Conic sections
In this chapter we examine the Cartesian graph of any equation:
Ax? + Bxy + Cy* + Dx+ Ey + F = 0,

In which A,B, and C are not all zero, and show that it is nearly always a conic
section. Also, we will give geometric definitions of a circle, parabola, ellipse, and
hyperbola and derive their standard equations.

Conic Sections - Four Types

1)The circle: the set of points in a plane whose distance from some fixed center
point is a constant radius value. If the center (h,k) and the radius is r, the standard
equation for the circle is (x — h)? + (y — k)? = r2.

2) A parabola is the set of points in a plane that are equidistant from given fixed
point (focus) and fixed line (directrix) in the plane.

Table of standard-form

Equation Focus Directrix Vertex Opens
1 y? = 4px (p,0) X=-p (0,0 To the right
(y—k): =4p(x—h) | (h+pk) X=h-p (h,k) To the right
2 y? = —4px (-p,0) X=p (0,0) To the left
(v —k)>=—4p(x—h) | (h-p,k) X=h+p (h,k) To the left
3 x* = 4py (O.p) y=-p (0,0) Up
(x—h)?=4p(y—k) | (hk+p) | y=kp (h.k) Up
4 x? = —4py (0,-p) y=p (0,0) Down
(x —h)?2 =—4p(y—k)| (hk-p) y=k+p (h,k) Down




Examples: Find the focus, vertex, and directrix of the parabolas and sketch the
parabola:

Dx?+2y =0
2y?—2y—12x—-23=0
3)x2+8y—4=0

Solution:

1) We find the value of p in the standard equation: x? = —4py
x> = —4py=>x*=-2ys04p=2=>7p =%

Then, the focus (O — —) vertex (0,0), and directrix y = 3

2)HW  3)HW

3) Ellipse is the set of points in a plane whose distance from two fixed points
(foci) in the plane have a constant sum (2a).

Table of standard-form

Equation Foci Vertices Minor axis | center
1 xz yZ _ F1,2($C, 0) A1,2($a, 0) 31’2(0, $b) (0,0)
) + ﬁ 1 c2 = a2 — p2
(x — h)2 (y — k)? Fizh¥ek) 1Ay (R F a k) |Bralhk+D) | (hk)
Z T 1
2 y?  x? _ F12(0,+¢) | A12(0,+a) By ,(+b,0) | (0,0)
;'i‘ﬁ—l c2 = a2 — p2
(y — k)Z (x _ h)Z 1 Fi,(h k¥ c) A1,2(h: k F a) Byi,(h+ b, k) (h’k)
a’? b?




Examples: Find the center, vertices, and foci of the ellipse and sketch the ellipse:

xZ yZ
1)E+;:1

2)9x* +4y* +36x—8y+4 =0
3)x% +10x + 25y*> =0

Solution:
1) Center : (0,0)  vertices: A;,(+a,0) = 4; ,(+4,0)

Foci: c2=a%? —b%? = ¢ = FV16 — 9= c = FV7 = F ,(Fc,0) = F,(FV7,0)

¥

2, ﬁ =17
6 0 (0.3
Vertex -~ | Vertex
(-4.0) 4. 0)
\ x/ /
\[ Foecus Focus |/

2)H.W 3)H.W

3) Hyperbola is the set of points in a plane whose distance from two fixed points
(foci) in the plane have a constant difference.

Table of standard-form

Equation Foci Vertices Minor axis | center
1 x*  y? Fi2(+¢,0) | A12(+a,0) B,,(0,+b) | (0,0)
?_ﬁ=1 c2 = a2 + p2
(x—h? —k? _|[FukTck) [A,(hFak) |Brtuk¥b) |(hk)
a2 b2 1
2 y? x* F15(0,Fc) | A1,(0,Fa) B ,(¥b,0) | (0,0)
?_ﬁ_l c2 = a2 + b2
(y _ k)z (.X _ h)Z . Fi>(hk +c) Al,Z(h: k ¥ a) Bi;(h+ b, k) (h1k)
a2 P2 -




4) Examples: Find the center, vertices, and foci of the hyperbola and sketch the

2 yZ

hyperbola: (i) xz —> =1 (i)4x’ - y* +8x+2y-1=0.

Solution:
1) Center : (0,0)  vertices: A;,(+a,0) = 4;,(+2,0)

FOC' C2 = az + bZ = C= ¢ 4+5=>c= 1\/6 = F1,2($C, 0) = F1,2($3,0)

2)H.W

Note that eccentricity is 2 (e = 2) where 0 < e < 1.



Equations for Rotating coordinate Axes

The equations for the rotations we use are derived in the following way. In the
notation of Figure (1) which shows in anticlockwise rotation about the origin
through an angle (),

P(x, ») < (", ¥

M
W oALe
- T o

ol M

cos(ex +0) = % ,sin(x 4+60) = = Figure (1)

op
x = opcos(x) cos(6) — op sin(e) sin(H).
y = op sin(«) cos(8) + opcos(x) sin(H).
Note that x’ = op cos(6) and y' = op sin(0)

Thus,
x = x'cos(x) — y' sin(x).

y = x'sin(«) + y' cos(x).

Now, if we apply equations above to the equation Ax? + Bxy + Cy* + Dx + Ey + F = 0,
We obtain a equation A'x’* + B'x’y’ + C'y'> + D'x’ + E'y’ + F' = 0, where:

A" = Acos?a + Bcosa sina + Csin‘a

B' = Bcos2a + (C — A)sin2a

C' = Asin?a — Bcosa sina + Ccos?*a

D" = Dcosa + E sina

E' = E cosa — Dsina

F' =F.

