
COURSE 1- GROUP 1 

 

Lecture 1 

 

Definition: A binary operation is G˟G→G, a, b in 

G 

Definition: A * is called associative if 

a*(b*c)=(a*b)*c,  a, b, c in G. 

Definition:  A * is called closed if a*b in G. 

Example: (N, +) is closed for all a, b in G. 

𝑎+𝑏∈ ℕ ∀ 𝑎,𝑏∈ ℕ 

Remark: 

(N, -) is not closed because 

1,2∈ ℕ 

but 

1−2=−1∉ ℕ. 

 

 Definition: 

A non empty set G with (*) is called a group if: 

 

1 - 𝑎∗𝑏∈𝐺 𝑎,𝑏∈𝐺 . 

2 - 𝑎∗𝑏 ∗𝑐=𝑎∗(𝑏∗𝑐) 𝑎,𝑏,𝑐∈𝐺 . 

3 - 𝑒∈𝐺 𝑎∗𝑒=𝑒∗𝑎=𝑎 𝑎∈𝐺 . 

4 - 𝑎∈𝐺 𝑎−1∈𝐺 𝑎∗𝑎−1=𝑎−1∗𝑎=𝑒 . 

EXAMPLES: 

1 - 𝑎+𝑏∈𝑍 نكم 𝑎,𝑏∈𝑍 . 

2 - 𝑎+𝑏 +𝑐=𝑎+(𝑏+𝑐) , 𝑎,𝑏,𝑐∈𝑍 . 

3 - 0∈𝑍  𝑎+0=0+𝑎=𝑎 , 𝑎∈𝑍 . 

4 - 𝑎∈𝑍 −𝑎∈𝑍 such that 𝑎+ −𝑎 = −𝑎 +𝑎 

Also: 



𝑃 𝑋 ={𝐴∶ 𝐴⊆𝑋} 

1 - A,𝐵 ∈𝑃(𝑋) 

𝐴⊆𝑋 , 𝐵⊆𝑋 𝐴∪𝐵⊆𝑋 𝐴∪𝐵∈𝑃 𝑋 

2 - 𝐴,𝐵,𝐶 ∈𝑃(𝑋) 

𝐴∪𝐵 ∪𝐶=𝐴∪(𝐵∪𝐶)  

3 - ∅⊆𝑋 

∅∈𝑃 𝑋 

𝐴∪∅=∅∪𝐴=𝐴 

4 - 𝐴∈𝑃(𝑋) 

𝐴∪𝐴−1=𝐴−1∪𝐴=∅ 

𝑎∗𝑏=𝑏∗𝑎 ∀ 𝑎,𝑏 ∈𝐺 

 commutative group (+,𝑍) : مثال

 

Theorem 

1-The identity is a unique 

2-The inverse 

3 - 𝑎−1 −1=𝑎 𝑎 ∈ 

 

Lecture 2 

 

𝑎∗𝑒1=𝑎 𝑎∗𝑒2=𝑎 ∀ 𝑎∈𝐺 𝑎∗𝑒1=𝑎∗𝑒2 𝑎−1∗ 𝑎∗𝑒1 

=𝑎−1∗ 𝑎∗𝑒2 𝑎−1∗𝑎 ∗𝑒1= 𝑎−1∗𝑎 ∗𝑒2 𝑒1∗𝑒1=𝑒2∗𝑒2 

𝑒1=𝑒2 

 

The identity unique 

 

