COURSE 2- GROUP 2

Quotient Group

LECTURE 1

Here is a fundamental construction of a new group from a given group.

Theorem (1): Let G/K denotes the family of all the cosets of a subgroup K of G. If K is a normal subgroup, then:

a K bK = abK

for all a, $b \square G$, and G/K is a group under this operation

Definition (2): The group G/K is called the **quotient group**; when G is finite, its order G/K is the index [G:K] (presumably, this is the reason quotient groups are so called).

We can now prove the converse of Proposition 2.91(ii).

Proposition (3): Every normal subgroup K of a group G is the kernel of some homomorphism.

Proof:

Define the natural map π : G \square G/K by $\pi(a) = a$ K. With this notation, the formula a K bK =abK can be rewritten as $\pi(a)\pi(b) = \pi(ab)$; thus, π is a (surjective) homomorphism. Since K is the identity element in G/K,

 $\ker \pi = \{a \ ? \ G : \pi(a) = K \} = \{a \ ? \ G : a \ K = K \} = K$

LECTURE 2

First Isomorphism Theorem

The following theorem shows that every homomorphism gives rise to an isomorphism, and that quotient groups are merely constructions of homomorphic images.

Theorem (1): (First Isomorphism Theorem)

If $f: G \rightarrow H$ is a homomorphism, then:

 $G/\ker f = \operatorname{im} f$

Where im f = f(H). In more detail, if we put ker f = K, then the function $\phi : G/K \to f(H)$ is given by: ϕ : a $K r \to f(a)$ for each a $\square G$, is an isomorphism.

Proof:

It is clear that ker f is a normal subgroup of G, and we can easily show that ϕ is well-defined. Let us now see that ϕ is a homomorphism. Since f is a homomorphism and $\phi(a \ K) = f(a)$,

 $\phi(a \ K \ bK \) = \phi(abK \) = f \ (ab) = f \ (a) \ f \ (b) = \phi(a \ K \) \phi(bK \).$

Also ϕ is surjective and injective Therefore, ϕ : G/K \rightarrow im f is an isomorphism.

Remark (2):

1. Here is a minor application of the first isomorphism theorem. For any group G, the identity function $f: G \to G$ is a surjective homomorphism with ker f = 127

LECTURE 3

Proposition (3):

- **1.** If H and K are subgroups of a group G, and if one of them is a normal subgroup, then HK is a subgroup of G. Moreover, HK = KH.
- **2.** If both H and K are normal subgroups, then HK is a normal subgroup.

Proof:

1. Assume first that K is normal in G. We claim that HK = KH. If hk = HK, then: $hk = hkh^{-1}h = k1 \ h=KH$ where $k_1 = hkh^{-1}$, then $k_1in\ K$, because K is normal subgroup .

Hence, HK = KH. For the reverse inclusion, write $kh = hh^{-1}kh = hk_2 = HK$, where $k_2 = h-1kh$. (Note that the same argument shows that HK = KH if H is normal subgroup of G.)

LECTURE 4

Third Isomorphism Theorem

In the following lecture we study the third important theorem of fundamental isomorphism theorem.

Theorem (1): (Third Isomorphism Theorem) If H and K are normal subgroups of a group G with $K \le H$, then H/K is normal in G/K and (G/K)/(H/K) = G/H. 2

Proof:

Define f: $G/K \square G/H$ by $f(a \ K) = a \ H$. Note that f is a (well- defined function, for if a $G = b \ K$, then a-1b $\square K$ But $K \square H$, thus a-1b \square H, and so a $H = b \ H$, and we are done. It is easy to see that f is an epimorphism.

Now ker f = H/K. Also clearly H/K is a normal subgroup of G/K. Since f is monomorphism, so by the first isomorphism theorem we have: $(G/K)/(H/K) \square G/H$

The third isomorphism theorem is easy to remember: the K's in the fraction (G/K)/(H/K) can be canceled. One can better appreciate the first isomorphism theorem after having proved the third one. The quotient group (G/K)/(H/K) consists of cosets (of H/K) whose representatives are themselves cosets (of G/K). 3

Here is another construction of a new group from two given groups.

Definition (2): If H and K are groups, then their **direct product**, denoted by HxK, is the set of all ordered pairs (h, k) equipped with the following operation:

(h, k)(h1, k1) = (hh1, kk1)

It is routine to check that HXK is a group [the identity element is (e, e1) and (h, k)-1 = (h-1, k-1).

Remark (3): let G and h be groups. Then HxK is abelian if and only if both H and K are abelian. We end the tenth lecture by the following example.

Example: Zx2Z is the direct product between (Z, +) and (2Z, +) groups.

The identity element is (0, 0), and the inverse element of (a, b) is (-a, -b).

We now show that HK is a subgroup. Since $e \sqcup H$
and $e \square K$, we have $e = e \cdot e \square HK$. If $hk \square HK$,
then $(hk)-1 = k-1 \ h-1 \ \Box \ KH = HK$. If hk , $h1k1 \ \Box$
HK, then $h1-1$ kh $1 = ke \square K$ and
Hkh1 k1 = hh1(h1-1 kh1)k1 = (hh1)(kek1) \Box HK.
Therefore, HK is a subgroup of G.
2. If $g \square G$, then:
$ghkg-1 = (ghg-1)(gkg-1) \square HK$
Therefore, HK is normal in G. ghkg-1 =
$(ghg-1)(gkg-1) \square HK$. Therefore, HK is normal
in G.
Definition (1): If H and K are subgroups of a finite

Definition (1): If H and K are subgroups of a finite group G, then then the **Product Formula** is:

$$|HK||H \cap K| = |H||K|$$

LECTURE 5

One can shorten the list of items needed to verify that a subset is, in fact, a subgroup.

