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Subgroups and Langrage Theorem

A subgroup of a group G Is a subset which is a
group under the same operation as in G. The
following definition will help to make this last
phrase precise.

Definition (1): Let * be an operation on a set G,
andletS<c G be a



subset. We say that S is closed under x if X *y €S
forall x,y €S.

The operation on a group G is a function *: G x G
1 G.

(for example, 2 and —2 lie in Z+, but their sum —2 +
2=0€/Z+.

Definition (2): A subset H of agroup G is a
subgroup If:

(i)1eH;:



(i) Ifx,yeH,thenxy eH;thatis, His closed
under .
(i) IfxeH ,thenx-1e H.
Proposition (3): Every subgroup H < G of a group
G is itself a group.
Proof: Axiom (ii) (in the definition of subgroup)
shows that H is closed under the operation of G;
that Is, H has an operation (namely, the restriction
of the operation *: GXG—>GtoHXxH S G x G.
This operation is associative:
since the equation (X y)z = x (yz) holds for all x , v,
z € G, 1t holds, in particular, forall x ,y,zeH.
Finally, axiom (i) gives the identity, and axiom (iii)
gives
INverses. s

It is quicker to check that a subset H of a group G

IS a subgroup (and hence that it is a group in its
own right) than to verify the group axioms for H,
for associativity is inherited from the operation on
G and hence it need not be verified again.

CYCLIC GROUPS
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Definition (9): If G isa group and a € G, write
(a)={an: n €Z+} = {all powers of a}
(a) is called cyclic subgroup of G generated by a.



Proposition (10): The intersection of any family of
subgroups is again subgroup.

Definition (1): If H is a subgroup of a group G and
a G, then the coset a H is the subset a H of G,
where

aH={ah:h [ H}

Of course, a = ae € a H. Cosets are usually not
subgroups.



The cosets just defined are often called left cosets;
there are also right cosets of H, namely, subsets of
the form H a {ha| h [JH}; these arise in further
study of groups, but we shall work almost
exclusively with (left) cosets. In particular, if the
operation is addition, then the coset is denoted by
a+t+H={a+h:h[H}.

Homomorphism
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An important problem is determining whether two
given groups G and H are somehow the same. 155
Definition (1): If (G, *) and (H, °) are groups, then
a function f: G — H is a homomorphism if:
Fx*y)=1(x)-1(y)
for all x,y [1 G. If fis also a bijective, then f1s
called an isomorphism. We say that G and H are
isomorphic, denoted by G ] H, if there exists an
isomorphism f: G — H.



Example (2):

Let be the group of all real numbers with operation
addition, and let R+ be the group of all positive real
numbers with operation multiplication. The
function f: R— R+, defined by f(x)=tx , where t is
constant number, is a homomorphism; for if X , y
IR, then

f(x+y)=txty) =txty =1 (x) T (y).

We now turn from isomorphisms to more general
homomorphisms.

Lemma (3): Let f: G — H be a homomorphism.
(i) T (e) = e;

(i) fx-1)=f(x)1;

Definition (6): If f: G — H is a homomorphism,
define

kernel f={x 0 G:f(x)=¢}

and image f={h [J H: h=1f(x) for some x [1G}.
We usually abbreviate kernel f to ker f and image f
to im f

So that if £: G J H 1s a homomorphism and B 1s a
subgroup of H then f—1(B) is a subgroup of G
containing ker f .

Note: Kernel comes from the German word
meaning “grain’ or “seed” (corn comes from the
same word).

Its usage here indicates an important ingredient of a
homomorphism, we give it without proof.
Proposition: Let f: G — H be a homomorphism.



(1) ker f is a subgroup of Gand imfis a
subgroup of H .
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(i) If x O ker fand if a O G, then ax a—1L] ker f.
(ii1) f is an injection if and only if ker f = {e}.
Normal Subgroups

Definition (1): A subgroup K of a group G is
called normal, if for each k [1 K and g [1 G imply
gkg—10] K. that 1s gKg-1 [J G for every g[JG.
Definition (2):

Define the center of a group G, denoted by Z (G),
to be

Z(G)={z[1G:zg=gzforall g [] G};

that is, Z (G) consists of all elements commuting
with every element in G. (Note that the equation zg
123



= g7 can be rewritten as z = gzg—1, so that no other
elements in G are conjugate to z.

Remark (3):

Let us show that Z (G) is a subgroup of G. We can
easily show that Z(G is subgroup of G. It is clear
that Z(G)# since 1 € Z (G), for 1 commutes with
everything. Now, Ify, z [1 Z (G), then yg = gy and
zg = gz for all g [ G. Therefore, (yz)g = y(zg) =
y(9z) = (yg)z = g(yz), so that yz commutes with
everything, hence yz [] Z (G). Finally, if z [1 Z (G),
then zg = gz for all g [J G; in particular, zg—1 =
g—1 z. Therefore,

g7z—1 =(zg—1)-1=(g-1z)-1=2z-1g

(we are using (ab)—1 =b—1a—1 and (a—1)—1 =a).
So that Z(G) is subgroup pf G.



