
Conic sections 

 In this chapter we examine the Cartesian graph of any equation: 

                       

In which A,B, and C are not all zero, and show that it is nearly always a conic 

section. Also, we will give geometric definitions of a circle, parabola, ellipse, and 

hyperbola and derive their standard equations.  

 

1)The circle: the set of points in a plane whose distance from some fixed center 

point is a constant radius value. If the center (h,k) and the radius is r, the standard 

equation for the circle is                        

2) A parabola is the set of points in a plane that are equidistant from given fixed 

point (focus) and fixed line (directrix) in the plane. 

Table of standard-form 

 Equation Focus Directrix Vertex  Opens 

1        (p,0) X=-p (0,0) To the right 

               (h+p,k) X=h-p (h,k) To the right 

2         (-p,0) X=p (0,0) To the left  

                (h-p,k) X=h+p (h,k)  To the left 

3        (0,p) y=-p  (0,0) Up 

               (h,k+p) y=k-p (h,k) Up 

4         (0,-p) y=p (0,0) Down 

                (h,k-p) y=k+p (h,k) Down 

 



Examples: Find the focus, vertex, and directrix of the parabolas and sketch the 

parabola:  

1)        

2)               

3)           

Solution: 

1) We find the value of   in the standard equation:         

         ⇒        so     ⇒    
 

 
  

Then, the focus (   
 

 
), vertex      , and directrix   

 

 
 

 2) H.W      3) H.W 

3) Ellipse is the set of points in a plane whose distance from two fixed points 

(foci) in the plane have a constant sum (2a). 

Table of standard-form 

 Equation Foci Vertices Minor axis center 

1   

  
 

  

  
   

    (    ) 
         

    (    )     (    ) (0,0) 

      

  
 

      

  
   

    (     ) 

 
    (     )     (     ) (h,k) 
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    (    )     (    ) (0,0) 

      

  
 

      

  
   

    (     ) 

 
    (     )     (     ) (h,k) 

 



Examples: Find the center, vertices, and foci of the ellipse and sketch the ellipse:  

1) 
  

  
 

  

 
   

2)                   

3)               

Solution: 

1) Center :             vertices:                                            

Foci:          ⇒     √    ⇒    √  ⇒     (          ( √   ) 

 

 

2)H.W          3)H.W 

 

3) Hyperbola is the set of points in a plane whose distance from two fixed points 

(foci) in the plane have a constant difference. 

Table of standard-form 

 Equation Foci Vertices Minor axis center 

1   

  
 

  

  
   

    (    ) 
         

    (    )     (    ) (0,0) 

      

  
 

      

  
   

    (     ) 

 
    (     )     (     ) (h,k) 

2   

  
 

  

  
   

    (    ) 
         

    (    )     (    ) (0,0) 

      

  
 

      

  
   

    (     ) 

 
    (     )     (     ) (h,k) 



 

4) Examples: Find the center, vertices, and foci of the hyperbola and sketch the 

hyperbola: (i) 
  

 
 

  

 
     (ii)                 . 

Solution: 

1) Center :             vertices:                                            

Foci:          ⇒     √   ⇒    √  ⇒     (          (    ) 

 

 

2)H.W 

Note that eccentricity is 
 

 
 (  

 

 
) where        

 



Equations for Rotating coordinate Axes 

The equations for the rotations we use are derived in the following way. In the 

notation of Figure (1) which shows in anticlockwise rotation about the origin 

through an angle ( ),                                                                                      

                                                                                         

       (    )  
 

  ⃑⃑⃑⃑  ⃑
     (    )  

 

  ⃑⃑⃑⃑  ⃑
                      Figure (1) 

    ⃑⃑⃑⃑    ( )     ( )    ⃑⃑⃑⃑    ( )    ( )                                                   

    ⃑⃑⃑⃑    ( )    ( )    ⃑⃑⃑⃑    ( )     ( )                                           

