Y have the joint density function

3 == 7 < < <y =

flx,y) = {4 » 0<x<LO<y<t
0 otherwise

find (a) f(y|x), (b) P(Y > 1|

< X < 5 + dx).

I || =
bd | =



4)

The joint density function of the random variables X and Y is given by

8xy 0=x=1.0=vy =x
f(x,y}={r} Y

0 otherwise

Find (a) the marginal density of X, (b) the marginal density of ¥, (c) the conditional density of X, (d) the
conditional density of Y.

5)

The distribution function for a random variable X is

{l—e‘l“ x = 0
0 xr = 0

Find (a) the density function, (b) the probability that X = 2, and (c) the probability that —3 < X = 4,



6)

A random variable X has the density function f(x) = ¢/(x? + 1), where —= < x < =, (a) Find the value of
the constant ¢. (b) Find the probability that X2 lies between 1 /3 and 1.

7) Find (a) the variance, (b) the standard deviation of the sum obtained in tossing

a pair of fair dice .

8) Find the characteristic function of the random variable X having density function given by

fx) = {1,’2& x| <a

0 otherwise

9) A random variable X has density function given by

2e X x =10
f) = {U x<0

Find (a) the moment generating function, (b) the first four moments about the origin.

el

10) For the random variable of Problem 9.

(a) find P(| X — | = 1).

b) Use Chebyshev’s inequality to obtain an upper bound on P([X — x| = 1)
and compare with the result in (a).



LECTURE 20#
Miscellaneous Problems

1) Find the expectation of the sum of points in tossing a pair of fair dice.

Let X and Y be the points showing on the two dice. We have
_ _ (1 LA 1y _ 7
o= () o) - +o2) -

EX+Y)=EX) + EY)=17

Then, by Theorem 3-2,



2.33. Suppose that the random variables X and Y have a joint density function given by

c2x+y) 2<x<6,0<y<S5
flx,y) = ,
0 otherwise

Find (a) the constant ¢, (b) the marginal distribution functions for X and Y, (c) the marginal density func-
tionsforXand ¥, (d) P(3 <X <4,Y = 2), (e) P(X = 3), (f) P(X + Y = 4), (2) the joint distribution func-

tion, (h) whether X and Y are independent.

(a) The total probability is given by

6 5 il 1.-1
J [ c(2x + y)dxdy = J 1f:(lt}' + 3)

x=2Jy=1) X

6
=J. r:(l(h + zz—s)dt = 210c¢

For this to equal 1, we must have ¢ = 1,/210.

(b) The marginal distribution function for X is

Fi(x) = PX = x) = J.I J.I flu, v)dudv

H==wlp==w

-

J. J. Odudv = 0 x <2

H==x]p==mx

Ry 5
2u + v _ 2x2+ 5x — 18 _
=<J. J-:.I_nwdudt = R4 2=x<6

=2

210

=0

6 (5 X
[ J WMV, =1 x=6

)



If X and Y have the joint density function

3
=43 00=<x<1l0<y<]l
-x', » — 4 o -
o) {0 otherwise

find (a) f(y|x), b) P(Y > 3|3 < X < 3 + d).

''g
fi) = J (Z 2 w)cly =
0

3 + 4xy
&y _J333, 0<r<lI

fl(x)

91—

(a) For0 <x<1,

W

-+

09| =

and f(y|x) =
0 other y

For other values of x, f( y|x) is not defined.

¥ 3o+ 2y

(b) P(Y>%|%<X<%+dx)=j f(y|.'2.)dy=J' .
1/2 1/2




The marginal distribution function for Y is

Fyy) = P(Y = y) = J Flu. v)dudv

o bF &) —

'

f Odudv =0 y<0
Ju==m p==F
L 2 .
Qu + v v+ 16y
— dudv =———=— 0=y<5
Ju=0J)v=0 2”‘] 105
© 2u+ v
—— dudv = 1 y=5
Ju=2Jv=0 210 ’

(c) The marginal density function for X is, from part (b),

d Fh+5ym 2<x<6

x) = ——F,x) =
fi) dx 1) 0 otherwise

The marginal density function for Y is, from part (b),

2v + 16)/105 0 <y <35
fly) = %Fz(}’) = {( g )/ .