To find (), we put B" = 0 and solve the resulting equation,



Bcos2a + (C — A)sin2a = 0, S0 cot 2a = % or tan2a = A’ic

EXAMPLE: Decided whether the conic section with following equations
represents a Parabola, an Ellipse, or Hyperbola.

xy =2 (i)2x? +V/3xy + y? = 10

(iii) 3x% + 2/3xy + y2 —8x + 83y =0

Solution:

1) The equation xy =2 hasA =0,B = 1,and C = 0. We substitute these

. B 1 i1
ValueSIntotan2a=A——> tan2a=—0—>2a=tan 15—>2a=§—>a=%

Thus,
’ o xl_y/
X = X COS(X) — SIN(X) =»x = .
(<) — ¥’ sin(x) 7
x'+y
= x'sin(x) + v’ cos(x) » y =
y () +y' cos(x) = y NG
Xy =25 (""y')("'+y')—2—>x'2— N S A
Y= V2 V2 ) y = 4 4

iH. W i) H. W



10.5 Polar Coordinates

- . } I
Initial ray

FIGURE 10.35 To define polar
coordinates for the plane, we start with an
origin, called the pole, and an initial ray.

In this section, we study polar coordinates and their relation to Cartesian coordinates.
While a point in the plane has just one pair of Cartesian coordinates, it has infinitely many
pairs of polar coordinates. This has interesting consequences for graphing. as we will see
in the next section.

Definition of Polar Coordinates

To define polar coordinates, we first fix an origin O (called the pole) and an initial ray
from O (Figure 10.35). Then each point P can be located by assigning to it a polar coordi-
nate pair (7, #) in which » gives the directed distance from O to P and f gives the directed
angle from the initial ray to ray OP.

Polar Coordinates

P(r.0)

/N

Directed distance Directed angle from
from O to P mitial ray to OP




FIGURE 10.36 Polar coordinates are not
unique.

As in trigonometry, € is positive when measured counterclockwise and negative when
measured clockwise. The angle associated with a given point is not unique. For instance.,
the point 2 unifs from the origin along the ray # = 7/6 has polar coordinates r = 2,
@ = /6. It also has coordinates ¥ = 2, # = —117/6 (Figure 10.36). There are occasions
when we wish to allow r to be negative. That is why we use directed distance in defining
P(r. 8). The point P(2. 77/6) can be reached by turning 77/6 radians counterclockwise
from the initial ray and going forward 2 units (Figure 10.37). It can also be reached by turn-
ing 77/6 radians counterclockwise from the initial ray and going backward 2 units. So the
point also has polar coordinates ¥ = —2.8 = 7/6.

FIGURE 10.37 Polar coordinates can have negative
r-values.



EXAMPLE 1 Finding Polar Coordinates
Find all the polar coordinates of the point P(2. 7/6).

Solution We sketch the initial ray of the coordinate system. draw the ray from the ori-
gin that makes an angle of 7/6 radians with the initial ray, and mark the point (2, 7/6)
(Figure 10.38). We then find the angles for the other coordinate pairs of P in which » = 2
andr = —2.

FIGURE 10.38 The point P(2, 7/6) has infinitely many
polar coordinate pairs (Example 1).

Forr = 2. the complete list of angles is

T T T T
6" 6:|:27T. 6:t47r. 6:t67r.



Forr = —2. the angles are

S S S S
G 6i2ﬂ'. 5*417‘ 6i611‘.

The corresponding coordinate pairs of P are

(2.% + Zrm). n=0+1 42 ...

and

(—2.—5%— EH‘JT). n=20+1.+2.....

When n = 0, the formulas give (2, 7/6) and (—2. —57/6). When n = 1, they give
(2, 137/6) and (-2, 77/6), and so on. 0



' Polar Equations and Graphs
X If we hold 7 fixed at a constant value r = a # 0, the point P(r, ) will lie |a| units from
the origin O. As 6 varies over any interval of length 27, P then traces a circle of radius |a|

centered at O (Figure 10.39),
If we hold 6 fixed at a constant value # = 6, and let r vary between —0< and 00,
the point P(r. ) traces the line through O that makes an angle of measure fy with the

initial ray.

FIGURE 10.39 The polar equation for a
circleisr = a.
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@ X I
l=r=20=f6=3 Equation Graph
A\ r=a Circle radius | a | centered at O
-\ . X # =t Line through O making an angle 6 with the initial ray
of 1 2




(c)

(d)

EXAMPLE 2  Finding Polar Equations for Graphs

(a) r = 1l andr = —1 are equations for the circle of radius 1 centered at O.

(b) 6 = 7/6.0 = Tw/6.and # = —357/6 are equations for the line in Figure 10.38.
[ |

Equations of the form » = a and # = #; can be combined to define regions. segments.
and rays.

EXAMPLE 3 Identifying Graphs

Graph the sets of points whose polar coordinates satisfy the following conditions.
(@ l=r=2 and 0595%

b 3=r=2 ad 0=
(€©r=0 and 0=-—

(d) ZTTT =f= 5% (no restriction on r)

Solution  The graphs are shown in Figure 10.40. N



Relating Polar and Cartesian Coordinates

When we use both polar and Cartesian coordinates in a plane. we place the two origins to-
gether and take the initial polar ray as the positive x-axis. The ray 6 = /2. v = 0. be-
comes the positive y-axis (Figure 10.41). The two coordinate systems are then related by
the following equations.

Equations Relating Polar and Cartesian Coordinates

. ¥
X = rcosé, vy = rsinf, x4yt =l

The first two of these equations uniquely determine the Cartesian coordinates x and y
given the polar coordinates r and 6. On the other hand. if x and y are given, the third equa-
tion gives two possible choices for  (a positive and a negative value). For each selection.
there is a unique # = [0, 277) satisfying the first two equations. each then giving a polar co-
ordinate representation of the Cartesian point (x. ¥). The other polar coordinate representa-
tions for the point can be determined from these two. as in Example 1.