Note that      ⃑⃑⃑⃑    ( )          ⃑⃑⃑⃑    ( ) 

Thus,   

       ( )       ( )          

       ( )       ( )   

Now, if we apply equations above to the equation                        

We obtain a equation                                    where: 

                            

          (   )      

                            

                

                

      

To find ( ), we put      and solve the resulting equation,  



       (   )         so       
   

 
          

 

   
  

EXAMPLE: Decided whether the conic section with following equations  

represents a Parabola, an Ellipse, or Hyperbola. 

   i)                    (ii)    √          

  (iii)      √           √      

 

Solution: 

i) The equation          has                  We substitute these 

values into       
 

   
        

 

   
          

 
    

 

 
   

 

 
 

Thus,  
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ii)H     iii) H     

 



 

  

 



 

 

 



 

 

 

 



 

 

 

 



 



 

 



 



 



 

 



 

 



 

Graphs of Polar Equations  

1)The polar equation is a circle equation if   

● 𝑟 = ∓𝑎 ,  where 𝑎 ≠ 0 

● 𝑟 = ∓𝑎 sin 𝜃  , where 𝑎, 𝑏 ∈ 𝑅 − {0} 

● 𝑟 = ∓𝑎 cos 𝜃  , where 𝑎, 𝑏 ∈ 𝑅 − {0} 

● 𝑟2 = ∓𝑎 cos 𝜃   or   ●  𝑟2 = ∓𝑎 sin 𝜃 , where 𝑎, 𝑏 ∈ 𝑅 − {0}(a semi-circle) 



2) Limaçons has formed as  𝑟 = 𝑎 ± 𝑏 cos 𝜃  or  𝑟 = 𝑎 ± 𝑏 sin 𝜃   𝑤ℎ𝑒𝑟𝑒 𝑎, 𝑏 ∈ 𝑅 − {0}:   

●The polar equation is a Cardioid curve if  𝑎 = 𝑏 

●The polar equation is a dimpled curve if  𝑎 > 𝑏 

●The polar equation is a inner loop curve if  𝑎 < 𝑏 

               

    Cardioid curve                                dimpled curve                           inner loop curve 

 

 

 



3) Rose curve if the polar equation has form as 

● 𝑟 = 𝑎 cos 𝑛𝜃   or  𝑟 = 𝑎 sin 𝑛𝜃   𝑤ℎ𝑒𝑟𝑒 𝑎 ∈ 𝑅 − {0} 𝑎𝑛𝑑 𝑛 ≠ 1 𝑎𝑛𝑑 𝑛 ∈ 𝑁  

Note that:  if 𝑛 is an odd number then the number of leaves equal 𝑛. 

       If 𝑛 is an even number then the number of leaves equal 2𝑛. 

   

 𝑟 = cos 2𝜃        𝑟 = cos 3𝜃           𝑟 = cos 4𝜃           𝑟 = cos 5𝜃                 𝑟 = sin 2𝜃 

4) Lemniscate Curve if the polar equation has form as 

𝑟2 = 𝑎 cos 𝑛𝜃   or  𝑟2 = 𝑎 sin 𝑛𝜃   𝑤ℎ𝑒𝑟𝑒 𝑎 ∈ 𝑅 − {0} 𝑎𝑛𝑑 𝑛 ≠ 1 𝑎𝑛𝑑 𝑛 ∈ 𝑁 

 



5) The polar equation has Spiral curve form if  𝑟 = 𝑎𝜃 , 𝑤ℎ𝑒𝑟𝑒 𝑎 ∈ 𝑅 − {0} 

 

𝑟 = 𝜃    
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1) Graph the Curve                                                  (3,                    (3,       

Solution: Circle radius 3 centered at (                              (3,
  

2
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  2) Graph the Curve                                              (-3,                    (-3,       

Solution: Circle radius 3 centered at (                                (-3,
 

2
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3) Graph the Curve           

Solution: The curve is symmetric about the x-axis because (     on the graph 

then         (                  (                    

  There is not symmetric about the y-axis and the origin point  
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4) Graph the Curve          