0 otherwise

_ 1 [ N — 3
(d) P3<X<4Y=2)= ZIUL_E.L_Z{ZI + vidxdy = 20

1[5 [ 73
(€) P(X = 3) = 310 . ﬂ(lr + v)dxdy = 73



(f) PX+Y>=4)= ﬂ f(x, y)dxdy
H

where 2R is the shaded region of Fig. 2-20. Although this can be found, it is easier to use the fact that

PX+Y>=4)=1—-PX+Y=4) =1 - ” filx, y)dxdy

where 9’ is the cross-hatched region of Fig. 2-20. We have

1 4 4—x 2
P(X+YE4}=mJ. J. {Zx-l'y:ldxdy:E
xr=21y=0
Thus P(X + Y > 4) = 33/35.
¥ v
4—
\_ 1
9 o
1_
| 1 |
i} 1 2 3 4 i

Fig. 2-21




(g) The joint distribution function is

Fir,y) = PX =x,Y<y) = J J fu, v)dudv

== f= =0

In the uv plane (Fig. 2-21) the region of integration is the intersection of the quarter plane 1 = x, v = yand
the rectangle 2 < u << 6, 0 << v << 5 [over which f(u, ) is nonzero]. For (x, v) located as in the figure, we have

& ¥ ] W 2
. 2u + v _ley +y

When (x, y) lies inside the rectangle, we obtain another expression, etc. The complete results are shown in
Fig. 2-22.

(h) The random variables are dependent since

f{l-, y) #F f|{—1:}f2(}‘]

or equivalently, F(x, y) # F(x)F,(y).



3) 2.28. If X and Y have the joint density function

3
oy  Q<<xe<lL0<y< ]
XY= {4 . ;
s 0 otherwise

find (a) f(y[x). 0) P(Y > 3|3 < X < § + d).

|-

(@) For0<x<1,

K (s ) S . x
)= =4 xy ldy:= T +5
Hh® J0(4 SO TR

flx,y) 2 [ I |
X ).' y
and f(ylx) = f(x) — 3+ 2x

; 0 other y

For other values of x, f( y|x) is not defined.

(b) Y>3z < X<

[0 T

+ dx) = J.' f(y|dy = Jl 7
/2 /2

32y




4)

2.29. The joint density function of the random variables X and Y is given by < -
8xy 0=x=10=y=x
flx,y) = { .
0 otherwise

Fig. 217

Find (a) the marginal density of X, (b) the marginal density of ¥, (c) the conditional density of X, (d) the
conditional density of Y.

The region over which f(x, v) is different from zero is shown shaded in Fig. 2-17.

(a) To obtain the marginal density of X, we fix x and integrate with respect to y from 0 to x as indicated by the
vertical strip in Fig. 2-17. The result is

X

fﬁHJ Sxvdy = 4¢3
0

for 0 << x << 1. For all other values of x, f; (x) = 0.

(b) Similarly, the marginal density of Y is obtained by fixing y and integrating with respect to x fromx = ytox =1,
as indicated by the horizontal strip in Fig. 2-17. The result is, for 0 <y < 1,

H(y) = J

x=

1
Bxydx = 4y(1 — y?)
For all other values of y, f, () = 0.

(c) The conditional density function of X is, for 0 <<y < 1,
filx| )—f—{x’y}—{h/“ -y) y=x=1
Y L) 0 other x

The conditional density function is not defined when f,(y) = 0.

(d) The conditional density function of ¥is, for 0 <x <1,

| _mﬂ_szuﬁﬁl
oln = A o othery

The conditional density function is not defined when f;(x) = 0.



1 1 1 1
Check: J fHilx)dx = I4x3dx = 1. J. flvydy = J 4y(1 — ¥v)dv =1
0 0 0 0

1 1
ffﬂﬂﬁdx = J- ] Ex}_.z‘ix =1

-T

X X 2}
Lylxdy = | —dy =1
0 0



2.7. The distribution function for a random variable X is
l—e™> x

F(lx) = {
X

Find (a) the density function, (b) the probability that X > 2, and (c) the probability that —3 < X = 4.