(0.3)9

b x4 (y-3)%=9

or
r=~06smf

* X

EXAMPLE 4  Equivalent Equations

Polar equation Cartesian equivalent
reosf =2 x=12
rlcosfsinf = 4 1 =4
rlcos’f — r¥sin’f = 1 ?-yi=1
r=1+ 2rcosf yr =3l -4 -1=0
r=1-cost x4—y4+2x2y2—2x3+21y2—y2=0

With some curves, we are better off with polar coordinates; with others, we aren’t.

EXAMPLE5  Converting Cartesian to Polar

Find a polar equation for the circle x* + (y — 3)* = 9 (Figure 10.42).

Solution
xz—yz—ﬁy—_@':g
xz—y2—6y=ﬂ
¥t — 6rsinf =0
r=0 or r— 6sinf =20

r=6sn#f

Expand (y — 3)’.

The 9% cancel.

Includes both possibilities



EXAMPLE 6  Converting Polar to Cartesian

Replace the following polar equations by equivalent Cartesian equations, and identify
their graphs.

(a) rcosf = —4

(b) r* = 4rcos b

_ 4
2cosf — sinf

(€ r

Solution ~ We use the substitutions rcos @ = x.7sinf = y. > = x> + y?.

(a) rcosf = —4

The Cartesian equation: recosf = —4
x=—4
The graph: Vertical line through x = —4 on the x-axis

(b) r* = 4rcosf
The Cartesian equation: Fe = 4rcosf
XX+ yz = 4x
3 3
—4d4x+y =0
X -dx+t4+yr=4
(x =20 +y* =4
The graph:  Circle, radius 2. center (k. k) = (2. 0)

Completing the square



Graphing in Polar Coordinates

This section describes techniques for graphing equations in polar coordinates.

Symmetry

Figure 10.43 illustrates the standard polar coordinate tests for symmetry.

¥ (r. 7 — ) l}; I};
.0 S A (. 6)
i /
! > X > X > X
0 : 0 0
|
(r.—6)
of (—r. m — ) (-r.thor(r. 6 + m)

(a) About the x-axis (b) About the y-axis (c) About the origin

FIGURE 10.43  Three tests for symmetry in polar coordinates.



Symmetry Tests for Polar Graphs

1. Svmmetry about the x-axis. If the point (7. #) lies on the graph. the point
(r. —8) or (—r. ™ — #) lies on the graph (Figure 10.43a).

2.  Svmmetryv about the v-axis: If the point (7. #) lies on the graph. the point

(7.7 — @) or (—r. —8) lies on the graph (Figure 10.43b).

Svmmetry about the origin. If the point (7. #) lies on the graph. the point

(—r.8)or (7.8 + ) lies on the graph (Figure 10.43c).

L

Graphs of Polar Equations

1)The polar equation is a circle equation if
er=+a, wherea#0

er = +asinf ,wherea,b € R — {0}
er =+acosO ,wherea,b € R —{0}

er?=FacosO or e r? = Fasinf,wherea, b € R — {0}(a semi-circle)



2) Limacons has formedas r =a + bcos@ or r=a+ bsinf wherea,b € R — {0}:
eThe polar equation is a Cardioid curve if a = b
eThe polar equation is a dimpled curveif a > b

eThe polar equation is a inner loop curveif a < b

J.? _,.-—-.-\ ) ‘h}_"
1 \
0.5
\ —C
g x
p=1+cosd }
=0.5
/ k
1
o 0.5 1 1.5 2

Cardioid curve dimpled curve Inner loop curve



3) Rose curve if the polar equation has form as

er=acosnf or r=asinnd wherea € R—{0}andn+1landn €N

Note that: if n is an odd number then the number of leaves equal n.
If n is an even number then the number of leaves equal 2n.

n=2
|rf_-\x.'
||}
A\
(R
.
Ly
T = Ccos 26 T = cos 36 r = cos 46 r = cos 56 r = sin 260

4) Lemniscate Curve if the polar equation has form as

2=aqacosnf or r* =asinnf wherea€R—{0}andn+ landn € N

|
Z - s
e = 4 sin 266 < = 4 cos 26

r




5) The polar equation has Spiral curve form if r = a8 , where a € R — {0}

,f ““\
/ / RN
|I F l“". II
| |II .'/ ._‘J I |
| | |
{ I"._ 'x\ - / /
".\._‘ _.f; I
., /f’f /
1k\\\ o - A
., /
.. =



1) Graph the Curve r = 3

Solution: Circle radius 3 centered at (0, 8)

2) Graph the Curve r = =3

Solution: Circle radius 3 centered at (0, 8)

3) Graph the Curve r = 4 cos 6

(35
(3.m) (3.0)
(33)
(-35)
(-3,0) (-3, m)
(-33)

Solution: The curve is symmetric about the x-axis because (r, 8) on the graph
thenr =4 cos(—0) - r =4 cosf — (r,—6) onthe graph

There is not symmetric about the y-axis and the origin point

0 r (r,0)
0 4 (4,0)
% 2v3 (34 %)
% 22 (28 %)
T T
oy
> ° (05)
T -4 (—4,m)
r =4 cosb
y
4
(23)




4) Graph the Curve r = 4sin6

Solution: The curve is symmetric about the y-axis because (r, 8) on the graph
then

—r = 4sin(—0) - r =4sinfd — (—r,—0) on the graph

There is not symmetric about the x-axis and the origin point

2 r (r,0)
0 0 (0,0)
e (23)
% 22 (28 %)
g 2v3 (34 g)
AN +3)




5) Graph the Curve r? = 4 cos 6
Solution:
e The curve is symmetric about the x-axis because (r, 8) on the graph then
r? =4 cos(—0) - r2 =4cosO — (r,—0) on the graph
e The curve is symmetric about the y-axis because (r, 8) on the graph then
(—71)%2 =4 cos(—0) - r?> =4cosf — (—r,—0) on the graph
e The curve is symmetric about the origin point because (r, 8) on the graph then