Solution: The curve is symmetric about the y-axis because (     on the graph 

then 
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There is not symmetric about the x-axis and the origin point  
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5) Graph the Curve  2           

Solution:  

●The curve is symmetric about the x-axis because (     on the graph then 

 2        (       2            (                    

●The curve is symmetric about the y-axis because (     on the graph then 

(   2        (       2            (                     

●The curve is symmetric about the origin point because (     on the graph then 

(   2        (      2            (                     
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5) Graph the Curve  2          

Solution:  

●The curve is symmetric about the x-axis because (     on the graph then 

(   2       (        2                        2          , So 

(        on the graph 

●The curve is symmetric about the y-axis because (     on the graph then 

 2       (        2                        2          So 

(       on the graph 

 Together, these two symmetries imply symmetry about                   
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6) Graph the Curve              

Solution:  

●The curve is symmetric about the x-axis because (     on the graph then 

           (                       (                    

There is not symmetric about the y-axis and the origin point 

  r (     

0 4 (     

 

 
 2+

2√ 

2
 (    

 

 
) 

 

 
 2+

2

√2
 (    

 

 
) 

 

 
 2+

2

2
 (  

 

 
) 

 

 
 2+0 (  

 

 
) 

  

 
 2-

2

2
 (  

  

 
) 

  2-2 (     

              

 



6) Graph the Curve              

Solution:  

●The curve is symmetric about the y-axis because (     on the graph then 
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There is not symmetric about the x-axis and the origin point 
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6) Graph the Curve              

Solution:  

●The curve is symmetric about the y-axis because (     on the graph then 
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             So  (       on the graph 

There is not symmetric about the x-axis and the origin point 
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7) Graph the Curve              

Solution:  

●The curve is symmetric about the x-axis because (     on the graph then 

           (                       (                    

There is not symmetric about the y-axis and the origin point 
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5) Graph the Curve         

Solution:  

●The curve is symmetric about the x-axis because (     on the graph then 

     (               ,  So (       on the graph 

●The curve is symmetric about the y-axis because (     on the graph then 

       (                                         , So  

(       on the graph 

 Together, these two symmetries imply symmetry about                   
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5) Graph the Curve         

Solution:  

●The curve is symmetric about the x-axis because (     on the graph then 

       (                                           ,  

        So (       on the graph 

●The curve is symmetric about the y-axis because (     on the graph then 
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5) Graph the Curve         

Solution:  

●The curve is symmetric about the y-axis because (     on the graph then 
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There is not symmetric about the x-axis and the origin point 
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3) Graph the Curve           

Solution: The curve is symmetric about the x-axis because (     on the graph 

then        (                   (                    

  There is not symmetric about the y-axis and the origin point  
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5) Graph the Curve  2         

Solution:  

●The curve is symmetric about the x-axis because (     on the graph then 
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●The curve is symmetric about the y-axis because (     on the graph then 
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5) Graph the Curve     where          
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Chapter 1

Introduction: Infinite
Sequences

M
IM

OONThe term sequence in mathematics is used to describe an unending suc-
cession of numbers. The numbers in a sequence are called the terms of the
sequence. For example

< 1, 3, 5, . . . >

< 1,
1

2
,
1

4
, . . . >

Definition
An infinite sequence is a function whose domain is the set of positive inte-
gers.
Let Un =< U1, U2, U3, . . . > be infinite sequence and by definition above
Un : N −→ R (Un is called the nth term of the sequence). For example

Un = 2, 4, 6, . . . , 2n, . . .

Un = 0,
1

2
,
2

3
,
3

4
, . . . , 1− 1

n
, . . .

Un = 1,−1, 1, . . . , (−1)n + 1, . . .

Examples Find a formula for nth term of the infinite sequence?

