COURSE 1- GROUP 1

Lecture 1

Definition: A binary operation is $\mathrm{G}^{\times} \mathrm{G} \rightarrow \mathrm{G}, \mathrm{a}, \mathrm{b}$ in G
Definition: A* is called associative if
$a^{*}\left(b^{*} c\right)=\left(a^{*} b\right)^{*} c, a, b, c$ in G.
Definition: A* is called closed if $a^{*} b$ in G.
Example: $(\mathrm{N},+)$ is closed for all a, b in G .
$a+b \in \mathbb{N} \forall a, b \in \mathbb{N}$
Remark:
($\mathrm{N},-$) is not closed because
$1,2 \in \mathbb{N}$
but
$1-2=-1 \notin \mathbb{N}$.

Definition:
A non empty set G with $\left(^{*}\right.$) is called a group if:
$1-a * b \in G a, b \in G$.
$2-a * b * c=a *(b * c) a, b, c \in G$.
3-e $e G a * e=e * a=a \quad a \in G$.
4- $a \in G a-1 \in G a * a-1=a-1 * a=e$.
EXAMPLES:
$1-a+b \in Z \quad \backslash a, b \in Z$.
$2-a+b+c=a+(b+c), a, b, c \in Z$.
3-0 0 Z $a+0=0+a=a, a \in Z$.
$4-a \in Z-a \in Z$ such that $a+-a=-a+a$
Also:
$P X=\{A: A \subseteq X\}$
$1-\mathrm{A}, B \in P(X)$
$A \subseteq X, B \subseteq X A \cup B \subseteq X A \cup B \in P X$
2- $A, B, C \in P(X)$
$A \cup B \cup C=A \cup(B \cup C)$
3- $\emptyset \subseteq X$
$\emptyset \in P X$
$A \cup \emptyset=\emptyset \cup A=A$
4- $A \in P(X)$
$A \cup A-1=A-1 \cup A=\emptyset$
$a * b=b * a \forall a, b \in G$
仿
Theorem
1-The identity is a unique
2-The inverse
$3-a-1-1=a \quad a \in$

Lecture 2

$a * e 1=a \quad a * e 2=a \forall a \in G a * e 1=a * e 2 a-1 * a * e 1$
$=a-1 * a * e 2 a-1 * a * e 1=a-1 * a * e 2 e 1 * e 1=e 2 * e 2$
$e 1=e 2$
The identity unique

$$
\begin{aligned}
& a * a 1-1=e a * a 2-1=e \forall a \in G \\
& a * a 1-1=a * a 2-1
\end{aligned}
$$

$a-1-1 * a-1=e ~ a * a-1=a-1-1 * a-1 \quad a * a-1 * a=$ $a-1-1 * a-1 * a a * a-1 * a=a-1-1 * a-1 * a e * a=$ $a-1-1 * e a=a-1-1$
$a, b \in G$
$a * b * b-1 * a-1=a * b * b-1 * a-1$
$=a * e * a-1=a * a-1=e$
$b-1 * a-1 * a * b=b-1 * a-1 * a * b$
$=b-1 * e * b=b-1 * b=e$
$\therefore b-1 * a-1 a * b$
, $a * b-1, a * b$
$\therefore a * b-1=b-1 * a-1$
: $(G, *)$ group , $a * b=a * c$, $b=c, a, b, c \in G$
: Let $a, b, c \in G$
$a * b=a * c a-1 * a * b=a-1 * a * c a-1 * a * b=a-1 * a$ $* c e * b=e * c b=c$
Definition
: Let ($G, *$) be a group
: let ($G, *$) group , $a \in G$, then
$1-a k=a * a * a * \ldots * a, k \in Z$.
$2-a 0=e$.
$3-a-k=a-1 * a-1 * a-1 * \ldots * a-1, k \in Z$.
$(Z,+)$, so
$23=2+2+2=680=03-2=(3-1) 2=(-3) 2=-3+-3$
$=-6$
: let ($G, *$) group , $m, n \in Z, a \in G$, then
$1-a n * a m=a n+m$.
2 -an $m=a n$.
$3-e n=e$.
$4-a-n=a n-1$

Proof

1 -
$a n * a m=a * a * \ldots * a * a * a * \ldots * a$
n, n-times
$=a * a * a * \ldots * a=a n+m$
$n+m$, n-times

LECTURE 3

Subgroups and Langrage Theorem
A subgroup of a group G is a subset which is a group under the same operation as in G. The following definition will help to make this last phrase precise.