(—71)% =4cos(8) » r?2 =4cosh — (—r,0) onthe graph

7 7"2 r (T', 8)
(£2,0)

o
I
I+
)

TS| RRT IS IR RN




5) Graph the Curve r? = 4sin 8

Solution:

e The curve is symmetric about the x-axis because (r, 8) on the graph then
(=1)? =4sin(m—0) - r? =4sinmwcosf —4sinfcosm - r?> = 4sinf, So
(—r,m — 08) on the graph

e The curve is symmetric about the y-axis because (r, 8) on the graph then
r? = 4sin(mr —0) —» r? =4sinmwcosf — 4sinf cosw = r?2 = 4sinf So
(r, Tt — 6) on the graph

Together, these two symmetries imply symmetry about the origin point

r? r (r,8)
0 0 (0,0)
% % t14 (x14 %)
% % +1.7 (J_r”’ %)
e (x10.7)
% 4 +2 ( iZ,g)




6) Graph the Curve r

Solution:

e The curve is symmetric about the x-axis because (r, 8) on the graph then

2+ 2cosf

r=2+2cos(—0) - r

2+ 2cosf — (r,—6) on the graph

There is not symmetric about the y-axis and the origin point

0 r (r,0)
0 4 (4,0)
% 2+22£ (3.7,%)
% 2+% (3 4,%)
A
g 240 (2%)
T 2-2 (0,m)

r = 2+ 2cos6

A




6) Graph the Curver = 2+ 2 sinf

Solution:

e The curve is symmetric about the y-axis because (r, 8) on the graph then
r=2+4+2sin(m—60) » r=2+ 2sinmcosf — 2sinf cosm —

r = 2+ 2sinf So (r,m — ) on the graph

There is not symmetric about the x-axis and the origin point

o - (r,0)
o | 2 (2,0)
I
G
T o
% 24283 (3.7,%)
—g 222 (0.3,—%)

NS
N
+
N
—~
-
| S
~—




6) Graph the Curver = 4+ 3 sinf

Solution:

e The curve is symmetric about the y-axis because (r, 8) on the graph then
r =4+4+3sin(m—60) > r =4+ 3sinmcosf — 3sinf cosm —

r = 4+ 3 sinf So (r,m — 6) on the graph

There is not symmetric about the x-axis and the origin point

8 | « (r,0)

0| 4 (4,0)

S| 4 (55.)
—| % (25.2)
. a4 (612.%)
% 4+3’2£ (65, g)
S (e
% 4+3 (7’ %)

r = 4+ 3 sin6

e —

G S ’Lth;
T e, X%
, ) L | 1-";(6-1;17»@ '(/L
1 o ;&srn/ﬁ) \

Y - ) . . ’ \

[ ] Y (80) | |
4 N i ] p 1 ' 3

—r

S G e /]




7) Graph the Curve r =

Solution:

2+ 5cos@

e The curve is symmetric about the x-axis because (r, 8) on the graph then

r =2+5cos(—0) - r

There is not symmetric about the y-axis and the origin point

0 r (r,0)

0 7 (7,0)

% 2422 (63, g)
% 2+% (5 5 %)
T [ (s
g 240 (2, g)
21 2.2 21
3| 7 (05.5)
T 2-5 (=3,m)

(.‘4.5

r = 2+ 5cos@

)
'3 (55,11/4)

2+ 5cosf — (r,—6) on the graph

(45.F)

'

because The curve is symmelric about the x-axis



5) Graph the Curve r = cos 26

Solution:

e The curve is symmetric about the x-axis because (r, 8) on the graph then

r = cos(—20) - r = cos 26, so (r,—6) on the graph

e The curve is symmetric about the y-axis because (r, 8) on the graph then

r =cos2(m—60) - r =cos2mcos 26 + sin2msin26 - r = cos 26, So
(r, T — 6) on the graph

Together, these two symmetries imply symmetry about the origin point

8] r (r,0)
(1,0)

1 T
: (o.s,g)
0

o
[EEN

N ]w| ] S

because the curve is symmetric about the x-axis and the y-axis



5) Graph the Curve r = sin 26

Solution:

e The curve is symmetric about the x-axis because (r, 8) on the graph then

—r =sin2(mr—60) - —r =sin2mcos26 — sin26 cos2w - —r = —sin 26 ,

r = sin 26 So (r, m — 8) on the graph

e The curve is symmetric about the y-axis because (r, 8) on the graph then

—r =sin—20 - —r = —sin20 - r =sin26,So (—r,—0) on the graph

Together, these two symmetries imply symmetry about the origin point

0 r (r,6)
0 0 (0,0)
% ? (08, %)
il (13)
% ? (08, g)
7| ° (0.5)

the .\)Ja.ws, the yl

rxis, and ﬂw\omgm



5) Graph the Curve r = sin 36

Solution:

e The curve is symmetric about the y-axis because (r, 8) on the graph then

—r = sin(—360) » —r = —sin30 - r =sin30 So (—r,—0) on the graph

There is not symmetric about the x-axis and the origin point

4] r (r,0)
0 0 (0,0)
% % (0, 1”—8)
VA T

sl 7 (Lg)
T 1 T
e (0.7, Z)
z| ° (0.3)
7T -1 7T
2| (-13)

AU DA

T r L I | y
/ / ) \ \ / / The curve is symmetric aba\(ﬂ:ey-a.\»s\




3) Graph the Curve r = cos 36

Solution: The curve is symmetric about the x-axis because (r, 8) on the graph
thenr = cos(—30) - r = cos30 — (r,—6) on the graph

There is not symmetric about the y-axis and the origin point

4] r (r,0)
1 (1,0)
T T
= ? (0.8,E)
el ° (0.5)
T —1 3
il 5 (—0.7,2)
T j T
3| (-23)
7 _ T
% Tﬁ (-08.5)
SR
2 (12
3 "3
T -1 (—1,77,')
r = cos 36