< 1,−4, 9,−16, . . . >

< 3, 8, 15, . . . >

< 1,
1

2
,
1

6
,

1

24
, . . . >

< 1,
1

2
,
1

4
, . . . >

1



CHAPTER 1. INTRODUCTION: INFINITE SEQUENCES

Solution :

< 1,−4, 9,−16, . . . , (−1)n+1n2, . . . >

< 3, 8, 15, . . . , n2 − 1, . . . >

< 1,
1

2
,
1

6
,

1

24
, . . . ,

1

n!
>

< 1,
1

2
,
1

4
, . . . , >

1.1 Graphs of Sequences

The graph of the sequence Un is the graph of the equation

f(n) = Un, n = 1, 2, 3, . . .

For example the graph of sequence Un = 1, 1
2
, 1

3
, . . . We need to find the for-

mula of sequence Un =

Definition

M
IM

OON

A sequence Un is said to converge and have limit L ∈ R if given any
ε > 0, there is a positive integer N such that for all n > N ,

|Un − L| < ε.

In this case, we write limn−→∞ Un = L.
Note that

if lim
n−→∞

Un = L, then Un converges.

if lim
n−→∞

Un =⇒∞, then Un diverges.

Examples Do these sequences converge or diverge?

Un =
1− 2n

1 + 2n
.

2



CHAPTER 1. INTRODUCTION: INFINITE SEQUENCES

Un =
n2 − 2n+ 1

n− 1
.

Un =
ln(n)

n
.

Un = sin(
Π

2
+

1

n
).

Un =
(

1− 1

n

)n
.

Solution :

lim
n−→∞

1− 2n

1 + 2n
= lim

n−→∞

1/n− 2

1/n+ 2
= lim

n−→∞

−2

2
= −1, thus it converges.

lim
n−→∞

n2 − 2n+ 1

n− 1
= lim

n−→∞

(n− 1)(n− 1)

n− 1
= lim

n−→∞
n−1 =∞, thus it diverges.

lim
n−→∞

ln(n)

n
= lim

n−→∞

1/n

1
, (by using L’Hopital’s rule) =⇒ lim

n−→∞

1

n
= 0, thus it converges.

lim
n−→∞

sin(
Π

2
+

1

n
) = sin( lim

n−→∞

Π

2
+ lim
n−→∞

1

n
) = sin(

Π

2
) = 1, thus it converges.

lim
n−→∞

(
1− 1

n

)n

M
IM

OON

the solution will be in the lecturer.

3



CHAPTER 1. INTRODUCTION: INFINITE SEQUENCES

THEOREM: The Sandwich Theorem for Sequences
Let< an > and < bn > be sequences of real numbers. If an ≤ bn ≤ cn holds
for all n beyond some index N , and if limn−→∞ an = limn−→∞ cn = L, then
limn−→∞ bn = L also.
Applying the sandwich theorem.

M
IM

OON

Example Is the sequence Un =
cosn

n
converge or diverge?

Solution:

cosn⇒− 1 ≤ cosn ≤ 1

⇒−1

n
≤ cosn

n
≤ 1

n

⇒0 ≤ cosn

n
≤ 0, since lim

n−→∞

−1

n
= lim

n−→∞

1

n
= 0.

Thus, the sequence
cosn

n
⇒ 0 converges.

Note that a sequence is called increasing if un < un+1 for all n as
< 2n−1

2n
> . Similarly, a sequence is decreasing if un > un+1 for all n as

< n+1
n
> .

THEOREM
The following sequences converge to the limits listed below:

• limn−→∞
lnn
n

= 0

• limn−→∞
n
√
n = 1

• limn−→∞ x
1
n = 1, (x > 0)

• limn−→∞ x
n = 0, (|x| < 1)

• limn−→∞

(
1 + x

n

)n
= ex, ( for any x).

4



CHAPTER 1. INTRODUCTION: INFINITE SEQUENCES

Exercises

Q1) Given a formula for the nth term Un of a sequence < un > . Find
the values of u1, u2, u3, u4, and u5.