𝑎∗𝑎1−1=𝑒 𝑎∗𝑎2−1=𝑒 ∀ 𝑎∈𝐺 

𝑎∗𝑎1−1=𝑎∗𝑎2−1 



𝑎−1 −1∗𝑎−1=𝑒 𝑎∗𝑎−1= 𝑎−1 −1∗𝑎−1 𝑎∗𝑎−1 ∗𝑎= 

𝑎−1 −1∗𝑎−1 ∗𝑎 𝑎∗𝑎−1 ∗𝑎= 𝑎−1 −1∗ 𝑎−1∗𝑎 𝑒∗𝑎= 

𝑎−1 −1∗𝑒 𝑎= 𝑎−1 −1 

𝑎,𝑏∈𝐺 

𝑎∗𝑏 ∗ 𝑏−1∗𝑎−1 =𝑎∗ 𝑏∗𝑏−1 ∗𝑎−1 

=𝑎∗𝑒∗𝑎−1=𝑎∗𝑎−1=𝑒 

𝑏−1∗𝑎−1 ∗ 𝑎∗𝑏 =𝑏−1∗ 𝑎−1∗𝑎 ∗𝑏 

=𝑏−1∗𝑒∗𝑏=𝑏−1∗𝑏=𝑒 

∴ 𝑏−1∗𝑎−1 𝑎∗𝑏 

 𝑎∗𝑏 −1 , 𝑎∗𝑏 ونكن

∴ 𝑎∗𝑏 −1=𝑏−1∗𝑎−1 

: (𝐺,∗) group , 𝑎∗𝑏=𝑎∗𝑐  و 𝑏=𝑐 , 𝑎,𝑏,𝑐∈𝐺 

: Let  𝑎,𝑏,𝑐∈𝐺 

𝑎∗𝑏=𝑎∗𝑐 𝑎−1∗ 𝑎∗𝑏 =𝑎−1∗ 𝑎∗𝑐 𝑎−1∗𝑎 ∗𝑏= 𝑎−1∗𝑎 

∗𝑐 𝑒∗𝑏=𝑒∗𝑐 𝑏=𝑐 
Definition 

 : Let (𝐺,∗) be a group 

: let (𝐺,∗) group , 𝑎∈𝐺 , then 

1 - 𝑎𝑘=𝑎∗𝑎∗𝑎∗…∗𝑎 , 𝑘∈𝑍 . 

2 - 𝑎0=𝑒 . 

3 - 𝑎−𝑘=𝑎−1∗𝑎−1∗𝑎−1∗…∗𝑎−1 , 𝑘∈𝑍 . 

 (𝑍,+) , so 

23=2+2+2=6 80=0 3−2=(3−1)2=(−3)2=−3+ −3 

=−6 

: let (𝐺,∗) group , 𝑚,𝑛∈𝑍 , 𝑎∈𝐺 , then 

1 - 𝑎𝑛∗𝑎𝑚=𝑎𝑛+𝑚 . 

2 - 𝑎𝑛 𝑚=𝑎𝑛 𝑚 . 

3 - 𝑒𝑛=𝑒 . 

4 - 𝑎−𝑛= 𝑎𝑛 −1 



 

Proof 

1 - 

𝑎𝑛∗𝑎𝑚=𝑎∗𝑎∗…∗𝑎 ∗ 𝑎∗𝑎∗…∗𝑎 

𝑛 , n-times 

=𝑎∗𝑎∗𝑎∗…∗𝑎 =𝑎𝑛+𝑚 

𝑛+𝑚 , n-times 

 

 

LECTURE 3 

Subgroups and Langrage Theorem  

A subgroup of a group G is a subset which is a 

group under the same operation as in G. The 

following definition will help to make this last 

phrase precise. 

  

Definition (1): Let ∗ be an operation on a set G, and 

let S ⊆ G be a  

subset. We say that S is closed under ∗ if x ∗ y ∈ S 

for all x , y ∈ S.  

The operation on a group G is a function *: G x G 

 

(for example, 2 and −2 lie in Z+, but their sum −2 + 

2 = 0 ∈/Z+.  

Definition (2): A subset H of a group G is a 

subgroup if:  

(i) 1 ∈ H ; 2  



 



(ii) If x , y ∈ H , then x y ∈ H ; that is, H is closed 

under ∗.  

(iii) If x ∈ H , then x -1∈ H . 

  

Proposition (3): Every subgroup H ≤ G of a group 

G is itself a group.  

 

Proof: Axiom (ii) (in the definition of subgroup) 

shows that H is closed under the operation of G; 

that is, H has an operation (namely, the restriction 

of the operation ∗: G × G → G to H × H ⊆ G × G. 

This operation is associative:  

since the equation (x y)z = x (yz) holds for all x , y, 

z ∈ G, it holds, in particular, for all x , y, z ∈ H . 

Finally, axiom (i) gives the identity, and axiom (iii) 

gives  

inverses. 3  

It is quicker to check that a subset H of a group G 

is a subgroup (and hence that it is a group in its 

own right) than to verify the group axioms for H, 

for associativity is inherited from the operation on 

G and hence it need not be verified again. 