The cirve is ymmetric about the X-axis



5) Graph the Curve r? = 4cos 26

Solution:

e The curve is symmetric about the x-axis because (r, 8) on the graph then

r? = 4cos(—28) - r? = 4cos 26, So (r,—8) on the graph

e The curve is symmetric about the y-axis because (r, 8) on the graph then

> = 4cos2(m—0) - r* =4cos2mcos20 + 4sin2mwsin20 - r? = 4cos 20, So
(r, Tt — @) on the graph

Together, these two symmetries imply symmetry about the origin point

0 r? r (r,0)
0 4 +2 (£2,0)
% V3 | V3 (i0.9, %)
2 V2
% 4 +v2 (+14 g)
2
n 0 0 ( ”)
—_ 01_
4 4
r2 = 4cos 260
i
; | "‘.T.’
V2. 5
(0.9,T1/12)

(2, 0)




5) Graph the Curve r = 6 where 0 < 6 < 27

9 r (r,0)

0 0 (0,0)

n 0.52 n
- (0.52, 6)
n 0.78 n
. (0.78, 4)
n 1.04 n
: (1.04, 3)
n 1.57 n
> (1.57, 2)
2w | 2.09 2T
— 2.09,—)
3 ( 3
T 3.14 (3.14,m)
31 4.71 31
— ' 4.71,—)
2 ( 2
2w | 6.28 (6.28,2 )




Areas and Lengths in Polar Coordinates

This section shows how to calculate areas of plane regions, lengths of curves, and areas of
surfaces of revolution in polar coordinates.

Area in the Plane

The region OTS in Figure 10.48 is bounded by the rays # = a and # = £ and the curve
r = f(0). We approximate the region with » nonoverlapping fan-shaped circular sectors
based on a partition P of angle TOS. The typical sector has radius r = f(6;) and central
angle of radian measure A#;. Its area is A#;/27 times the area of a circle of radius 7, or

1 1
L E(f(e;,;))2 A6;

The area of region OTS 1s approximately

=

n

2‘4 - %(f(&&)) Aby.

k=1 k=



If f is continuous. we expect the approximations to improve as the norm of the partition
|P||— 0. and we are led to the following formula for the region’s area:

n

1 1 2
4= 1 2 (£(6,))2 AB
MﬂQEZUU” i

g
- l 5 (£(8)) db.

Area of the Fan-Shaped Region Between the Origin and the Curve

r=f0),axa=0=p
B
.4=/ 1248,

FIGURE 10.48 To derive a formula for This 1s the integral of the area differential (Figure 10.49)

the area of region OTS. we approximate the

region with fan-shaped eircular sectors. d4d =

b [—

249 = %(f(a))l a8.

EXAMPLE 1  Finding Area

Find the area of the region in the plane enclosed by the cardioid » = 2(1 + cos ).



2
2 do = / 241 + cos 0)* do
Q

2ar
:/ 2[1—I—2c059—|—c0529}d9
0

2
:/ (2+4cc-59+21+
L]

cos 26
> ) a0

2ar
:/ (3 + 4cosf + cos20)db
0

sin 26 2
2

= |:3:«E|' + 4sm O +
L]

= 69 — 0 = 6I7.



Area of the Region 0 = r(0) = r = ry(0), a=60=p

B B B
1 1 1
4 =£ 777 0 ‘l 371 0 =£ s —r)ae )

EXAMPLE 3 Finding Area Between Polar Curves

Find the area of the region that lies inside the circle » = 1 and outside the cardioid
r=1— cos#.

Solution We sketch the region to determine its boundaries and find the limits of inte-
gration (Figure 10.53). The outer curve is ¥ = 1. the inner curveisr; = 1 — cosf.and #
runs from —/2 to /2. The area. from Equation (1), is

w2 1 ) )
A:[?TﬂE o _Tl)dﬂ
i )2 1 ) 5 |
= -[}‘ E (I’3 — )dﬂ Symmetry

w2
=/ (1 — (1 — 2cos® + cos’0)) do
0

i "/ 1 + cos2f
= / (2cos @ — cos’0) df =f (ECDSH —#) df
0 0

—

=2 - -

0 4

= |97 a3 — = —
[_51119 5 n

#  sin26 T’E T
[ |

Y Upper limit
rp=1-cosf 0 =m/2
?'3=1
L]

I|{."'l;I \
i/ .

Lower limit
0=—-m/2

FIGURE 10.53 The region and limifs of
wntegration in Example 3.



Length of a Polar Curve

We can obtain a polar coordinate formula for the length ofacurver = f(0). ax = 0 = B.
by parametrizing the curve as

x = rcos@ = f(@)cosb, y = rsin@® = f(#)sin 0, a =60 = 8. (2)

The parametric length formula, Equation (1) from Section 6.3. then gives the length as

L= L H\:.-":(%)E + (%)2 d.
L= L E\:."I:rz + (%)2 do

when Equations (2) are substituted for x and y (Exercise 33).

This equation becomes

Length of a Polar Curve
If » = f(#) has a continuous first derivative for &« = 8 = £ and if the point
P(r. #) traces the curve » = f(#) exactly once as # runs from « to 8. then the

length of the curve 1s
B | 2
_ Il 2 dr
L l N (—dﬂ) do. (3)




EXAMPLE 4  Finding the Length of a Cardioid

Find the length of the cardioid ¥ = 1 — cos .

Solution We sketch the cardioid to determine the limits of integration (Figure 10.54).