Clearly che center Z (G) is a normal subgroup;
since 1f z [ Z (G) and g [J G, then

gzg—1 =zgg—1=27z117(QG)

A group G is abelian if and only iIf Z (G) = G. At
the other extreme are groups G for which Z (G) =
{1}, such groups are called centerless. For
example, it is easy to see that Z (S3) = {1}, indeed,
all large symmetric groups are centerless.



Remark (4):

We can show that any two finite cyclic groups G
and H of the same order m are isomorphic. It will
then follow from that any two groups of prime
order p are isomorphic.

Definition (5):

A property of a group G that is shared by every
other group isomorphic to it is called an invariant
of G. For example, the order, G, is an invariant of
G, for isomorphic groups have the same order.
Being abelian is an invariant [if a and b commute,
then ab = ba and

f(a)f(b)=f(ab) =f(ba) =f(b) f(a);

hence, f (a) and f (b) commute]. Thus, M2x2 and
GL(2,R) are not isomorphic, for is abelian and
GL(2,R) is not.



Proposition (2): Let G be a group, and H be a
subgroup of G, for any a, b [J G we have the
following:

() aH=b H if and only if b—1a [ H . In particular,
aH=Hifand only ifa [ H.

(i IfaHNbH#,thenaH=>b H.

(ii1) For each al1G: Order of H is equal to the order
of aH.

Proof:

(i) Itis clear.

(i) It is clear.

(i)  The function f: H — a H which is given
by f (h) = ah, is easily seen to be a
bijective [its inverse a H — H 1s given by
ah r— a—1(ah) = h]. Therefore, H and a H
have the same number of elements.

THE INDEX OF GROUP
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Proposition (4):
(i) If H is a subgroup of index 2 in a group G, then
g2 [ H for every g [] G.
(i1) If H is a subgroup of index 2 in a group G, then
H is a normal subgroup of G.
Proof:
(i) Since H has index 2, there are exactly two
cosets, namely, H and a H, where a [JG\H. Thus, G
1s the disjoint union G =H [la H. Take g [1 G with



g H. So that g = ah for some h [] H. If g2 H, then
g2 = ahl, where hl [J H. Hence, g=¢g—1 g2 =
(ah)—la hl =h—la—lahl =h—1 h1[] H, and this 1is
a contradiction.



(i1) It suffices to prove that if h [0 H , then the
conjugate ghg—1 [J H for every

g € G. Since H has index 2, there are exactly two
cosets, namely, H and a H,

where a H. Now, either g [lH or g [JaH. If g [1H,
then ghg—1[H,

because H is a subgroup. In the second case, write
g = ax, where x [] H. Then

ghg—1 = a(x hx —1)a—1 = ahla—1, where hl = x hx
—1 [J H (for hl 1s a product

of three elements in H ). If ghg H, then ghg—1 =
ahla—1 [J a H ; that 1s,



ahla—1 = ay for some y [] H. Canceling a, we have
hla—1 =y, which gives the contradiction a = y—1hl
1 H. Therefore, 1f h [1 H, every conjugate of h also
lies in H; that is, H is a normal subgroup of G.
Proposition(5) : If K is a normal subgroup of a
group G, then

bK=Kb

for every b U G.

Proof: We must show that bK [ Kb and Kb [] bK.
So if bk[1bK, then clearly bK = bKb-1b.

Since bKb-111K, then bKb-1= k1 for some k1[1K.
This implies that bK[IKb. Similarity for the other
case. Thus bK = Kb. 125
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Theorem (3): (Lagrange’s Theorem)



If H is a subgroup of a finite group G, then |H | is a
divisor of |G|. That is:

G| =[G :H]H]

This formula shows that the index [G : H ] is also a
divisor of |G|.

Coset of sets

Corollary (4): If H is a subgroup of a finite group
G, then

[G:H]=I|G|/H|

Corollary (5): If G is a finite group and a [] G,
then the order of a is a divisor of |G|.

Corollary (6): If a finite group G has order m, then
am = ¢ forall a I G.

Corollary (7): If p is a prime, then every group G
of order p is cyclic.



Proof: Choose a [ G with a#e, and let H=(a) be

the cyclic subgroup generated by a. By Lagrange’s
theorem, |H | is a divisor of |G| = p. Sincep isa
prime and |H | > 1, it follows that |H | = p = |G|, and
so H =G.

Lagrange’s theorem says that the order of a

subgroup of a finite group G is a divisor of G . Is
the “converse” of Lagrange’s theorem true? That
IS, If d Is a divisor of G, must there exists a
subgroup of G having order d? The answer 1s “no;”
We can show that the alternating group A4 is a
group of order 12 .