• Un = 1−n
n2

• Un = 2n

2n+1

• Un = 1
n!

Q2) Find the sequence

• If un = un−1 + 1, where u1 = 1.

• If un+1 = un + 1
2n
, where u1 = 2.

• If un+1 = un + un−1, where u1 = 1, u2 = 1.

Q3) Find a formula for the nth term of the sequence.

• < −3,−2,−1, 0, 1, . . . >

• < 1, 5, 9, 13, 17, . . . >

• < 1, 0, 1, 0, 1, . . . >

Q4) which of the sequence below converge, and which diverge?

• Un =
1− 5n4

n4 + 8n3
.

• Un = ln
(n+ 1

n

)n
.

• Un =
lnn

n
1
n

.

• Un =
(
n−
√
n2 − n

)
.

• Un =
sinn

n
.

M
IM

OON
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Chapter 2

Introduction: Infinite Series

Infinite series is an expression that can be written in the form

∞∑
n=1

Un = u1 + u2 + u3 + · · ·+ un + · · ·

Some Special Series

1)Geometric series : If a, r ∈ R, then a series of the form

∞∑
n=1

arn = a+ ar + ar2 + · · ·+ arn−1 + · · ·

for example
∞∑
n=1

3n = 3 + 9 + 27 + · · ·

2)P− series : If p ∈ R, then a series of the form
∑∞

n=1
1
np is called P-series.

For example
∞∑
n=1

1

n
√
n

=
∞∑
n=1

1

n3/2

3)Harmonic series : It is a special case of p-series when p = 1. There-
fore, we have form

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ · · ·

4)Telescoping series : The series has a form

∞∑
n=1

(
Un − Un+1

)
,

6



CHAPTER 2. INTRODUCTION: INFINITE SERIES

for example

(1− 1

2
) + (

1

2
− 1

3
) + (

1

3
− 1

4
) + . . .+ (

1

n
− 1

n+ 1
) + · · ·

M
IM

OON
2.1 Convergence and Divergence Test for In-

finite Positive Series

Test1 : Geometric series

∞∑
n=1

arn = a+ ar + ar2 + . . .+ arn−1 + . . .

Sn = a+ ar + ar2 + . . .+ arn−1

rSn = ar + ar2 + ar3 + . . .+ arn−1 + arn

Sn =
a(1− rn)

1− r
,

where a first term and r common ratio (r = U2

U1
= U3

U2
= . . .)

Test condition

1) If |r| < 1, then rn −→ 0 as n −→ ∞ and the series converges with
sum total a

1−r .
2) If |r| ≥ 1, then rn −→∞ as n −→∞ and the series diverges.

Summary If |r| < 1, then Un converges. If |r| ≥ 1, then Un diverges.
Example:

1

9
+

1

27
+

1

81
+ . . .

r = 1/27
1/9

= 1/81
1/27

= 1/3 < 1 so the series converges with sum 1/9
1−1/3

= 1/6.
Example: Dose

2 + 4 + 8 + 16 + . . .

converge or diverge?

r = 4/2 = 8/4 = 2 ≥ 1 so the series diverges.

7



CHAPTER 2. INTRODUCTION: INFINITE SERIES

Test2 : Integral test
1)f(n) = f(x) able to integral.
2)f(x) is decreasing function.

3)If limL−→∞
∫ L
a
f(x)dx is exist then the series converges otherwise diverges.

M
IM

OON

Example: Dose
1

e
+

2

e4
+

3

e9
+ . . . =

∞∑
n=1

n

en2

converge or diverge?

1)f(n) = f(x) = x

ex2
= xe−x

2

2)f(x) is decreasing function because f
′
(x) = −2x2e−x

2
+ e−x

2
.

