كورس ١- زمر المحاضرة ١

```
" ثنائية عممية تسمى G 	imes G 	imes G 	imes G ؛ * الله الد فان خالية غير مجموعة G لتكن G
Binary operation ( G
بفعل مغمقة A المجموعة تسمى G عمى ثنائية عممية st ولتكن A \subseteq G لتكن \Box تعريف
كان إذا * العممية
لأنو وذلك ) + الطبيعية الأعداد مجموعة
a+b \in \mathbb{N} \ \forall \ a,b \in \mathbb{N}
لأنو وذلك ) - ( الطرح عممية بفعل مغمقة ليست ولكنيا
1.2∈ N
ولكن
1-2=-1∉ N
المرتب لمزوج فيقال G عمى معرفة ثنائية عممية st , خالية غير مجموعة G لتكن st تعريف
(G,*) زمرة
: الآتية الشروط تحققت إذا ) Group (
1 - a*b \in G لکل a,b \in G.
2 - a*b*c=a*(b*c) کیل a,b,c \in G.
a*e=e*a=a ان ثُ بح a\in G .
) دُ المحا العنصر e سمى (
a - 4 - ان ثُ بح a = a - 1 * a = e . ان ثُ بح a = a - 1 * a = e .
) مسمى (رُ النظ العنصر a-1 سمى (م)
زمرة تشكل ) + ( الجمع عممية مع Z الصحيحة الأعداد مجموعة : مثال
1 - a + b \in Z لکل a,b \in Z.
2 - a+b+c=a+(b+c) کیل a,b,c \in Z.
3 - 2لکل a+0=0+a=a ان ثُ بح a \in Z .
4 - لكل a \in Z وُجِد a + -a = -a + a
ذات زمرة شبو يكون (PX, U) المرتب الزوج فان . خالية غير مجموعة X كانت إذا \Box مثال
عنصر
محابد
P X = \{A : A \subseteq X\}
1 - گن ل A,B \in P(X)
A \subseteq X, B \subseteq X A \cup B \subseteq X A \cup B \in P X
A,B,C ∈P(X) کّن ل - 2
```

 $A \cup B \cup C = A \cup (B \cup C)$ حسب خواص حسب المجموعات خواص حسب

3 - Ø⊆*X*

 $\emptyset \in P X$

 $A \cup \emptyset = \emptyset \cup A = A$

◊ هو دُ المحا العنصر :.

A∈*P*(*X*) كُن ل - 4

انَ ثُ بح رُ نظ وُجد لا

 $A \cup A_{-1} = A_{-1} \cup A = \emptyset$

 $\therefore (PX, U)$ دُ محا عنصر ذات زمرة شبه لكن زمرة سُ ل

كان اذا وفقط اذا ابدالية زمرة بانيا (G,*) لمزمرة يقال تعريف

 $a*b=b*a \forall a,b \in G$

ابدالية زمرة (+,*Z*) : **مثال**

فان زمرة (4,*) لتكن : 1 مبرهنة

. دُ وح دُ المحا العنصر - 1

. دُ وح رُ النظ العنصر - 2

 $a \in 1 - 1 = a$

المحاضرة ٢

 $a*e1=a \ a*e2=a \ \forall \ a \in G \ a*e1=a*e2 \ a-1* \ a*e1=a-1* \ a*e2 \ a-1*a \ *e1=a-1*a \ *e2$

وحيد المحايد العنصر :.

