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Quotient Group  

1المحاضرة   

Here is a fundamental construction of a new group 

from a given group.  

Theorem (1): Let G/K denotes the family of all the 

cosets of a subgroup K of G. If K is a normal 

subgroup, then:  

a K bK = abK  

for all a, b

operation  

Definition (2): The group G/K is called the 

quotient group; when G is finite, its order G/K is 

the index [G:K] (presumably, this is the reason 

quotient groups are so called).  

We can now prove the converse of Proposition 

2.91(ii).  



Proposition (3): Every normal subgroup K of a 

group G is the kernel of some homomorphism.  

Proof:  

With this notation, the formula a K bK =abK can 

be rewritten as π(a)π(b) = π(ab); thus, π is a 

(surjective) homomorphism. Since K is the identity 

element in G/K,  

 

 

 2المحاضرة 

 

 First Isomorphism Theorem  
 

The following theorem shows that every 

homomorphism gives rise to an isomorphism, and 

that quotient groups are merely constructions of 

homomorphic images.  

Theorem (1): (First Isomorphism Theorem)  

 

 

Where im f = f(H). In more detail, if we put ker f = 

K , then the function ϕ : G/K → f(H) is given by:  

ϕ  

Proof:  



It is clear that ker f is a normal subgroup of G, and 

we can easily show that ϕ is well-defined. Let us 

now see that ϕ is a homomorphism. Since f is a 

homomorphism and ϕ(a K ) = f (a),  

ϕ(a K bK ) = ϕ(abK ) = f (ab) = f (a) f (b) = ϕ(a K 

)ϕ(bK ).  

Also ϕ is surjective and injective Therefore, ϕ: G/K 

→ im f is an isomorphism.  

Remark (2):  

1. Here is a minor application of the first 

isomorphism theorem. For any group  

G, the identity function f: G → G is a surjective 

homomorphism with ker f = 127 
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 Proposition (3):  
1. If H and K are subgroups of a group G, and if 

one of them is a normal subgroup, then HK is a 

subgroup of G. Moreover, HK = KH.  

2. If both H and K are normal subgroups, then HK 

is a normal subgroup.  

Proof:  
1. Assume first that K is normal in G. We claim 

 

 



normal subgroup 2  



Hence, HK = KH. For the reverse inclusion, write 

-1kh.  

(Note that the same argument shows that HK = KH 

if H is normal subgroup of G.) 3 
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 Third Isomorphism Theorem  

Lecture 11  

In the following lecture we study the third 

important theorem of fundamental isomorphism 

theorem.  

Theorem (1): (Third Isomorphism Theorem)  

If H and K are normal subgroups of a group G with 

K ≤ H , then H/K is normal in G/K and  

2  



Proof:  

a (well- defined function, for if a G = b K, then a-

-

and we are done. It is easy to see that f is an 

epimorphism.  

Now ker f = H/K. Also clearly H/K is a normal 

subgroup of G/K. Since f is monomorphism, so by 

the first isomorphism theorem we have: (G/K 

 

The third isomorphism theorem is easy to 

remember: the K’s in the fraction (G/K )/(H/K ) 

can be canceled. One can better appreciate the first 

isomorphism theorem after having proved the third 

one. The quotient group (G/K )/(H/K ) consists of 

cosets (of H/K) whose representatives are 

themselves cosets (of G/K ). 3  



Here is another construction of a new group from 

two given groups.  

Definition (2): If H and K are groups, then their 

direct product, denoted by HxK, is the set of all 

ordered pairs (h, k) equipped with the following 

operation:  

(h, k)(h1, k1) = (hh1, kk1)  

It is routine to check that HXK is a group [the 

identity element is (e, e1) and (h, k)−1 = (h−1, 

k−1).  

Remark (3): let G and h be groups.Then HxK is 

abelian if and only if both H and K are abelian.  

We end the tenth lecture by the following example. 
4  



Example: Zx2Z is the direct product between (Z, 

+) and (2Z, +) groups.  

The identity element is (0, 0), and the inverse 

element of (a, b) is (-a, -b). 



 

 

Therefore, HK is a subgroup of G.  

 

 

Therefore, HK is normal in G. ghkg−1 = 

in G.  

Definition (1): If H and K are subgroups of a finite 

group G, then then the Product Formula is:  

|HK||H ∩ K | = |H ||K | 
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One can shorten the list of items needed to verify 

that a subset is, in fact, a subgroup.  

Proposition (4): A subset H of a group G is a 

subgroup if and only if H is nonempty and, 

whenever x, y ∈ H, then x y−1 ∈ H.  