3)

lim
L−→∞

∫ L

a

f(x)dx = lim
L−→∞

∫ L

1

xe−x
2

dx

−1

2
lim

L−→∞

(
e−L

2 − e−1
)

=
1

2e
,

so the series converges.
Test3 : Ratio test

Let
∑∞

n=1 Un be a series of positive terms and let ρ = limn−→∞
Un+1

Un

1)If ρ < 1, then
∑∞

n=1 Un converges.
2)If ρ > 1 or ρ =⇒∞, then

∑∞
n=1 Un diverges.

3)If ρ = 1, then the ratio test fails.
Example: Dose

∑∞
n=1

1
n!

converge or diverge?
Let Un = 1

n!
, then Un+1 = 1

(n+1)!
. Consider

ρ = lim
n−→∞

Un+1

Un

= lim
n−→∞

1/(n+ 1)!

1/n!

= lim
n−→∞

n!

(n+ 1)!

= lim
n−→∞

n!

(n+ 1)n!

= lim
n−→∞

1

n+ 1
= 0 < 1

8



CHAPTER 2. INTRODUCTION: INFINITE SERIES

thus,
∑∞

n=1
1
n!

converges.

Test4 : Root test

Let
∑∞

n=1 Un be a series of positive terms and let ρ = limn−→∞
n
√
Un

1)If ρ < 1, then
∑∞

n=1 Un converges.

2)If ρ > 1 or ρ =⇒∞, then
∑∞

n=1 Un diverges.

3)If ρ = 1, then the ratio test fails.

Example: Does
∑∞

n=1
1
nn converge or diverge?

We have n
√
Un = n

√
1
nn = 1

n
. Consider

ρ = lim
n−→∞

n
√
Un

= lim
n−→∞

1

n
= 0 < 1,

thus,
∑∞

n=1
1
nn converges.

Test5 : P− Test

Let
∑∞

n=1
1
np be a P -series. Then

1)If P > 1, then
∑∞

n=1
1
np converges.

2)If 0 < P ≤ 1, then
∑∞

n=1
1
np diverges.

Example: Does
∑∞

n=1
1
5√n converge or diverge?

It is clearly p = 1/5 and 0 < 1
5
≤ 1, then

∑∞
n=1

1
5√n diverges

M
IM

OON

Test 6 : Comparison Ratio Test

Let
∑∞

n=1 Un be a series of positive terms. Further,

let
∑∞

n=1 Cn be a known convergent series of positive terms, and

let
∑∞

n=1 dn be a known divergent series of positive terms

9



CHAPTER 2. INTRODUCTION: INFINITE SERIES

1)If

lim
n−→∞

Un
Cn

= L, then
∞∑
n=1

Un converges.

2)If

lim
n−→∞

Un
dn

= L > 0, then
∞∑
n=1

Un diverges.

3)If

lim
n−→∞

Un
dn

=⇒∞, then
∞∑
n=1

Un diverges.

M
IM

OONExample: Does
∑∞

n=1
5n+1

3n
converge or diverge?

We have 5n

3n
which we know is divergent by geometric test r = 5/3 > 1.

So, let dn = 5n

3n
. Now

lim
n−→∞

Un
dn

= lim
n−→∞

5n + 1/3n

5n/3n

= lim
n−→∞

5n + 1

5n

= 1 > 0.

Thus by C.R.T (Comparison Ratio Test) part 2, the series
∑∞

n=1
5n+1

3n
diverge.

2.2 Alternating series

If < un > is a sequence of positive term. Then,
∑∞

n=1(−1)n+1un is called an
alternating series as

∑∞
n=1(−1)n+1 1

n!
.

Absolutely convergent
A series

∑∞
n=1 un is said to be absolutely convergent if and only if

∑∞
n=1 |un|

converges. For example
∑∞

n=0
(−1)n

2n
.

Conditionally convergent
If a series

∑∞
n=1 un satisfies each of the following three conditions, then∑∞

n=1 un conditionally convergent

10



CHAPTER 2. INTRODUCTION: INFINITE SERIES

•
∑∞

n=1 un is an alternating series.

• limn−→∞ un = 0.

• |un+1| ≤ |un|.