J.l
4 The point P(r, ) traces the curve once, counterclockwise as 6 runs from 0 to 2. so these
r=1-cost are the values we take for o and j3.
Pr. ) With
r 1 J
o r=1—cos#. @ _ sine,
> X dt
2 0
we have
dr'\’
2 (8T ) oy Z cosB)? + (sin B)2
7 (dﬂ') (1 — cos@) (sin @)
FIGURE 10.54 Calculating the length =1—2cosf + cos’@ + sin’f =2 — 2cosb
of a cardioid (Example 4). .
and
2w _
_ 4 _ Ve I
L = f\ (dﬂ') df = £ V2 — 2cosfdo
‘\,II4 sin 2 Edﬁ' 1 —cosf =2 ain:%

- .9 -
= 2 sin— dé sin, =0 for 0=6=2w
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Chapter 1

Introduction: Infinite
Sequences

The term sequence in mathematics is used to describe an unending suc-
cession of numbers. The numbers in a sequence are called the terms of the
sequence. For example

<1,3,5,...>
11
<1,=, 50>
2°4
Definition
An infinite sequence is a function whose domain is the set of positive inte-
gers.

Let U, =< U;,U,,Us, ... > be infinite sequence and by definition above
U, : N — R (U, is called the n'" term of the sequence). For example

U,=2,4,6,...,2n,...
123 1
Un:O7_7_7_7 1__
2°'3°4 n’
Up=1,—1,1,...,(=1)" +1,.

Examples Find a formula for n’* term of the infinite sequence?

<1,-4,9,-16,... >

<3,8,15,...>
111

’5’6’2_4"”>
1 1

—_



CHAPTER 1. INTRODUCTION: INFINITE SEQUENCES

Solution :

111
<bygarn”
11
<1,§,Z, , >

1.1 Graphs of Sequences
The graph of the sequence U, is the graph of the equation
fn)=U,,n=1,2,3,...

For example the graph of sequence U,, = 1, %, %, ... We need to find the for-
mula of sequence U,, =

Definition

A sequence U, is said to converge and have limit L € R if given any
e > 0, there is a positive integer N such that for all n > N,

|U, — L| <e.

In this case, we write lim,,__ .., U, = L.
Note that

if lim U, = L, then U, converges.
n—~oo

if lim U, = oo, then U, diverges.
n—m=o0
Examples Do these sequences converge or diverge?
1—2n

U, = .
1+ 2n

2



CHAPTER 1. INTRODUCTION: INFINITE SEQUENCES

Un:n2—2n—|—1.

n—1
Un:ln(n)'
n
I 1
U, = sm(g + E)
1\
U, — (1——) .
n
Solution :
— 1/n—2
lm L2 gy YR 2

= lim im — = —1, thus it converges.

2 _ _ _
i 2n+1 lim (n—1)(n—1)

lim n—1 = oo, thus it diverges.
n—s00 n—1 n—s00 n—1 n—s00
[ 1 1
lim n(n) = lim —n, (by using L’Hopital’s rule) = lim — = 0, thus it converges
n—oo 1 n—oo 1 n—oo N

I 1 II
lim sin(—+—) =sin( lim —+ lim —) = sin(—=) = 1, thus it converges.

n—oo 1

) 1\~
lim (1 — —)
n—-»00 n

the solution will be in the lecturer.



CHAPTER 1. INTRODUCTION: INFINITE SEQUENCES

THEOREM: The Sandwich Theorem for Sequences
Let< a, > and < b, > be sequences of real numbers. If a, < b, < ¢, holds
for all n beyond some index N, and if lim,__,, a, = lim,,__,, ¢, = L, then
lim,,__, b, = L also.

Applying the sandwich theorem.
cosn

Example Is the sequence U,, = converge or diverge?

Solution:

cosn=—1<cosn <1

-1 cosn 1
=— < <~

n n
cosn . . —1 .1

=0 < <0, since lim — = lim — =0.

n n—oo M n—o0 N

S

cosn

Thus, the sequence = 0 converges.

n
Note that a sequence is called increasing if u, < wu,,; for all n as

< 27;;1 > . Similarly, a sequence is decreasing if u, > u, ., for all n as
<ot
THEOREM

The following sequences converge to the limits listed below:
o lim, an =0
o lim, o Un=1

e lim, . zn =1, (z > 0)

o lim, 2" =0,(z] <1)

lim,, (1 + %)n =€, ( for any x).



CHAPTER 1. INTRODUCTION: INFINITE SEQUENCES

Exercises

Q1) Given a formula for the n' term U, of a sequence < wu, > . Find
the values of uy, uo, us, uy, and us.

Q2) Find the sequence
o If u, =u,_1+ 1, where u; = 1.
o Ifu,,y =u,+ %, where u; = 2.
o If u,, 1 =u, +u, 1, where u; = 1,uy = 1.
Q3) Find a formula for the n® term of the sequence.
e <-3-2-10,1,...>
e <1,59/13,17,... >
e <1,0,1,0,1,...>

Q4) which of the sequence below converge, and which diverge?

1 —5nt
" U e
1I\n
oUn:1n<n+ >
n
.Un:lnln'
nn
° nz(n—\/nQ—n).
.Un:smn
n



Chapter 2

Introduction: Infinite Series

Infinite series is an expression that can be written in the form

ZUn:u1+u2+U3+-~-+un+---

n=1

Some Special Series

1)Geometric series : If a,7 € R, then a series of the form

Zar”:a+a7“—|—aT2+---+a7“"_1+---

n=1
for example

i3”—3+9+2?+-~-

n=1

2)P — series : If p € R, then a series of the form
For example

oo 1 - .
ne1 75 1s called P-series.