Definition (1): Let * be an operation on a set G, and let $S \subseteq G$ be a
subset. We say that S is closed under $*$ if $x * y \in S$ for all $x, y \in S$.
The operation on a group G is a function *: G x G \square G.
(for example, 2 and -2 lie in $\mathrm{Z}+$, but their sum $-2+$ $2=0 \in / \mathrm{Z}+$.
Definition (2): A subset H of a group G is a subgroup if:
(i) $1 \in \mathrm{H}$; 2
(ii) If $x, y \in H$, then $x y \in H$; that is, H is closed under *.
(iii) If $x \in H$, then $x-1 \in H$.

Proposition (3): Every subgroup $\mathrm{H} \leq \mathrm{G}$ of a group G is itself a group.

Proof: Axiom (ii) (in the definition of subgroup) shows that H is closed under the operation of G ; that is, H has an operation (namely, the restriction of the operation $*: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G}$ to $\mathrm{H} \times \mathrm{H} \subseteq \mathrm{G} \times \mathrm{G}$. This operation is associative:
since the equation $(x y) z=x(y z)$ holds for all x, y, $z \in G$, it holds, in particular, for all $x, y, z \in H$. Finally, axiom (i) gives the identity, and axiom (iii) gives
inverses. 3
It is quicker to check that a subset H of a group G is a subgroup (and hence that it is a group in its own right) than to verify the group axioms for H , for associativity is inherited from the operation on G and hence it need not be verified again.

CYCLIC GROUPS

LECTURE 4

Definition (9): If G is a group and $\mathrm{a} \in \mathrm{G}$, write (a) $=\{$ an: $n \in Z+\}=\{$ all powers of $a\}$
(a) is called cyclic subgroup of G generated by a.

Proposition (10): The intersection of any family of subgroups is again subgroup.

Definition (1): If H is a subgroup of a group G and a G, then the coset a H is the subset a H of G , where $\mathrm{a} H=\{\mathrm{ah}: \mathrm{h} \square \mathrm{H}\}$ of course, $\mathrm{a}=\mathrm{ae} \in \mathrm{aH}$. Cosets are usually not subgroups.

The cosets just defined are often called left cosets; there are also right cosets of H , namely, subsets of the form H a $\{\mathrm{ha} \mid \mathrm{h}$ in H$\}$; these arise in further study of groups, but we shall work almost exclusively with (left) cosets. In particular, if the operation is addition, then the coset is denoted by $a+H=\{a+h: h$ in $H\}$.

Homomorphism

LECTURE 5

An important problem is determining whether two given groups G and H are somehow the same.

Definition :
If $\left(\mathrm{G},{ }^{*}\right)$ and $\left(\mathrm{H},{ }^{\circ}\right)$ are groups, then a function $\mathrm{f}: \mathrm{G}$
$\rightarrow \mathrm{H}$ is a homomorphism if:
$f(x * y)=f(x) \circ f(y)$
for all x, y in G. If f is also a bijective, then f is called an isomorphism. We say that G and H are isomorphic, denoted by GH , if there exists an isomorphism $f: G \rightarrow H$.

Example (2):
Let be the group of all real numbers with operation addition, and let $\mathrm{R}+$ be the group of all positive real numbers with operation multiplication. The function $f: R \rightarrow R+$, defined by $f(x)=t x$, where t is constant number, is a homomorphism; for if x, y in R, then $f(x+y)=t(x+y)=t x t y=f(x) f(y)$. We now turn from isomorphisms to more general homomorphisms.

Lemma (3): Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{H}$ be a homomorphism.
(i) $\mathrm{f}(\mathrm{e})=\mathrm{e}$;
(ii) $\mathrm{f}(\mathrm{x}-1)=\mathrm{f}(\mathrm{x})-1$;

Definition (6): If $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{H}$ is a homomorphism, define
kernel $\mathrm{f}=\{\mathrm{x}$ in $\mathrm{G}: \mathrm{f}(\mathrm{x})=\mathrm{e}\}$
and image $f=\{h$ in $H: h=f(x)$ for some x inG $\}$. We usually abbreviate kernel f to ker f and image f to im f. So that if $f: G H$ is a homomorphism and B is a subgroup of H then $f^{-1}(B)$ is a subgroup of G containing $\operatorname{ker} f$.

Note: Kernel comes from the German word meaning "grain" or "seed" (corn comes from the same word).
Its usage here indicates an important ingredient of a homomorphism, we give it without proof.

Proposition: Let $\mathrm{f}: \mathrm{G} \rightarrow \mathrm{H}$ be a homomorphism.
(i) $\operatorname{ker} \mathrm{f}$ is a subgroup of G and imf is a subgroup of H .

LECTURE 6
(ii) If x in ker f and if a in G, then $a x a^{-1}$ in $\operatorname{ker} f$.
(ii) f is an injection if and only if $\operatorname{ker} f=\{e\}$.