For example: Does
∑∞

n=1(−1)n n
n2+1

converge or diverge?

Solution: We have

•
∑∞

n=1(−1)n n
n2+1

= −1
2

+ 2
5
− 3

10
+ . . . which is an alternating series.

• limn−→∞(−1)n n
n2+1

= 0.

• It is clearly |un+1| ≤ |un|.

Thus, the series is a conditionally convergent.

M
IM

OON
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Chapter 3

Power Series

The series
∑∞

n=0 an(x− b)n is called a power series in (x− b), where an is
a sequence in R. When b = 0, we say that

∑∞
n=0 anx

n is a power series.

Example: For what values of x does the series
∑∞

n=0
(x−3)n

n!
converge?

Apply the ratio test

lim
n−→∞

|Un+1

Un
| < 1 =⇒ | (x− 3)n+1n!

(n+ 1)!(x− 3)n
|

=⇒ lim
n−→∞

|(x− 3)n(x− 3)n!

(n+ 1)n!(x− 3)n
|

=⇒ lim
n−→∞

|(x− 3)

(n+ 1)
|

=⇒|(x− 3)| lim
n−→∞

1

n+ 1

=⇒|(x− 3)| × 0 = 0 < 1, for all x.

Thus, the series converge for all x ∈ R.M
IM

OON

Example: Find the series’ interval of convergence for
∑∞

n=0(lnx)n ?

Apply the ratio test limn−→∞ |Un+1

Un
| < 1

Exercise

Example: Find the series’ interval of convergence for
∑∞

n=1
(−1)n+1(x+2)n

n2n

?

12
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Apply the ratio test limn−→∞ |Un+1

Un
| < 1

=⇒| (x+ 2)n+1n2n

(n+ 1)2n+1(x+ 2)n
| < 1

=⇒|(x+ 2)|
2

lim
n−→∞

n

n+ 1
< 1

=⇒|(x+ 2)|
2

< 1

=⇒− 2 < x+ 2 < 2

=⇒− 4 < x < 0.

Now, when x = −4 we have
∑∞

n=1
−1
n

divergent series; when x = 0 we have∑∞
n=1

(−1)n+1

n
, the alternating series which converges conditionally.

Thus, the interval of convergence is −4 < x ≤ 0.

M
IM

OON
3.1 Taylor series and Manclaurin series

Suppose f is a given function which is k times differentiable at a given point
x = a. Then, Taylor series is

f(x) = f(a)+f
′
(a)(x−a)+

f
′′
(a)(x− a)2

2!
+. . .+

fk(a)(x− a)k

k!
+. . . =

∞∑
n=0

fn(a)(x− a)n

n!
.

When a = 0, in this case, the Taylor series is called Maclaurin series, and
is given by

f(x) = f(0) + f
′
(0)x+

f
′′
(0)x2

2!
+ . . .+

fk(0)xk

k!
+ . . . =

∞∑
n=0

fn(0)xn

n!

Example: Find the Taylor series expansion of f(x) = sin(x) about the point
a = Π

2
?

13
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We have

f(x) = sin(x) =⇒f(
Π

2
) = sin(

Π

2
) = 1,

f ′(x) = cos(x) =⇒f ′
(
Π

2
) = cos(

Π

2
) = 0,

f ′′(x) = −sin(x) =⇒f ′′
(
Π

2
) = −sin(

Π

2
) = −1,

f ′′′(x) = −cos(x) =⇒f ′′′
(
Π

2
) = −cos(Π

2
) = 0,

f 4(x) = sin(x) =⇒f 4(
Π

2
) = sin(

Π

2
) = 1,

and so on. Thus, the Taylor series is

f(x) =f(
Π

2
) + f

′
(
Π

2
)(x− Π

2
) +

f
′′
(Π

2
)(x− Π

2
)2

2!
+ . . .+

fk(Π
2
)(x− Π

2
)k

k!
+ . . .

=1− (x− Π/2)2

2!
+

(x− Π/2)4

4!
+ . . .