 

 

 

 



 

CYCLIC GROUPS 

 

LECTURE 4 

 

Definition (9): If G is a group and a ∈ G, write  

(a)= {an: n ∈Z+} = {all powers of a}  

(a) is called cyclic subgroup of G generated by a.  

 

Proposition (10): The intersection of any family of 

subgroups is again subgroup.  

 

Definition (1): If H is a subgroup of a group G and 

a G, then the coset a H is the subset a H of G, 

of course, a = ae ∈ a H. 

Cosets are usually not subgroups.  



The cosets just defined are often called left cosets; 

there are also right cosets of H, namely, subsets of 

the form H a {ha| h in H}; these arise in further 

study of groups, but we shall work almost 

exclusively with (left) cosets. In particular, if the 

operation is addition, then the coset is denoted by  

a + H = {a + h : h in H }.  

 

 

 

Homomorphism 

 

LECTURE 5 

 

An important problem is determining whether two 

given groups G and H are somehow the same.  

 

Definition : 

 If (G, *) and (H, ◦) are groups, then a function f: G 

→ H is a homomorphism if:  

f (x * y) = f (x ) ◦ f (y)  

for all x , y in G. If f is also a bijective, then f is 

called an isomorphism. We say that G and H are 

isomorphic, denoted by G  H, if there exists an 

isomorphism f: G → H.  



Example (2):  

Let be the group of all real numbers with operation 

addition, and let R+ be the group of all positive real 

numbers with operation multiplication. The 

function f: R→ R+ , defined by f(x)=tx , where t is 

constant number, is a homomorphism; for if x , y in 

R, then  f (x + y) = t(x+y) = tx ty = f (x ) f (y).  

We now turn from isomorphisms to more general 

homomorphisms.  

 

Lemma (3): Let f: G → H be a homomorphism.  

(i) f (e) = e;  

(ii) f (x −1) = f (x)−1; 

 

 

 Definition (6): If f: G → H is a homomorphism, 

define  

kernel f = {x in G : f (x ) = e}  

and image f = {h in H : h = f (x ) for some x inG}.  

We usually abbreviate kernel f to ker f and image f 

to im f .  

and B is a subgroup of H then f−1(B) is a subgroup 

of G containing ker f .  

 

Note: Kernel comes from the German word 

meaning “grain” or “seed” (corn comes from the 

same word).  

Its usage here indicates an important ingredient of a 

homomorphism, we give it without proof.  

 



Proposition: Let f: G → H be a homomorphism.  

(i) ker f is a subgroup of G and im f is a 

subgroup of H .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

LECTURE 6 



(ii) If x in ker f and if a in G, then ax a−1 in  ker f.  

(ii) f is an injection if and only if ker f = {e}.  

 

Normal Subgroups 

 

Definition (1): A subgroup K of a group G is called 

normal, if for each k in K and g in G imply gkg−1 in  

K. that is gKg-1 in G for every g in G. 

  

Definition (2):  

Define the center of a group G, denoted by Z (G), 

to be  Z (G) = {z in G: zg = gz for all g in G};  

that is, Z (G) consists of all elements commuting 

with every element in G. (Note that the equation zg  



= gz can be rewritten as z = gzg−1, so that no other 

elements in G are conjugate to z.  

Remark (3):  

Let us show that Z (G) is a subgroup of G. We can 

easily show that Z(G is subgroup of G. It is clear 

that Z(G)≠ since 1 ∈ Z (G), for 1 commutes with 

everything. Now, If y, z in Z (G), then yg = gy and 

zg = gz for all g in G. Therefore, (yz)g = y(zg) = 

y(gz) = (yg)z = g(yz), so that yz commutes with 

everything, hence yz in Z (G). Finally, if z in Z (G), 

then zg = gz for all g in G; in particular, zg−1 = g−1 

z. Therefore,  

gz−1 = (zg−1)−1 = (g−1z)−1 = z−1g  

(we are using (ab)−1 = b−1a−1 and (a−1)−1 = a). So 

that Z(G) is subgroup pf G.  



Clearly che center Z (G) is a normal subgroup; 

since if z in Z (G) and g in G, then  

gzg−1 = zgg−1 = z in Z (G). 

  

A group G is abelian if and only if Z (G) = G. At 

the other extreme are groups G for which Z (G) = 

{1}; such groups are called centerless. For 

example, it is easy to see that Z (S3) = {1}; indeed, 

all large symmetric groups are centerless.   