2 - كا كُن كا من كل كُن ل a_{1-1} , a_{2-1} عنصر رً نظ عنصر من كل كُن لa

 $a*a_{1-1}=e \ a*a_{2-1}=e \ \forall \ a\in G$

وحيد المحايد العنصر ان بما

 $a*a_{1-1}=a*a_{2-1}$

 $a-1-1*a-1=e \ a*a-1=a-1-1*a-1 \ a*a-1*a=a-1-1*a-1*a-1*a=a*a-1-1*a-1$

a-1-1*a-1*a e*a=a-1-1*e a=a-1-1

ليكن $a,b \in G$

a*b*b-1*a-1=a*b*b-1*a-1=a*e*a-1=a*a-1=e

b-1*a-1*a*b=b-1*a-1*a*b=b-1*e*b=b-1*b=e

bالعنصر نظير يو a*b

العنصر نظير يو a*b ولكن a*b

وحيد النظير العنصر ان وبما

 $∴ a*b_{-1}=b_{-1}*a_{-1}$

ullet نكن (G,*) نكن , a*b=a*c فان b=c لكل $a,b,c\in G$

```
a,b,c∈G ليكن
a*b=a*c \ a-1* \ a*b = a-1* \ a*c \ a-1*a \ *b = a-1*a \ *c \ e*b=e*c \ b=c
زمرة (G,*) لتكن تعريف
يا تكن (G,*) أنكن معنصر العددية القوى فان a \in G , زمرة ناكن التكن عنا العددية ال
 1 - a_k = a * a * a * \dots * a ان \stackrel{\circ}{L} رن k \in \mathbb{Z} .
k رت ا الم من
2 - a_0 = e.
k رت ا الم من
ان نجد (Z,+) الزمرة في
23=2+2+2=680=03-2=(3-1)2=(-3)2=-3+-3=-6
\Box فان (G,*) نتكن , m,n\in Z , a\in G ناف :
 1 - a_n*a_m=a_{n+m}.
2 - a_n m = a_n m.
3 - e_n = e.
4 - a_{-n} = a_{n-1}
: البرهان
 1 -
a_n*a_m=a*a*...*a*a*a*...*a
m المرات من n المرات من
 =a*a*a*...*a = a_{n+m}
```

من المراتn+m

المحاضرة ٣

Subgroups and Langrage Theorem

A subgroup of a group G is a subset which is a group under the same operation as in G. The following definition will help to make this last phrase precise.

Definition (1): Let * be an operation on a set G, and let $S \subseteq G$ be a

subset. We say that S is **closed under** * if $x * y \in S$ for all $x, y \in S$.

The operation on a group G is a function *: G x G \square G.

(for example, 2 and -2 lie in Z+, but their sum $-2 + 2 = 0 \in /Z+$.

Definition (2): A subset H of a group G is a **subgroup** if:

(i) $1 \in H$; 2

- (ii) If $x, y \in H$, then $xy \in H$; that is, H is closed under *.
- (iii) If $x \in H$, then $x 1 \in H$.

Proposition (3): Every subgroup $H \le G$ of a group G is itself a group.

Proof: Axiom (ii) (in the definition of subgroup) shows that H is closed under the operation of G; that is, H has an operation (namely, the restriction of the operation $*: G \times G \to G$ to $H \times H \subseteq G \times G$. This operation is associative:

since the equation $(x \ y)z = x \ (yz)$ holds for all x, y, $z \in G$, it holds, in particular, for all x, y, $z \in H$. Finally, axiom (i) gives the identity, and axiom (iii) gives

inverses. 3

It is quicker to check that a subset H of a group G is a subgroup (and hence that it is a group in its own right) than to verify the group axioms for H, for associativity is inherited from the operation on G and hence it need not be verified again.

CYCLIC GROUPS

المحاضرة ٤

Definition (9): If G is a group and $a \in G$, write

- (a)= $\{an: n \in \mathbb{Z}+\} = \{all \text{ powers of } a\}$
- (a) is called **cyclic subgroup** of G generated by a.

Proposition (10): The intersection of any family of subgroups is again subgroup.

Definition (1): If H is a subgroup of a group G and a G, then the **coset a H** is the subset a H of G, where

 $a H = \{ah: h \square H \}$

Of course, $a = ae \in a H$. Cosets are usually not subgroups.

The cosets just defined are often called left cosets; there are also right cosets of H, namely, subsets of the form H a $\{ha|h \square H\}$; these arise in further study of groups, but we shall work almost exclusively with (left) cosets. In particular, if the operation is addition, then the coset is denoted by $a + H = \{a + h : h \square H\}$.

Homomorphism

المحاضرة ٥

An important problem is determining whether two given groups G and H are somehow the same. 155 **Definition (1):** If (G, *) and (H, \circ) are groups, then a function $f: G \to H$ is a **homomorphism** if: $f(x * y) = f(x) \circ f(y)$ for all $x, y \Box G$. If f is also a bijective, then f is called an **isomorphism**. We say that G and H are isomorphic, denoted by $G \Box H$, if there exists an isomorphism $f: G \to H$.