Example: Find the Manclaurin series expansion of f(x) = sin(x)?

We have

f(x) = sin(x) =⇒f(0) = sin(0) = 0,

f ′(x) = cos(x) =⇒f ′
(0) = cos(0) = 1,

f ′′(x) = −sin(x) =⇒f ′′
(0) = −sin(0) = 0,

f ′′′(x) = −cos(x) =⇒f ′′′
(0) = −cos(0) = −1,

f 4(x) = sin(x) =⇒f 4(0) = sin(0) = 0,

and so on. Thus, the Manclaurin series is

f(x) =f(0) + f
′
(0)x+

f
′′
(0)x2

2!
+ . . .+

fk(0)xk

k!
+ . . .

=x− x3

3!
+
x5

5!
− x7

7!
+ . . .

=
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
.

Example: Find the Manclaurin series expansion of f(x) = cos(x)?

14
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We have

f(x) = cos(x) =⇒f(0) = cos(0) = 1,

f ′(x) = −sin(x) =⇒f ′
(0) = −sin(0) = 0,

f ′′(x) = −cos(x) =⇒f ′′
(0) = −cos(0) = −1,

f ′′′(x) = sin(x) =⇒f ′′′
(0) = sin(0) = 0,

f 4(x) = cos(x) =⇒f 4(0) = cos(0) = 1,

and so on. Thus, the Manclaurin series is

f(x) =f(0) + f
′
(0)x+

f
′′
(0)x2

2!
+ . . .+

fk(0)xk

k!
+ . . .

=1− x2

2!
+
x4

4!
− x6

6!
+ . . .

=
∞∑
n=0

(−1)n
x2n

(2n)!
.

Note that if f(x) = sin(x) =
∑∞

n=0(−1)n x2n+1

(2n+1)!
, then

f
′
(x) =

∞∑
n=0

(−1)n
(2n+ 1)x2n+1−1

(2n+ 1)!

=
∞∑
n=0

(−1)n
(2n+ 1)x2n

(2n+ 1)(2n)!

=
∞∑
n=0

(−1)n
x2n

(2n)!

=cos(x).

Find the Manclaurin series expansion of f(x) = ex?

Exercise

Example: Express

∫
sin(x2)dx as a series?

15
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Note that

sin(x) =x− x3

3!
+
x5

5!
− x7

7!
+ . . .

sin(x2) =x2 − (x2)3

3!
+

(x2)5

5!
− (x2)7

7!
+ . . .

=x2 − x6

3!
+
x10

5!
− x14

7!
+ . . .

So, we have∫
sin(x2)dx =

∫ [
x2 − x6

3!
+
x10

5!
− x14

7!
+ . . .

]
dx

=
x3

3
− x7

7× 3!
+

x11

11× 5!
− x15

15× 7!
+ . . .

Example: show that eiθ = cos(θ) + isin(θ), where i =
√
−1 is complex num-

ber by using power series?

Note that ex = 1 + x+ x2

2!
+ x3

3!
+ . . .+ xn

n!
+ . . .

Also, we have i2 = −1, i3 = −i, i4 = 1, i5 = i, i6 = −1, and so on.

eiθ =1 +
(iθ)

1!
+

(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+

(iθ)6

6!
+ . . .

=1 +
iθ

1!
− θ2

2!
− iθ3

3!
+
θ4

4!
+
iθ5

5!
− θ6

6!
+ . . .

=
(

1− θ2

2!
+
θ4

4!
− θ6

6!
+ . . .

)
+ i
(
θ − θ3

3!
+
θ5

5!
+ . . .

)
=
∞∑
n=0

(−1)n
θ2n

(2n)!
+ i

∞∑
n=0

(−1)n
θ2n+1

(2n+ 1)!

=cos(θ) + isin(θ).
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To prove (1) H.W 

To prove (2), the formula in general, we write out the terms in the sum twice, once 
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To prove (4) H.W 

 

 