<1 <1

3)Harmonic series : It is a special case of p-series when p = 1. There-

fore, we have form
o0

Zl—1+1+1+...
no 2 3

n=1

4)Telescoping series : The series has a form

5 (U~ V).
n=1

6



CHAPTER 2. INTRODUCTION: INFINITE SERIES

for example

1
Q- +G-)+GE- P+ +C-

2.1 Convergence and Divergence Test for In-
finite Positive Series

Testl : Geometric series
Zar”:a+ar+ar2—|—...+arn_1+...
n=1

S, =a+ar+ar’*+...+ar"!

rSy, =ar +ar* +ar®+ .. +ar"t +ar”

a(l —r"
o _ali=r
1—7r
where a first term and 7 common ratio (r=2 = % =)
1 2

Test condition

1) If |r] < 1, then ¥ — 0 as n — oo and the series converges with
sum total +%-.

2) If |r| > 1, then 7™ — oo as n — 0o and the series diverges.

Summary If |r| < 1, then U,, converges. If |r| > 1, then U, diverges.
Example:

r= % = % = 1/3 < 1 so the series converges with sum 1i/133 =1/6.

Example: Dose

24+4+8+16+...

converge or diverge?

r=4/2=8/4=22>1 so the series diverges.



CHAPTER 2. INTRODUCTION: INFINITE SERIES

Test2: Integral test
1)f(n) = f(z) able to integral.
2)f(z) is decreasing function.
If limy, oo faL f(z)dz is exist then the series converges otherwise diverges.

Example: Dose

converge or diverge?

Df(n) = flo) = & =we™™
2)f(x) is decreasing function because f'(z) = —2x2e % + %",
3)
L L
lim f(z)dx = lim xe " dx
L—o J, L—oo Jq
_1 . _L2 —1
— lim <e e ) s P
2 L—oo e

so the series converges.
Test3: Ratio test
Let 2:;1 U, be a series of positive terms and let p = lim,, U{}:l
DIf p < 1, then Y °° | U, converges.
2)If p> 1 or p= o0, then >~ U, diverges.
3)If p =1, then the ratio test fails.
Example Dose Yo —! converge or diverge?
Let U, = n!, then Un+1 . Consider

(+1




CHAPTER 2. INTRODUCTION: INFINITE SERIES

thus, > | 4 converges.

Test4: Root test

Let 220:1 U, be a series of positive terms and let p = lim,,__,o VU,
DIf p < 1, then ) >, U, converges.

2)If p>1or p=> o0, then > ° U, diverges.

3)If p = 1, then the ratio test fails.

Example: Does >_°7 . - converge or diverge?

n=1 nn

We have /U, = {/ nin = % Consider

p= lim U,

n—aoo

1
= lim —
n—oo N

=0<1,
thus, Y 07 | = converges.
Test5 : P — Test
Let >, - be a P-series. Then
DIf P> 1, then Y ° | & converges.
2)If0 < P <1, then Y>° | L diverges.

Example: Does >~ \5% converge or diverge?
It is clearly p =1/5 and 0 < % <1, then Y 7, \5% diverges

Test 6 : Comparison Ratio Test
Let Y >, U, be a series of positive terms. Further,
let Y >, C,, be a known convergent series of positive terms, and
let > 7, d,, be a known divergent series of positive terms

9



CHAPTER 2. INTRODUCTION: INFINITE SERIES

1)If
li Un _ L, th N U,
nl_r>nooc—n = [, then Zl n converges.
2)If
li Un L >0, then iU diverges
im — = n divi .
n—o0 d,, ’ ot &
3)If

.Uy S :
nhﬂmoo T —> 00, then z:l U, diverges.

n .
Example: Does Y 7 225 converge or diverge?

We have g—: which we know is divergent by geometric test r = 5/3 > 1.

So, let d,, = g—: Now

U, . 5"+1/3n
= m —7F——

. H 41
= lim
n—oo Hn
=1>0
Thus by C.R.T (Comparison Ratio Test) part 2, the series Yo | 5= diverge.

2.2 Alternating series

If < u, > is a sequence of positive term. Then, > >° (—1)"u, is called an
alternating series as > > (—1)"!L.
Absolutely convergent

A series > 7 | u, is said to be absolutely convergent if and only if >~ 7 | |u,|
oo (=1)™
n=0"2n -

converges. For example )

Conditionally convergent
If a series ), u, satisfies each of the following three conditions, then

>, uy, conditionally convergent

10



CHAPTER 2. INTRODUCTION: INFINITE SERIES

e >  u, is an alternating series.
e lim, ., u,=0.
o |tni1| < Jun|.

For example: Does Zzo:l(—l)”nzL+1 converge or diverge?

Solution: We have

o> ()= S+ 2 — 2 + ... which is an alternating series.
o lim, o(—1)" oty =0

o It is clearly |upq1] < |uyl.

Thus, the series is a conditionally convergent.

11



Chapter 3

Power Series

The series )~ a,(x — b)" is called a power series in (z — b), where a,, is
a sequence in R. When b = 0, we say that >~ ja,z"™ is a power series.

Example: For what values of x does the series > 7 (x:j)n converge?
Apply the ratio test

— 3\ntlpl
i |2t < e AT
— 3\ (r — !
o lim |( 3)"(x 3)n‘
n—oo (n+ 1)n!(x — 3)"
(r—3
= i |£73)

= |(x —3)| x0=0<1, for all z.

Thus, the series converge for all x € R.

Example: Find the series’ interval of convergence for > (Inz)" ?
Apply the ratio test lim, |%| <1

Exercise '

Example: Find the series’ interval of convergence for > 7, Hﬁ#

?

12



CHAPTER 3. POWER SERIES

Apply the ratio test lim,,__, |U[’}“ | <1

(z + 2)"Tin2n
i|
(n+ 1)27+1(x + 2)"
2
|(z +2)]
2
— —2<z+2<?2

— —4<z<0.

| <1

<1

<1

Now, when = —4 we have ) >~ | ’71 divergent series; when © = 0 we have
> #, the alternating series which converges conditionally.
Thus, the interval of convergence is —4 < x < 0.