Proposition (4): A subset H of a group G is a subgroup if and only if H is nonempty and, whenever $x, y \in H$, then $x y-1 \in H$.

Proof: If H is a subgroup, then it is nonempty, for $1 \in H$. If $x, y \in H$, then $y-1 \in H$, by part (iii) of the definition, and so $xy-1 \in H$, by part (ii). Conversely, assume that H is a subset satisfying the new condition. Since

H is nonempty, it contains some element, say, h. Taking x = h = y, we see that $e = hh-1 \in H$, and so

part (i) holds. If $y \in H$, then set x = e (which we can now do because e

 \in H), giving y-1 = ey-1 \in H, and so part (iii) holds. Finally, we know that (y-1)-1 = y, by. Hence, if x, y \in H, then y-1 \in H and so x y = x $(y-1)-1 \in$ H. Therefore, H is a subgroup of G. Since every subgroup contains e, one may replace the hypothesis "H is nonempty" in Proposition by "e \in H".

Note that if the operation in G is addition, then the condition in the proposition is that H is a nonempty subset of G such that $x, y \in H$ implies $x-y \in H$. **Proposition (5):** Let G be a finite group, and a \square G. Then the order of a, is the number of elements in (a).

Definition (6): If G is a finite group, then the number of elements in G, denoted by |G|, is called the **order of G**.

Definition (7): If X is a subset of a group G, such that X generates G, then G is called **finitely generated**, and G generated by X. In particular; If $G = (\{a\})$, then G is generated by

Definition (8):

the subset $X = \{a\}$.

A group G is called **cyclic** if G = (a); that is G can be generated by only one element say a, and this element is called a generator of G.

LECTURE 6

If H and K are subgroups of a group G with H is normal in G, then HK is a subgroup of G and $H \cap K$ is normal in K.

Moreover:

 $K/(H\cap K)$ \square HK/H

Proof:

We begin by showing first that HK/H makes sense, and then describing its elements. Since H is normal subgroup of G, then HK is a subgroup of G. Normality of H in HK follows:

from a more general fact: if $H \square S \square G$ and if H is normal in G, then H is normal in S. We can easily show that each coset $x H \square HK/H$ has the form k H for some $k \square K$. It follows that the function $f: K \square HK/H$, given by f(k) = k H, is surjective. Moreover, f is a homomorphism, for it is the restriction of the natural map $\pi: G \to G/H$. Since $\ker \pi = H$, it follows that $\ker f = H \cap K$ and so $H \cap K$ is a normal subgroup of K. The first isomorphism theorem gives: $K/(H \cap K) \square HK/H$

Remark (3):

The second isomorphism theorem gives the product formula in the special case when one of the subgroups is normal: if K /(H \cap K) \square H K /H , then: $|K|(H \cap K)| = |H|K|$, and so |H|K| |H| \cap K |=|H||K|.

LECTURE 7

Definition (6): If $f: G \to H$ is a homomorphism, define

kernel $f = \{x \square G : f(x) = e\}$

and **image** $\mathbf{f} = \{ h \square H : h = f(x) \text{ for some } x \square G \}.$

We usually abbreviate kernel f to ker f and image f to im f

So that if $f: G \square H$ is a homomorphism and B is a subgroup of H then f-1(B) is a subgroup of G containing ker f.

Note: Kernel comes from the German word meaning "grain" or "seed" (corn comes from the same word).

Its usage here indicates an important ingredient of a homomorphism, we give it without proof.

Proposition: Let $f: G \to H$ be a homomorphism.

(i) ker f is a subgroup of G and im f is a subgroup of H.

(ii) If $x \square$ ker f and if $a \square G$, then ax $a-1 \square$ ker f.
(iii) f is an injection if and only if ker $f = \{e\}$.
Normal Subgroups
Definition (1): A subgroup K of a group G is
called normal , if for each $k \square K$ and $g \square G$ imply
gkg $-1 \square$ K. that is gKg $-1 \square$ G for every g \square G.
Definition (2):
Define the center of a group G, denoted by Z (G),
to be
$Z(G) = \{z \square G: zg = gz \text{ for all } g \square G\};$
that is, Z (G) consists of all elements commuting
with every element in G. (Note that the equation zg
123

= gz can be rewritten as z = gzg-1, so that no other elements in G are conjugate to z.

Remark (3):

Let us show that Z(G) is a subgroup of G. We can easily show that Z(G) is subgroup of G. It is clear that $Z(G) \neq \text{since } 1 \in Z(G)$, for 1 commutes with everything. Now, If y, $z \square Z(G)$, then yg = gy and zg = gz for all $g \square G$. Therefore, (yz)g = y(zg) = y(gz) = (yg)z = g(yz), so that yz commutes with everything, hence $yz \square Z(G)$. Finally, if $z \square Z(G)$, then zg = gz for all $g \square G$; in particular, zg-1 = g-1z. Therefore, gz-1 = (zg-1)-1 = (g-1z)-1 = z-1g (we are using (ab)-1 = b-1a-1 and (a-1)-1 = a). So that Z(G) is subgroup pf G.

Clearly che center Z(G) is a normal subgroup; since if $z \square Z(G)$ and $g \square G$, then $gzg-1=zgg-1=z\square Z(G)$ A group G is abelian if and only if Z(G)=G. At the other extreme are groups G for which $Z(G)=\{1\}$; such groups are called centerless. For example, it is easy to see that $Z(S3)=\{1\}$; indeed, all large symmetric groups are centerless.