Normal Subgroups
Definition (1): A subgroup K of a group G is called normal, if for each k in K and g in G imply gkg^{-1} in K. that is gKg^{-1} in G for every g in G .

Definition (2):
Define the center of a group G, denoted by $Z(G)$, to be $\mathrm{Z}(\mathrm{G})=\{\mathrm{z}$ in $\mathrm{G}: \mathrm{zg}=\mathrm{gz}$ for all g in G$\}$; that is, $Z(\mathrm{G})$ consists of all elements commuting with every element in G. (Note that the equation zg
$=\mathrm{gz}$ can be rewritten as $\mathrm{z}=\mathrm{gzg}-1$, so that no other elements in G are conjugate to z .
Remark (3):
Let us show that $Z(G)$ is a subgroup of G. We can easily show that $Z(G$ is subgroup of G. It is clear that $Z(G) \neq$ since $1 \in Z(G)$, for 1 commutes with everything. Now, If y, z in $Z(G)$, then $y g=g y$ and $\mathrm{zg}=\mathrm{gz}$ for all g in G . Therefore, $(\mathrm{yz}) \mathrm{g}=\mathrm{y}(\mathrm{zg})=$ $y(g z)=(y g) z=g(y z)$, so that $y z$ commutes with everything, hence $y z$ in $Z(G)$. Finally, if z in $Z(G)$, then $\mathrm{zg}=\mathrm{gz}$ for all g in G ; in particular, $\mathrm{zg}^{-1}=\mathrm{g}^{-1}$ z . Therefore,
$\mathrm{gz}^{-1}=\left(\mathrm{zg}^{-1}\right)_{-1}=\left(\mathrm{g}^{-1} \mathrm{z}\right)^{-1}=\mathrm{z}^{-1} \mathrm{~g}$
(we are using $(a b)^{-1}=b^{-1} a^{-1}$ and $\left(a^{-1}\right)^{-1}=a$). So that $Z(G)$ is subgroup pf G .

Clearly che center $Z(G)$ is a normal subgroup; since if z in $Z(G)$ and g in G, then $\mathrm{gzg}^{-1}=\mathrm{zgg}^{-1}=\mathrm{z}$ in $\mathrm{Z}(\mathrm{G})$.

A group G is abelian if and only if $Z(G)=G$. At the other extreme are groups G for which $Z(G)=$ $\{1\}$; such groups are called centerless. For example, it is easy to see that $Z(S 3)=\{1\}$; indeed, all large symmetric groups are centerless.

Remark (4):
We can show that any two finite cyclic groups G and H of the same order m are isomorphic. It will then follow from that any two groups of prime order p are isomorphic.
Definition (5):
A property of a group G that is shared by every other group isomorphic to it is called an invariant of G. For example, the order, G, is an invariant of G , for isomorphic groups have the same order. Being abelian is an invariant [if a and b commute, then $a b=b a$ and
$\mathrm{f}(\mathrm{a}) \mathrm{f}(\mathrm{b})=\mathrm{f}(\mathrm{ab})=\mathrm{f}(\mathrm{ba})=\mathrm{f}(\mathrm{b}) \mathrm{f}(\mathrm{a})$;
hence, $f(a)$ and $f(b)$ commute]. Thus, M2x2 and
$\mathrm{GL}(2, \mathrm{R})$ are not isomorphic, for is abelian and GL $(2, R)$ is not.

Proposition (2): Let G be a group, and H be a subgroup of G, for any $\mathrm{a}, \mathrm{b} \square \mathrm{G}$ we have the following:
(iii) $\quad \mathrm{a} H=b \mathrm{H}$ if and only if $\mathrm{b}-1 \mathrm{a} \square \mathrm{H}$. In particular, a $\mathrm{H}=\mathrm{H}$ if and only if a $\square \mathrm{H}$.
(ii) If $\mathrm{a} \mathrm{H} \cap \mathrm{b} \mathrm{H} \neq$, then $\mathrm{H}=\mathrm{bH}$.
(iv) For each $a \square \mathrm{G}$: Order of H is equal to the order of Ah.
Proof:
(v) It is clear.
(ii) It is clear.
(vi) The function $\mathrm{f}: \mathrm{H} \rightarrow \mathrm{aH}$ which is given by $f(h)=a h$, is easily seen to be a bijective [its inverse a $\mathrm{H} \rightarrow \mathrm{H}$ is given by $\mathrm{ah} \mathrm{r} \rightarrow \mathrm{a}-1(\mathrm{ah})=\mathrm{h}]$. Therefore, H and a H have the same number of elements.

