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Quotient Group
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Here is a fundamental construction of a new group
from a given group.
Theorem (1): Let G/K denotes the family of all the
cosets of a subgroup K of G. If K is a normal
subgroup, then:
a K bK = abK
for all a, bOJG, and G/K is a group under this
operation
Definition (2): The group G/K is called the
guotient group; when G is finite, its order G/K is
the index [G:K] (presumably, this is the reason
quotient groups are so called).
We can now prove the converse of Proposition
2.91(ii).



Proposition (3): Every normal subgroup K of a
group G is the kernel of some homomorphism.
Proof:
Define the natural map n: G [J G/K by n(a) = a K.
With this notation, the formula a K bK =abK can
be rewritten as w(a)n(b) = w(ab); thus, w1s a
(surjective) homomorphism. Since K is the identity
element in G/K,
kerm={alG:m(a)=K}={al@G:aK=K}=K
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First Isomorphism Theorem

The following theorem shows that every
homomorphism gives rise to an isomorphism, and
that quotient groups are merely constructions of
homomorphic images.

Theorem (1): (First Isomorphism Theorem)

If f: GLUH is a homomorphism, then:
G/kerfimf

Where im f = f(H). In more detail, if we put ker f =
K, then the function ¢ : G/K — f(H) is given by:
¢: a Kr— f(a) for each allG, is an isomorphism.
Proof:



It is clear that ker f is a normal subgroup of G, and
we can easily show that ¢ is well-defined. Let us
now see that ¢ is a homomorphism. Since f is a
homomorphism and ¢(a K) =1 (a),
d(@aKbK)=¢(@bK)=f(ab)=f(a) f(b) =¢(aK
)o(bK ).

Also ¢ Is surjective and injective Therefore, ¢: G/K
— 1m f 1s an isomorphism.

Remark (2):

1. Here is a minor application of the first
Isomorphism theorem. For any group

G, the 1dentity function f: G — G 1s a surjective
homomorphism with ker f = 127
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Proposition (3):

1. If H and K are subgroups of a group G, and if
one of them is a normal subgroup, then HK Is a
subgroup of G. Moreover, HK = KH.

2. If both H and K are normal subgroups, then HK
IS @ normal subgroup.

Proof:

1. Assume first that K is normal in G. We claim
that HK = KH. If hk [ HK, then:

hk =hkh—1h =k1 hOOKH



where k1 = hkh—1, then k1 K, because K 1s
normal subgroup 2



Hence, HK = KH. For the reverse inclusion, write
kh =hh—1kh = hk2 [0 HK, where k2 = h-1kh.
(Note that the same argument shows that HK = KH
If H is normal subgroup of G.) s
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Third Isomorphism Theorem

Lecture 11

In the following lecture we study the third
Important theorem of fundamental isomorphism
theorem.

Theorem (1): (Third Isomorphism Theorem)

If H and K are normal subgroups of a group G with
K <H, then H/K 1s normal in G/K and
(G/K)/(H/K ") [0 G/H. 2



Proof:

Define f: G/KLUG/H by f(a K) = a H. Note that f is
a (well- defined function, for if a G = b K, then a-
1bJK But K[JH, thus a-1b[J H,andsoa H=b H ,
and we are done. It Is easy to see that f is an
epimorphism.

Now ker f = H/K. Also clearly H/K is a normal
subgroup of G/K. Since f is monomorphism, so by
the first isomorphism theorem we have: (G/K
)/(H/K ) [ G/H

The third isomorphism theorem is easy to
remember: the K’s in the fraction (G/K )/(H/K)
can be canceled. One can better appreciate the first
Isomorphism theorem after having proved the third
one. The quotient group (G/K )/(H/K") consists of
cosets (of H/K) whose representatives are
themselves cosets (of G/K)). 3



Here is another construction of a new group from
two given groups.

Definition (2): If H and K are groups, then their
direct product, denoted by HxK, is the set of all
ordered pairs (h, k) equipped with the following
operation:

(h, k)(h1, k1) = (hh1, kk1)

It is routine to check that HXK is a group [the
identity element is (e, €l) and (h, k)—1 = (h—1,
k—1).

Remark (3): let G and h be groups.Then HxK is
abelian if and only if both H and K are abelian.

We end the tenth lecture by the following example.
4



Example: Zx2Z is the direct product between (Z,
+) and (2Z, +) groups.
The identity element is (0, 0), and the inverse
element of (a, b) Is (-a, -b).



We now show that HK is a subgroup. Since e [] H

ande [ K, wehavee=c¢ ¢ [0 HK. If hk [J HK,

then (hk)—1 =k—1 h—1 [J KH = HK. If hk, h1k1 [

HK, then h1-1 kh1 =ke [J K and

Hkh1 k1 =hh1(hl1-1 kh1)k1 = (hh1 )(kek1) [J HK.

Therefore, HK is a subgroup of G.

2. If g [J G, then:

ghkg—1 = (ghg—1)(gkg—1) 0 HK

Therefore, HK 1s normal in G. ghkg—1 =

(ghg—1)(gkg—1) [l HK . Therefore, HK 1s normal

in G.

Definition (1): If H and K are subgroups of a finite

group G, then then the Product Formula is:
HK|HN K |=[H[K|
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One can shorten the list of items needed to verify
that a subset Is, in fact, a subgroup.

Proposition (4): A subset H of agroup G is a
subgroup if and only if H is nonempty and,
whenever X, y € H, then x y—1 € H.