Proof: If H is a subgroup, then it is nonempty, for 

1 ∈ H. If x , y ∈ H , then y−1 ∈ H , by part (iii) of 

the definition, and so x y−1 ∈ H , by part (ii).  

Conversely, assume that H is a subset satisfying the 

new condition. Since  

H is nonempty, it contains some element, say, h. 

Taking x = h = y, we see that e = hh−1 ∈ H , and so 



part (i) holds. If y ∈ H , then set x = e (which we 

can now do because e  



∈ H ), giving y−1 = ey−1 ∈ H , and so part (iii) 

holds. Finally, we know that (y−1)−1 = y, by. 

Hence, if x , y ∈ H , then y−1 ∈ H and so x y = x 

(y−1)−1 ∈ H . Therefore, H is a subgroup of G.  

Since every subgroup contains e, one may replace 

the hypothesis “H is nonempty” in Proposition by 

“e ∈ H”.  

Note that if the operation in G is addition, then the 

condition in the proposition is that H is a nonempty 

subset of G such that x, y ∈ H implies x- y ∈ H.  

Proposition (5): 

G. Then the order of a, is the number of elements in 

(a).  

Definition (6): If G is a finite group, then the 

number of elements in G, denoted by |G|, is called 

the order of G.  



Definition (7): If X is a subset of a group G, such 

that X generates G, then G is called finitely 

generated, and G generated by X.  

In particular; If G = ({a}), then G is generated by 

the subset X = {a}.  

Definition (8):  

A group G is called cyclic if G = (a); that is G can 

be generated by only one element say a, and this 

element is called a generator of G. 
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 Lecture 13  
If H and K are subgroups of a group G with H is normal in G, 

then HK is a subgroup of G and H ∩ K is normal in K. 

Moreover:  

 

Proof:  
We begin by showing first that HK/H makes sense, and then 

describing its elements. Since H is normal subgroup of G, then 

HK is a subgroup of G. Normality of H in HK follows :  



then H is normal in S.  

by f(k) = k H, is surjective. Moreover, f is a homomorphism, for 

it is the restriction of the natural map π: G → G/H. Since ker π = 

H, it follows that ker f = H ∩ K and so H ∩ K is a normal 

subgroup of K . The first isomorphisim theorem gives:  

 

Remark (3):  
The second isomorphism theorem gives the product formula in 

the special case when one of the subgroups is normal: if K /(H ∩ 

|H 

∩ K | = |H ||K |. 
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 Definition (6): If f: G → H is a homomorphism, 

define  

kernel f  

and image f  

We usually abbreviate kernel f to ker f and image f 

to im f  

So that if f: G 

subgroup of H then f−1(B) is a subgroup of G 

containing ker f .  

Note: Kernel comes from the German word 

meaning “grain” or “seed” (corn comes from the 

same word).  

Its usage here indicates an important ingredient of a 

homomorphism, we give it without proof.  



Proposition: Let f: G → H be a homomorphism.  

(i) ker f is a subgroup of G and im f is a subgroup 

of H .  



(ii)  

(iii) f is an injection if and only if ker f = {e}.  

Normal Subgroups  

Definition (1): A subgroup K of a group G is 

called normal, 

-  

Definition (2):  

Define the center of a group G, denoted by Z (G), 

to be  

  

that is, Z (G) consists of all elements commuting 

with every element in G. (Note that the equation zg 

123  



= gz can be rewritten as z = gzg−1, so that no other 

elements in G are conjugate to z.  

Remark (3):  

Let us show that Z (G) is a subgroup of G. We can 

easily show that Z(G is subgroup of G. It is clear 

that Z(G)≠ since 1 ∈ Z (G), for 1 commutes with 

y(gz) = (yg)z = g(yz), so that yz commutes with 

g−1 z. Therefore,  

gz−1 = (zg−1)−1 = (g−1z)−1 = z−1g  

(we are using (ab)−1 = b−1a−1 and (a−1)−1 = a). 

So that Z(G) is subgroup pf G.  



Clearly che center Z (G) is a normal subgroup; 

 

 

A group G is abelian if and only if Z (G) = G. At 

the other extreme are groups G for which Z (G) = 

{1}; such groups are called centerless. For 

example, it is easy to see that Z (S3) = {1}; indeed, 

all large symmetric groups are centerless. 



{1}. By the first isomorphism theorem, we have  

 

2. Given any homomorphism f:G

immediately ask for its kernel and its image; the 

first isomorphism theorem will then provide an 

isomorphism  

difference between  

isomorphic groups, the first isomorphism theorem 

also says that there is no significant difference 

between quotient groups and homomorphic 

images. 