THE INDEX OF GROUP

LECTURE 7

Proposition (4):
(i) If H is a subgroup of index 2 in a group G , then $\mathrm{g}_{2} \square \mathrm{H}$ for every g in G .
(ii) If H is a subgroup of index 2 in a group G, then H is a normal subgroup of G .
Proof:
(i) Since H has index 2, there are exactly two cosets, namely, H and a H , where a inG/H. Thus, G is the disjoint union $\mathrm{G}=\mathrm{H}=\mathrm{aH}$. Take g in G with g H . So that $\mathrm{g}=$ ah for some h in H . If $\mathrm{g}_{2} \mathrm{H}$, then g 2 $=\mathrm{ah}_{1}$, where h_{1} in H. Hence, $\mathrm{g}=\mathrm{g}^{-1} \mathrm{~g}_{2}=(\mathrm{ah})-1 \mathrm{a}$ $h_{1}=h^{-1} a^{-1} a h_{1}=h^{-1} h$ 1in H, and this is a contradiction.
(ii) It suffices to prove that if h in H, then the conjugate ghg^{-1} in H for every
$\mathrm{g} \in \mathrm{G}$. Since H has index 2, there are exactly two cosets, namely, H and a H,
where a H . Now, either g inH or g in a H . If g inH , then $\mathrm{ghg}^{-1} \mathrm{inH}$,
because H is a subgroup. In the second case, write $\mathrm{g}=\mathrm{ax}$, where x in H . Then
ghg $-1=\mathrm{a}\left(\mathrm{x} \mathrm{hx}^{-1}\right) \mathrm{a}^{-1}=\mathrm{ahIa}^{-1}$, where $\mathrm{hI}=\mathrm{xhx}^{-1}$ in H (for hI is a product of three elements in H). If ghg H , then $\mathrm{ghg}^{-1}=$ $\mathrm{ahIa}^{-1}=\mathrm{aH}$; that is,
ahIa ${ }^{-1}=$ ay for some y in H. Canceling a, we have $\mathrm{hIa}-1=\mathrm{y}$, which gives the contradiction $\mathrm{a}=\mathrm{y}^{-1} \mathrm{hI}$ in H . Therefore, if h in H , every conjugate of h also lies in H; that is, H is a normal subgroup of G . Proposition(5) : If K is a normal subgroup of a group G, then
$\mathrm{bK}=\mathrm{K}$ b
for every b in G .
Proof: We must show that $\mathrm{bK}=\mathrm{Kb}$ and $\mathrm{Kb}=\mathrm{bK}$. So if $b k=b K$, then clearly $b K=b K b^{-1} b$.
Since $b \mathrm{~Kb}^{-1} \mathrm{inK}$, then $\mathrm{bKb}^{-1}=\mathrm{k} 1$ for some $\mathrm{k}_{1} \mathrm{inK}$.
This implies that $\mathrm{bK} \square \mathrm{Kb}$. Similarity for the other case. Thus $\mathrm{bK}=\mathrm{Kb}$.

LECTURE 8

Theorem (3): (Lagrange's Theorem)

If H is a subgroup of a finite group G, then $|\mathrm{H}|$ is a divisor of $|\mathrm{G}|$. That is:
$|\mathrm{G}|=[\mathrm{G}: \mathrm{H}]|\mathrm{H}|$
This formula shows that the index [G:H] is also a divisor of $|\mathrm{G}|$.
Coset of sets
Corollary (4): If H is a subgroup of a finite group G, then
$[\mathrm{G}: \mathrm{H}]=|\mathrm{G}| /|\mathrm{H}|$
Corollary (5): If G is a finite group and a in G, then the order of a is a divisor of $|\mathrm{G}|$.
Corollary (6): If a finite group G has order m, then $\mathrm{am}=\mathrm{e}$ for all a in G .
Corollary (7): If p is a prime, then every group G of order p is cyclic.

Proof: Choose a in G with $\mathrm{a} \neq \mathrm{e}$, and let $\mathrm{H}=$ (a) be the cyclic subgroup generated by a. By Lagrange's theorem, $|\mathrm{H}|$ is a divisor of $|\mathrm{G}|=\mathrm{p}$. Since p is a prime and $|\mathrm{H}|>1$, it follows that $|\mathrm{H}|=\mathrm{p}=|\mathrm{G}|$, and so $\mathrm{H}=\mathrm{G}$.
Lagrange's theorem says that the order of a subgroup of a finite group G is a divisor of G . Is the "converse" of Lagrange's theorem true? That is, if d is a divisor of G, must there exists a subgroup of G having order d? The answer is "no;" We can show that the alternating group A4 is a group of order 12 .