Example (2):

Let be the group of all real numbers with operation addition, and let R+ be the group of all positive real numbers with operation multiplication. The function $f: R \to R+$, defined by f(x)=tx, where t is constant number, is a homomorphism; for if x, $y \Box R$, then

$$f(x + y) = t(x+y) = tx ty = f(x) f(y).$$

We now turn from isomorphisms to more general homomorphisms.

Lemma (3): Let $f: G \to H$ be a homomorphism.

- (i) f(e) = e;
- (ii) f(x-1) = f(x)-1;

Definition (6): If $f: G \to H$ is a homomorphism, define

kernel $f = \{x \square G : f(x) = e\}$

and **image** $\mathbf{f} = \{ h \square H : h = f(x) \text{ for some } x \square G \}.$

We usually abbreviate kernel f to ker f and image f to im f

So that if $f: G \square H$ is a homomorphism and B is a subgroup of H then f-1(B) is a subgroup of G containing ker f.

Note: Kernel comes from the German word meaning "grain" or "seed" (corn comes from the same word).

Its usage here indicates an important ingredient of a homomorphism, we give it without proof.

Proposition: Let $f: G \to H$ be a homomorphism.

(i) \ker f is a subgroup of G and im f is a subgroup of H .

المحاضرة ٦

(ii) If $x \square$ ker f and if $a \square G$, then ax $a-1 \square$ ker f.
(iii) f is an injection if and only if ker $f = \{e\}$.
Normal Subgroups
Definition (1): A subgroup K of a group G is
called normal , if for each $k \square K$ and $g \square G$ imply
gkg $-1 \square$ K. that is gKg $-1 \square$ G for every $g \square$ G.
Definition (2):
Define the center of a group G, denoted by Z (G),
to be
$Z(G) = \{z \square G: zg = gz \text{ for all } g \square G\};$
that is, Z (G) consists of all elements commuting
with every element in G. (Note that the equation zg
123

= gz can be rewritten as z = gzg-1, so that no other elements in G are conjugate to z.

Remark (3):

Let us show that Z(G) is a subgroup of G. We can easily show that Z(G) is subgroup of G. It is clear that $Z(G) \neq \text{since } 1 \in Z(G)$, for 1 commutes with everything. Now, If y, $z \square Z(G)$, then yg = gy and zg = gz for all $g \square G$. Therefore, (yz)g = y(zg) = y(gz) = (yg)z = g(yz), so that yz commutes with everything, hence $yz \square Z(G)$. Finally, if $z \square Z(G)$, then zg = gz for all $g \square G$; in particular, zg-1 = g-1z. Therefore, gz-1 = (zg-1)-1 = (g-1z)-1 = z-1g (we are using (ab)-1 = b-1a-1 and (a-1)-1 = a). So that Z(G) is subgroup pf G.

Clearly che center Z(G) is a normal subgroup; since if $z \square Z(G)$ and $g \square G$, then $gzg-1=zgg-1=z\square Z(G)$ A group G is abelian if and only if Z(G)=G. At the other extreme are groups G for which $Z(G)=\{1\}$; such groups are called centerless. For example, it is easy to see that $Z(S3)=\{1\}$; indeed, all large symmetric groups are centerless.

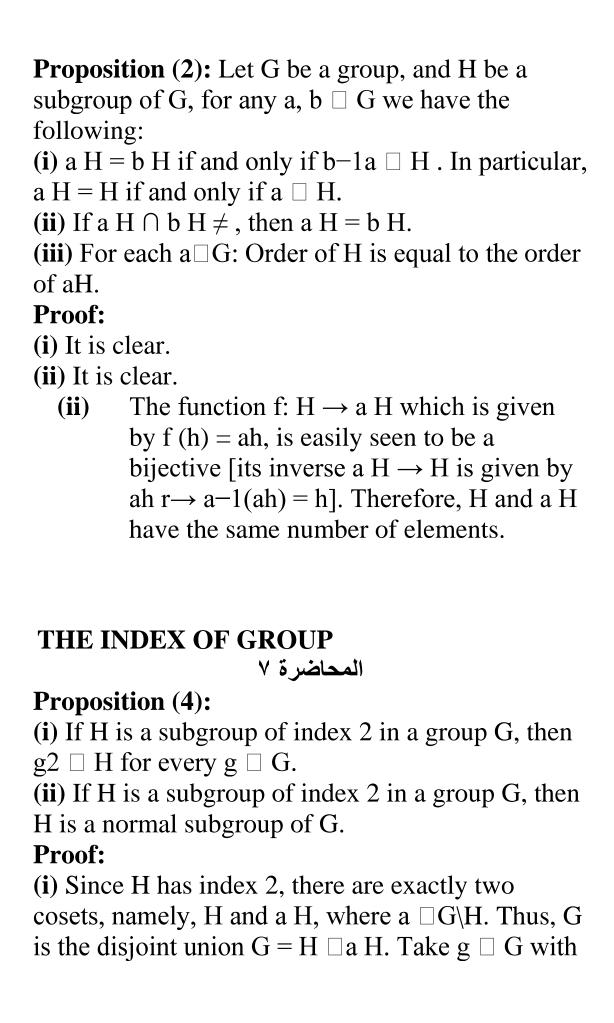
Remark (4):

