Quotient Group

المحاضرة ١

Here is a fundamental construction of a new group from a given group.

Theorem (1): Let G/K denotes the family of all the cosets of a subgroup K of G. If K is a normal subgroup, then:

a K bK = abK

for all a, $b \square G$, and G/K is a group under this operation

Definition (2): The group G/K is called the **quotient group**; when G is finite, its order G/K is the index [G:K] (presumably, this is the reason quotient groups are so called).

We can now prove the converse of Proposition 2.91(ii).

Proposition (3): Every normal subgroup K of a group G is the kernel of some homomorphism. **Proof:**

Define the natural map π : G \Box G/K by $\pi(a) = a$ K. With this notation, the formula a K bK =abK can be rewritten as $\pi(a)\pi(b) = \pi(ab)$; thus, π is a (surjective) homomorphism. Since K is the identity element in G/K,

 $\ker \pi = \{a @ G : \pi(a) = K \} = \{a @ G : a K = K \} = K$

First Isomorphism Theorem

The following theorem shows that every homomorphism gives rise to an isomorphism, and that quotient groups are merely constructions of homomorphic images.

Theorem (1): (First Isomorphism Theorem)

If f: $G \square H$ is a homomorphism, then:

G/ker f \Box im f

Where im f = f(H). In more detail, if we put ker f = K, then the function $\phi : G/K \to f(H)$ is given by: ϕ : a K r \to f (a) for each a \Box G, is an isomorphism. **Proof**: It is clear that ker f is a normal subgroup of G, and we can easily show that ϕ is well-defined. Let us now see that ϕ is a homomorphism. Since f is a homomorphism and $\phi(a \ K) = f(a)$,

 $\phi(a \ K \ bK) = \phi(abK) = f(ab) = f(a) f(b) = \phi(a \ K) \phi(bK).$

Also ϕ is surjective and injective Therefore, ϕ : G/K \rightarrow im f is an isomorphism.

Remark (2):

1. Here is a minor application of the first isomorphism theorem. For any group G, the identity function f: $G \rightarrow G$ is a surjective homomorphism with ker f = 127

المحاضرة ٣

Proposition (3):

1. If H and K are subgroups of a group G, and if one of them is a normal subgroup, then HK is a subgroup of G. Moreover, HK = KH.

2. If both H and K are normal subgroups, then HK is a normal subgroup.

Proof:

1. Assume first that K is normal in G. We claim that HK = KH. If $hk \square HK$, then: $hk = hkh-1h = k1 h \square KH$ where k1 = hkh-1, then $k1 \square K$, because K is normal subgroup $_2$

Hence, HK = KH. For the reverse inclusion, write $kh = hh-1kh = hk2 \square HK$, where k2 = h-1kh. (Note that the same argument shows that HK = KH if H is normal subgroup of G.) ³

المحاضرة ٤

1

Third Isomorphism Theorem Lecture 11

In the following lecture we study the third important theorem of fundamental isomorphism theorem.

Theorem (1): (Third Isomorphism Theorem)

If H and K are normal subgroups of a group G with $K \le H$, then H/K is normal in G/K and $(G/K)/(H/K) \square G/H$. 2

Proof:

Define f: $G/K \square G/H$ by f(a K) = a H. Note that f is a (well- defined function, for if a G = b K, then a- $1b \square K$ But $K \square H$, thus a- $1b \square$ H, and so a H= b H, and we are done. It is easy to see that f is an epimorphism.

Now ker f = H/K. Also clearly H/K is a normal subgroup of G/K. Since f is monomorphism, so by the first isomorphism theorem we have: $(G/K)/(H/K) \square G/H$

The third isomorphism theorem is easy to remember: the K's in the fraction (G/K)/(H/K)can be canceled. One can better appreciate the first isomorphism theorem after having proved the third one. The quotient group (G/K)/(H/K) consists of cosets (of H/K) whose representatives are themselves cosets (of G/K). 3 Here is another construction of a new group from two given groups.

Definition (2): If H and K are groups, then their **direct product**, denoted by HxK, is the set of all ordered pairs (h, k) equipped with the following operation:

(h, k)(h1, k1) = (hh1, kk1)

It is routine to check that HXK is a group [the identity element is (e, e1) and (h, k)-1 = (h-1, k-1).

Remark (3): let G and h be groups. Then HxK is abelian if and only if both H and K are abelian.

We end the tenth lecture by the following example.

Example: Zx2Z is the direct product between (Z, +) and (2Z, +) groups.

The identity element is (0, 0), and the inverse element of (a, b) is (-a, -b).

```
We now show that HK is a subgroup. Since e \square H
and e \square K, we have e = e \cdot e \square HK. If hk \square HK,
then (hk)-1 = k-1 h-1 \square KH = HK. If hk, h1k1 \square
HK, then h1-1 kh1 = ke \square K and
Hkh1 k1 = hh1(h1-1 kh1)k1 = (hh1)(kek1) \square HK.
Therefore, HK is a subgroup of G.
2. If g \square G, then:
ghkg-1 = (ghg-1)(gkg-1) \square HK
Therefore, HK is normal in G. ghkg-1 =
(ghg-1)(gkg-1) \square HK . Therefore, HK is normal
in G.
Definition (1): If H and K are subgroups of a finite
```

group G, then then the **Product Formula** is:

 $|HK||H \cap K| = |H||K|$

المحاضرة ٥

One can shorten the list of items needed to verify that a subset is, in fact, a subgroup.

Proposition (4): A subset H of a group G is a subgroup if and only if H is nonempty and, whenever x, $y \in H$, then x y–1 $\in H$.