3.1 Taylor series and Manclaurin series

Suppose f is a given function which is k& times differentiable at a given point
x = a. Then, Taylor series is

@) = fla)+ ] (a)(z—a)+———+ A

F@e—of Fae-ot

When a = 0, in this case, the Taylor series is called Maclaurin series, and
is given by

f(x) = f0) + [ (0)x +

/7 (0)a? f(0)2* = f"(0)z"
ottt +...:; w

Example: Find the Taylor series expansion of f(x) = sin(z) about the point
— L9
a = DR

13

(r —a)"
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CHAPTER 3. POWER SERIES

We have
() = sin(a) = f(55) = sin(5) = 1
F/(2) = cos(a) = () = cos() = 0,
() = —sin(x) = £ () = —sin(5) = -1
1(a) = —cos(z) =" (5) = ~cos(3y) =0,
Fi(a) = sinfa) = F*(5) = sin(3) = 1,
and so on. Thus, the Taylor series is
Fa)=r (o (- Iy LRO 2SR SGE L)
CES I e 1]

Example: Find the Manclaurin series expansion of f(z) = sin(x)?

We have
f(z) = sin(z) = f(0) = sin(0) = 0,
f(x) = cos(z) =>f (0) = cos(0) =1,
f"(x) = —sin(z) =>f (0) = —sin(0) = 0,
f"(z) = —cos(x) =f" (0) = —cos(0) = —1,
fi(x) = sin(x) = f*(0) = sin(0) = 0,

2 k l‘k
£o) =£0) + O+ O L0
LUS I5 I’7
B TR T T
> 2+l
=2 Gy

Example: Find the Manclaurin series expansion of f(z) = cos(x)?

14



CHAPTER 3. POWER SERIES

We have
f(z) = cos(x) =f(0) = cos(0) =1,
f(x) = —sin(x) =f'(0) = —sin(0) = 0,
f"(z) = —cos(x) :>f"(0) = —cos(0) = —1,
() = sin(z) =" (0) = sin(0) =0,
f4(z) = cos(z) = f*(0) = cos(0) =1,
and so on. Thus, the Manclaurin series is
z 2 k()
f(2) =f(0) + £ O+ L (2(),>”“" ro4d (IS!)”’
22 xt af
=1t t
0 . x?n

Note that if f(z) = sin(z) = 300 ((=1)" L=l then

@nt1)l’

) = L (2n + 1)zl

:i(_l)n (2n + 1)z

(2n + 1)(2n)!

:;@méw
=cos(x).

Find the Manclaurin series expansion of f(x) = e®?

Exercise

Example: Express / sin(2®)dxr as a series?

15



CHAPTER 3. POWER SERIES

Note that
x5 Al
sin(x) :x—§+a—ﬁ—l—
sty G
, b g0 gl
I TR H

So, we have

T
3 T 7x3l  1Ixsl Isx7

Example: show that ¢ = cos(6) +isin(f), where i = /=1 is complex num-
ber by using power series?

Notethate’”:1—|—m+2—?—|—§—?+...+fl—?+,.,

6

Also, we have 12 = —1,i3 = —4,i* = 1,i> = 7,7 = —1, and so on.

oy @0) (@0 (@0  (i0)  (i0)°  (i6)°
e TR T el s el < el
RN A RN N A
B T T I TR M TR

:<1—0—2+9—4—0—6+ )+z(6—0—3+9f~|— )

2! 4‘ 6! 3! 5
> 02n+1

16



Finite series

H
E{?}:H1+ﬁg—{?3—|—"'—|—ﬂ” 1 + a,.
k=1

8
Exl:zk=1+2+3+---+7+8
k=1

25
Exz:Zk2 = 1% 4 2% 4 3% +--- + 24% + 257
k=1
Properties
1. Sum Rule: E(nk + by) = Enk + Ebk
k=1 k=1 =1
2. Difference Rule: E(ng( — by) = Eﬁ‘k — E‘bk
k=1 k=1 =1
3. Constant Multiple Rule: Eam;r =c* E”k Any number ¢)
=1 =1
4. Constant Value Rule: Ec’ =n-c ¢ is any constant value.)
k=1
Formulas for the sums :
n n
nn+1)
1)2c=n.c Z)Zkz >
k=1 k=1

3) Zn: 12— n(1+ n)6(2n +1) 8 Z 13— <n(n2+ 1))2
k=1



To prove (1) HW
To prove (2), the formula in general, we write out the terms in the sum twice, once
forward and once backward.

Zk=1+2+3+---+n—2+n—1+n
k=1

Zk=n+n—1+n—2+---+3+2+1
k=1

If we add the two terms we get

zzk_(1+n)+(1+n)+(1+n)+ +(1+n)

n—times

n(1+n)
2 k=n(1+n)=> k =

Now, we want to prove (3) we will use the fact
(k+1)3—Kk3=3k*+3k+1--(%)

Note that
Dl + 1) -] =
k=1

[23 —13]+[33-23]+[43-33]+ -+ 3 —(n—-1D3]+ [(n+1)3 —n3]

[23 - 13] + [3% — 25T + [4% - 3%] + - +p/—(n/163 [(n+ 1)% — 5]

Dk + 13 -] =+ 1)° -1
k=1



Now, taking the sum for both sides of (*)

S

Z[(k F1P k3] = ) [3K% + 3k + 1]

k=1

n n n n
—_— — 2
;[(k+1)3 k3] 3;k +3kzlk+k;1

s N2, 3n(1+mn)
(n+1) 1_3;k+ > +n

C 3n(1+n)
3) kK =m+1)3-1— —n
) :

3n(l1+n)
2

k=
3zk2=(n+1)3—(1+n)—

k=1

SZkZ =(1+n)[(n+1)2—1—37n]

C 3n

3Zk2 1+mn)[n g]

1

k=
$ 2 2n’+n
3kZ K = 1+ m ()

1

i 12 = n(1+ n)(Zn +1)
k=1

To prove (4) HW