We can show that any two finite cyclic groups G and H of the same order m are isomorphic. It will then follow from that any two groups of prime order p are isomorphic.

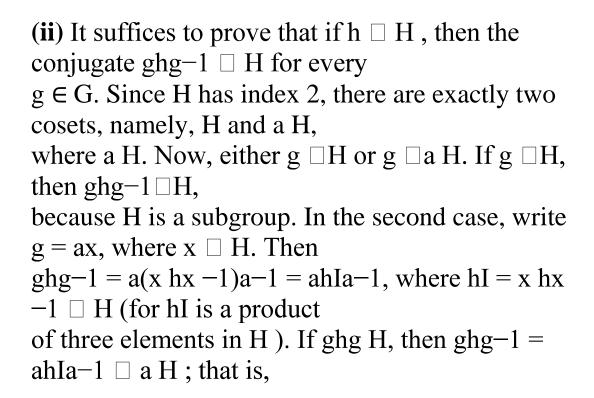
Definition (5):

A property of a group G that is shared by every other group isomorphic to it is called an **invariant** of G. For example, the order, G, is an invariant of G, for isomorphic groups have the same order. Being abelian is an invariant [if a and b commute, then ab = ba and

f(a) f(b) = f(ab) = f(ba) = f(b) f(a);hence, f(a) and f(b) commute]. Thus, M2x2 and GL(2,R) are not isomorphic, for is abelian and GL(2,R) is not.



g H. So that g = ah for some $h \square H$. If g2 H, then g2 = ah1, where $h1 \square H$. Hence, g = g-1 g2 = (ah)-1a h1 = h-1a-1a h1 = h-1 $h1 \square H$, and this is a contradiction.



$ahIa$ −1 = ay for some y \Box H. Canceling a, we have
hIa-1 = y, which gives the contradiction $a = y-1hI$
\square H. Therefore, if h \square H, every conjugate of h also
lies in H; that is, H is a normal subgroup of G.
Proposition(5): If K is a normal subgroup of a
group G, then
bK = K b
for every $b \square G$.
Proof: We must show that $bK \square Kb$ and $Kb \square bK$.
So if $bk \square bK$, then clearly $bK = bKb-1b$.
Since bKb-1 \square K, then bKb-1= k1 for some k1 \square K.
This implies that $bK \square Kb$. Similarity for the other
case. Thus $bK = Kb$. 125

المحاضرة ٨

Theorem (3): (Lagrange's Theorem)

If H is a subgroup of a finite group G, then |H | is a divisor of |G|. That is:

$$|G| = [G : H]|H|$$

This formula shows that the index [G: H] is also a divisor of |G|.

Coset of sets

Corollary (4): If H is a subgroup of a finite group G, then

$$[G:H] = |G|/|H|$$

Corollary (5): If G is a finite group and a \square G, then the order of a is a divisor of |G|.

Corollary (6): If a finite group G has order m, then am = e for all $a \square G$.

Corollary (7): If p is a prime, then every group G of order p is cyclic.

Proof: Choose a \square G with a \neq e, and let H = (a) be the cyclic subgroup generated by a. By Lagrange's theorem, |H| is a divisor of |G| = p. Since p is a prime and |H| > 1, it follows that |H| = p = |G|, and so H = G.

Lagrange's theorem says that the order of a subgroup of a finite group G is a divisor of G. Is the "converse" of Lagrange's theorem true? That is, if d is a divisor of G, must there exists a subgroup of G having order d? The answer is "no;" We can show that the alternating group A4 is a group of order 12.