= 0
< 0

o _d_f2® x>0
(a) Jx) = dxf(x) = {0 52 B
(b) PX>2)= J Qe dudy = —e~ 2|, = =4
Another method

By definition, P(X = 2) = F(2) = 1 — e~4. Hence,
PX>2)=1-(1 —e4) =e4

4 0 4
P(F3< X=4) = j f(u)du = j 0du + J 2¢e 2 du
-3 -3

0

(c)

= - =

Another method
P(-3<X=4)=PX=4)— PX=-3)
=R4) —F—3)
=(l1—-e®)—-0)=1—¢e3



2.5. A random variable X has the density function f(x) = ¢/(x*> + 1), where —o < x << %, (a) Find the value of
the constant c¢. (b) Find the probability that X? lies between 1/3 and 1.

(a) We must havﬁJ flx)dx = 1,1.e.,
T _cdx =ctan"rx =cZ_(-Z =1
—:-c_rz + 1 ) —x 2 2
so thatc = 1/m.

(b) If 1 = X? = 1, then either

42,

=X=lo-1=X= ——3. Thus the required probability is

3
lJ— 3/3 dx N ir dx _ gl"] dx
Tlo@+1l T2+l Tlg 2+
= % tan (1) — tan"(?)]

SIS
+ |3

(
\

_m)_ 1
0O 6



3.8. Find (a) the variance, (b) the standard deviation of the sum obtained in tossing a pair of fair dice.

(a) Referring to Problem 3.2, we have E(X) = E(Y) = 1/2. Moreover,
o 1 of LY o) 2 8L
E{P)—E{W)—l-(6)+2(6)+ +6(6)_ 6
Then, by Theorem 3-4,
_ _9 (7T
Var(X) = Var(¥) = & (2
and, since X and Y are independent, Theorem 3-7 gives

Var(X + YY) = Var(X) + Var(Y) = %

(b) Oy.y = VVar(X + Y) = \/%



3.21. Find the characteristic function of the random variable X having density function given by

_J1/2a |x|<a
o) = {O otherwise

The characteristic function is given by

. = R L
iwXy — feox VR fx
E(e'@X) I ace f(x)dx 0 J _ae dx

1 eio.u a eiaw e e—iaw Siﬂ aw
T 2a iw = 2iaw - am
using Euler’s formulas (see Problem 3.20) with § = aw.



3.18. A random variable X has density function given by

e x =0

f{x}:{o x<0

Find (a) the moment generating function, (b) the first four moments about the origin.

o

(a) M(t) = E(e”) = J e"f(x)dx

= [ e(2e2) dx = 2J e~y
1

[ 0

_2(3{1'—2}.:“_ ]
_r—2n_2—r’ assuming t < 2
(b) If Izl < 2 we have
2 Lt R P
s 1-2 T2 ITE T 16
, F , P s
But M(r]:l+pf+pzﬁ+#si+“4ﬁ+...

. 1 1 3 3
Therefore, on comparing terms, b = 5, 5 = 5, jby = 3o My = 5.



3.31. For the random variable of Problem 3.18, (a) find P(| X — x| = 1). (b) Use Chebyshev's inequality to ob-
tain an upper bound on P(| X — x| > 1) and compare with the result in (a).

(a) From Problem 3.18, . = 1/2. Then
Px—pul<=p(|x-L<i)=p -Lax<2
H 2 2 2

3/2
= J- 2e Fdx=1— e°

0
Therefore P(‘X - %‘ = l) =1=(1—¢e7)=¢e?=0.04979
(b) From Problem 3.18, o> = p) — p? = 1/4. Chebyshev’s inequality with € = 1 then gives

P(|X —pul =1)=06?=025

Comparing with (a), we see that the bound furnished by Chebyshev’s inequality is here quite crude. In practice,
Chebyshev’s inequality is used to provide estimates when it is inconvenient or impossible to obtain exact values.