Remark (4):  

We can show that any two finite cyclic groups G 

and H of the same order m are isomorphic. It will 

then follow from that any two groups of prime 

order p are isomorphic.  

Definition (5):  

A property of a group G that is shared by every 

other group isomorphic to it is called an invariant 

of G. For example, the order, G, is an invariant of 

G, for isomorphic groups have the same order. 

Being abelian is an invariant [if a and b commute,  

then ab = ba and  

f (a) f (b) = f (ab) = f (ba) = f (b) f (a);  

hence, f (a) and f (b) commute]. Thus, M2x2 and 

GL(2,R) are not isomorphic, for is abelian and 

GL(2,R) is not. 



Proposition (2): Let G be a group, and H be a 

following:  

(iii) 
particular, a H = H if and only if a  

(ii) If a H ∩ b H ≠ , then a H = b H.  

(iv) 
order of Ah.  

Proof:  

(v) It is clear.  

(ii) It is clear.  

(vi) The function f: H → a H which is given 

by f (h) = ah, is easily seen to be a 

bijective [its inverse a H → H is given by 

ah r→ a−1(ah) = h]. Therefore, H and a H 

have the same number of elements.  

 

 

 

THE INDEX OF GROUP 

 

LECTURE 7 

 

Proposition (4):  

(i) If H is a subgroup of index 2 in a group G, then 

g2 in G.  

(ii) If H is a subgroup of index 2 in a group G, then 

H is a normal subgroup of G.  

Proof:  



(i) Since H has index 2, there are exactly two 

cosets, namely, H and a H, where a inG/H. Thus, G 

is the disjoint union G = H =a H. Take g in G with 

g H. So that g = ah for some h in H. If g2 H, then g2 

= ah1, where h1 in H . Hence, g = g−1 g2 = (ah)−1a 

h1 = h−1a−1a h1 = h−1 h1in H, and this is a 

contradiction.  



(ii) It suffices to prove that if h in H , then the 

conjugate ghg−1 in H for every  

g ∈ G. Since H has index 2, there are exactly two 

cosets, namely, H and a H,  

where a H. Now, either g inH or g in a H. If g inH, 

then ghg−1inH,  

because H is a subgroup. In the second case, write 

g = ax, where x in H. Then  

ghg−1 = a(x hx −1)a−1 = ahIa−1, where hI = x hx −1 

in H (for hI is a product  

of three elements in H ). If ghg H, then ghg−1 = 

ahIa−1 = a H ; that is,  



ahIa−1 = ay for some y in H. Canceling a, we have 

hIa−1 = y, which gives the contradiction a = y−1hI 

in H. Therefore, if h in H, every conjugate of h also 

lies in H; that is, H is a normal subgroup of G.  

Proposition(5) : If K is a normal subgroup of a 

group G, then  

bK = K b  

for every b in G.  

Proof: We must show that bK = Kb and Kb = bK. 

So if bk=bK, then clearly bK = bKb-1b.  

Since bKb-1inK, then bKb-1= k1 for some k1inK. 

case. Thus bK = Kb.  

 

 

LECTURE 8 

 

Theorem (3): (Lagrange’s Theorem)  



If H is a subgroup of a finite group G, then |H | is a 

divisor of |G|. That is:  

|G| = [G : H ]|H |  

This formula shows that the index [G : H ] is also a 

divisor of |G|.  

Coset of sets  

Corollary (4): If H is a subgroup of a finite group 

G, then  

[G : H ] = |G|/|H |  

Corollary (5): If G is a finite group and a in G, then 

the order of a is a divisor of |G|.  

Corollary (6): If a finite group G has order m, then 

am = e for all a in G.  

Corollary (7): If p is a prime, then every group G of 

order p is cyclic.  



Proof: Choose a in G with a≠e, and let H = (a) be 

the cyclic subgroup generated by a. By Lagrange’s 

theorem, |H | is a divisor of |G| = p. Since p is a 

prime and |H | > 1, it follows that |H | = p = |G|, and 

so H = G.  

Lagrange’s theorem says that the order of a 

subgroup of a finite group G is a divisor of G . Is 

the “converse” of Lagrange’s theorem true? That 

is, if d is a divisor of G, must there exists a 

subgroup of G having order d? The answer is “no;” 

We can show that the alternating group A4 is a 

group of order 12 . 