Proof: If H is a subgroup, then it is nonempty, for $1 \in H$. If x, $y \in H$, then $y-1 \in H$, by part (iii) of the definition, and so $x y-1 \in H$, by part (ii).

Conversely, assume that H is a subset satisfying the new condition. Since

H is nonempty, it contains some element, say, h. Taking x = h = y, we see that $e = hh-1 \in H$, and so part (i) holds. If $y \in H$, then set x = e (which we can now do because e

 \in H), giving y-1 = ey-1 \in H , and so part (iii) holds. Finally, we know that (y-1)-1 = y, by. Hence, if x , y \in H , then y-1 \in H and so x y = x (y-1)-1 \in H . Therefore, H is a subgroup of G. Since every subgroup contains e, one may replace the hypothesis "H is nonempty" in Proposition by "e \in H".

Note that if the operation in G is addition, then the condition in the proposition is that H is a nonempty subset of G such that x, $y \in H$ implies x- $y \in H$. **Proposition (5):** Let G be a finite group, and a \Box G. Then the order of a, is the number of elements in (a).

Definition (6): If G is a finite group, then the number of elements in G, denoted by |G|, is called the **order of G**.

Definition (7): If X is a subset of a group G, such that X generates G, then G is called **finitely generated**, and G generated by **X**.

In particular; If $G = (\{a\})$, then G is generated by the subset $X = \{a\}$.

Definition (8):

A group G is called **cyclic** if G = (a); that is G can be generated by only one element say a, and this element is called a generator of G.

المحاضرة ٦

Lecture 13

If H and K are subgroups of a group G with H is normal in G, then HK is a subgroup of G and $H \cap K$ is normal in K. Moreover:

 $K/(H \cap K) \square HK/H$

Proof:

We begin by showing first that HK/H makes sense, and then describing its elements. Since H is normal subgroup of G, then HK is a subgroup of G. Normality of H in HK follows :

from a more general fact: if $H \square S \square G$ and if H is normal in G, then H is normal in S.

We can easily show that each coset x H \Box HK/H has the form k H for some k \Box K. It follows that the function f: K \Box HK/H, given by f(k) = k H, is surjective. Moreover, f is a homomorphism, for it is the restriction of the natural map π : G \rightarrow G/H. Since ker π = H, it follows that ker f = H \cap K and so H \cap K is a normal subgroup of K. The first isomorphism theorem gives: K /(H \cap K) \Box HK/H

Remark (3):

The second isomorphism theorem gives the product formula in the special case when one of the subgroups is normal: if K /(H \cap K) \Box H K /H , then: |K /(H \cap K)| = |H K /H |, and so |H K ||H \cap K | = |H ||K |.

Definition (6): If $f: G \to H$ is a homomorphism, define

kernel f = {x \square G : f (x) = e}

and **image** $\mathbf{f} = \{h \Box H : h = f(x) \text{ for some } x \Box G\}.$

We usually abbreviate kernel f to ker f and image f to im f

So that if f: G \square H is a homomorphism and B is a subgroup of H then f-1(B) is a subgroup of G containing ker f.

Note: Kernel comes from the German word meaning "grain" or "seed" (corn comes from the same word).

Its usage here indicates an important ingredient of a homomorphism, we give it without proof.

Proposition: Let $f: G \to H$ be a homomorphism. (i) ker f is a subgroup of G and im f is a subgroup of H. (ii) If $x \square$ ker f and if $a \square$ G, then $ax a-1 \square$ ker f. (iii) f is an injection if and only if ker f = {e}. Normal Subgroups

Definition (1): A subgroup K of a group G is called **normal,** if for each $k \square K$ and $g \square G$ imply $gkg-1 \square K$. that is $gKg-1 \square G$ for every $g \square G$. **Definition (2):**

Define the **center of a group G**, denoted by Z (G), to be

 $Z(G) = \{z \Box G : zg = gz \text{ for all } g \Box G\};\$

that is, Z (G) consists of all elements commuting with every element in G. (Note that the equation zg 123 = gz can be rewritten as z = gzg-1, so that no other elements in G are conjugate to z.

Remark (3):

Let us show that Z (G) is a subgroup of G. We can easily show that Z(G is subgroup of G. It is clear that $Z(G) \neq$ since $1 \in Z$ (G), for 1 commutes with everything. Now, If y, z \Box Z (G), then yg = gy and zg = gz for all g \Box G. Therefore, (yz)g = y(zg) = y(gz) = (yg)z = g(yz), so that yz commutes with everything, hence yz \Box Z (G). Finally, if z \Box Z (G), then zg = gz for all g \Box G; in particular, zg-1 = g-1 z. Therefore, gz-1 = (zg-1)-1 = (g-1z)-1 = z-1g (we are using (ab)-1 = b-1a-1 and (a-1)-1 = a).

So that Z(G) is subgroup pf G.

```
Clearly che center Z (G) is a normal subgroup;
since if z \square Z (G) and g \square G, then
gzg-1 = zgg-1 = z \square Z (G)
A group G is abelian if and only if Z (G) = G. At
the other extreme are groups G for which Z (G) =
{1}; such groups are called centerless. For
example, it is easy to see that Z (S3) = {1}; indeed,
all large symmetric groups are centerless.
```

{1}. By the first isomorphism theorem, we have $G/\{1\} \square G$

2. Given any homomorphism $f:G \Box H$, one should immediately ask for its kernel and its image; the first isomorphism theorem will then provide an isomorphism

G/ker $f \Box$ im f. Since there is no significant difference between

isomorphic groups, the first isomorphism theorem

also says that there is no significant difference

between quotient groups and homomorphic

images.