Proof: If H is a subgroup, then it is nonempty, for
1eH. Ifx,y€eH,theny-1 € H, by part (iii) of
the definition, and so x y—1 € H , by part (ii).
Conversely, assume that H is a subset satisfying the
new condition. Since

H is nonempty, it contains some element, say, h.
Taking x =h =y, we see thate =hh—1 € H , and so



part (i) holds. If y € H , then set x = e (which we
can now do because e



€ H), giving y—1 =ey—1 € H, and so part (iii)
holds. Finally, we know that (y—1)—1 =y, by.
Hence, if X,y € H,theny—1 e Hand so xy =X
(y—1)—1 € H. Therefore, H is a subgroup of G.
Since every subgroup contains e, one may replace
the hypothesis “H is nonempty” in Proposition by
“c €H”.

Note that if the operation in G is addition, then the
condition in the proposition is that H is a nonempty
subset of G such that x, y € H implies x-y € H.
Proposition (5): Let G be a finite group, and a [
G. Then the order of a, is the number of elements in
(a).

Definition (6): If G is a finite group, then the
number of elements in G, denoted by |G|, is called
the order of G.



Definition (7): If X is a subset of a group G, such
that X generates G, then G is called finitely
generated, and G generated by X.
In particular; If G = ({a}), then G is generated by
the subset X = {a}.
Definition (8):
A group G is called cyclic if G = (a); that is G can
be generated by only one element say a, and this
element is called a generator of G.
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Lecture 13

If H and K are subgroups of a group G with H is normal in G,
then HK 1is a subgroup of G and H N K is normal in K.
Moreover:

K /(HNK) [J HK/H

Proof:

We begin by showing first that HK/H makes sense, and then
describing its elements. Since H is normal subgroup of G, then
HK is a subgroup of G. Normality of H in HK follows :



from a more general fact: if H [1 S[J G and if H is normal in G,
then H is normal in S.
We can easily show that each coset x H [] HK/H has the form k
H for some k[ K. It follows that the function f: K[ HK/H, given
by f(k) = k H, is surjective. Moreover, f is a homomorphism, for
it 1s the restriction of the natural map n: G — G/H. Since ker & =
H, 1t follows that ker f=H N K and so H N K 1s a normal
subgroup of K. The first isomorphisim theorem gives:
K /(HNK ) OHK/H
Remark (3):

The second isomorphism theorem gives the product formula in

the special case when one of the subgroups is normal: if K /(H N
K)JHK/H,then: K/HNK)=HK/H|,and so [HK |[H
NK|=H|K].
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Definition (6): If f: G — H is a homomorphism,
define

kernel f={x 0 G:f(x)=¢e}

and image f={h [J H: h=1f(x) for some x [1G}.
We usually abbreviate kernel f to ker f and image f
toim f

So that if f: G 0 H is a homomorphism and B is a
subgroup of H then f—1(B) is a subgroup of G
containing ker f .

Note: Kernel comes from the German word
meaning “grain’ or “seed” (corn comes from the
same word).

Its usage here indicates an important ingredient of a
homomorphism, we give it without proof.



Proposition: Let f: G — H be a homomorphism.
(i) ker fis a subgroup of G and im f is a subgroup
of H.



(i) If x O ker fand if a O G, then ax a—1L] ker f.
(ii1) f is an injection if and only if ker f = {e}.
Normal Subgroups

Definition (1): A subgroup K of a group G is
called normal, if for each k [1 K and g [1 G imply
gkg—10] K. that 1s gKg-1 [J G for every g[JG.
Definition (2):

Define the center of a group G, denoted by Z (G),
to be

Z(G)={z[1G:zg=gzforall g [] G};

that is, Z (G) consists of all elements commuting
with every element in G. (Note that the equation zg
123



= g7 can be rewritten as z = gzg—1, so that no other
elements in G are conjugate to z.

Remark (3):

Let us show that Z (G) is a subgroup of G. We can
easily show that Z(G is subgroup of G. It is clear
that Z(G)# since 1 € Z (G), for 1 commutes with
everything. Now, Ify, z [1 Z (G), then yg = gy and
zg = gz for all g [ G. Therefore, (yz)g = y(zg) =
y(92) = (yg)z = g(yz), so that yz commutes with
everything, hence yz [ Z (G). Finally, if z [1 Z (G),
then zg = gz for all g [J G; in particular, zg—1 =
g—1 z. Therefore,

g7z—1 =(zg—1)-1=(g-1z)-1=2z-1g

(we are using (ab)—1 =b—1a—1 and (a—1)—1 =a).
So that Z(G) is subgroup pf G.



Clearly che center Z (G) is a normal subgroup;
since 1f z [ Z (G) and g [J G, then
gzg—1 =zgg—1=27z117(QG)

A group G is abelian if and only iIf Z (G) = G. At
the other extreme are groups G for which Z (G) =
{1}, such groups are called centerless. For
example, it is easy to see that Z (S3) = {1}, indeed,
all large symmetric groups are centerless.



{1}. By the first isomorphism theorem, we have
G/{1} 0G

2. Given any homomorphism f:GLIH , one should
Immediately ask for its kernel and its image; the
first isomorphism theorem will then provide an
Isomorphism

G/ ker f I im f. Since there 1s no significant
difference between

isomorphic groups, the first isomorphism theorem

also says that there is no significant difference
between quotient groups and homomorphic
images.



