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LECTURE 1

Conformal Maps

We continue to study analytic functions as mappings. Let us understand the geo-
metric meaning of the derivative. Since derivative are now complex-valued , the calc-
ulus interpretation of the derivative no longer makes sense. But we are going to find a

new one .

1. Geometric Interpretation of the Derivative

Letf : E — C beanalyticand f'(z,) =0 where z, € E is fixed pointand w, = f (z,).
Write f'(z,) in exponential form

f'(zo)zizig%:Ae‘“ (1.1)

where as before Aw(z,)= f(z, + Az) — f(z,). The limit in (1.1) doesn’t depend on
how Az — 0. So we take two different paths y,,», non-tangential at z,, .

Let T} = f(y,).I, = f(y,) bethe images of »,,y, under f .

From (1.1),

a=arg f(z,)= J’II’DO arg Aw — J'ITO arg Az (1.2)

Since a is independent of the way Az — 0, (1.2) yields

lim arg Aw — lim argAz= lim argAw— lim argAz
lAz—>z,zEy1 | lAz—>z,z€y1 | Az—2Z,z€y, lAz—>z,z€y2
L J
Y Y
Y

||
D4 P4 @, Q2

J

= 01— @1= 0;— ¢
= 0= 0 =¢; — ¢4
‘—7—1’ l_'_l
AQ A
= AQ = Ag (1.3)

Equation (1.3) reads that an analytic function f preserves angles at each point z, such
that f'(z,) #0.



Read (1.1) now differently

. . Aw(z i
)zA ,oz(€ + zZA* eA = WA = Ilmﬂer'“
Aaz—0  AZ

where

. &(zo,Az
lim £%042 _ ¢ |
Az—0 Az

Recalling the definition of the differential

dw = Ae'®Az = |dw| = A|Az|.

2. Conformal Map

Definition 1.1. Amap, f : E = f(E) is called conformal if it preserves angles and
has a constant dilation at any z, € E .

Proposition 1.2 . An analytic function f is conformal at z, if and only if f'(z,)#0.

Proof.

Let z, be a pointin E and C; and C, be two smooth curves passing through z, with
tangent T, and T, respectively . Let 6, and 8, denotes the angles of inclination at T;
and T,, respectively .

K, and K, (images curves) that pass through w, = f(z,) will have tangents T;" and
T, respectively .

y = arglf'(zo)] + arg[z'(0)] = a + 6 when a = arg[f'(z,)],
]/1=a’+913nd y2:a+62
We conclude y, —y, =6, — 6,

That the angle y, — y; from K; to K, is the same magnitude and orientation as the
angle 8, — 8, from C; to C, . Therefore , w = f(2) is conformal mapping .



LECTURE 2

Mobius Transforms (Linear Fractional Transforms

Definition 2.1. The function

az+ b
cz+d

o(z) = ,where (ad # bc) (2.1)

is called the Mébius transform .

Proposition 2.2. Let the Mdbius transform , ¢, be defined by (2.1). Then

(1) @ isanalyticon C \ {— %}
(2) @ isunivalent and conformal on C \ {— %}
(3) the inverse, =1 of ¢, is given by

dz—b
—cz+a '’

o' (2) =

Proof . Since (1) is clear, we will begin by considering (2). Simply differentiate (2.1)
by the quotient rule to conclude that

dz-b

=——#0.
(cz +d)?

9'(2)
So, by Proposition 1.2, ¢ is conformal on C \ {— %} . To prove that ¢ is univalent , we
write

az+ b

=w S az + b = czw + dw
cz+d

& (a—cw)z=dw—>

dw — b dw —b
Sz = =

a
= ,Vw#— (2.2)
a—cw —cw + a c

which implies that ¢ is univalent .Thus ,(2) is done . Moreover, switching w < z in
(2.2) yields (3) . O

Example . There are four fundamental example at Mobius transform f: € —» E

1.z+b
0.z+1 '’

a) Translations:z—->a+b = (b € C€) . ( Parabolic transformation ).
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Va .z+0
0z+(Va) "’
. . VA .z+0
c) Expansions:z 5 Alz= ———— ,(A>1or0<1<1).
0.z+(\/7)

( Hyperbolic transformation ).

b) Rotations: z — az = (lal = 1) . ( Elliptic transformation ).

d) Inversion: z — i
Proposition 2.3. Let ¢ be a Mdbius transform . Then
P =@3°P2°Pq

where ¢, and @5 are linear mappings , and ¢, is an inversion , i.e ¢,(2) =§ :
Moreover if c # 0

p,(z) =cz+d
1
@2(2) = Z

©3(2) =E+ <b —ﬂ)z.
c c
If ¢ # 0 then ¢ is linear .
The proof is left as an exercise .
The importance of the Mobius transform is due to the following proposition .

Proposition 2.4. A Mdbius transform ¢ transforms linear and circles to lines and
circles (1.e. ¢ _preserves lines and circles ).

Proof . We show first that the statement holds for a linear ¢;(z). Recall that any line
L in R? can be written in the parametric form (x(t), y(t)) where x(t) and y(t) are
linear (real) functions of t . Consider now, ¢, (z(t)) =cz(t) + d, where
z(t) +iy(t) . Denotingc =c¢; +ic,and d = d, + id,
©01(z()) = c1x(t) — cy(t) + dy + i(cx(t) + c1y(¢) + dy).
\ J J

\
. A R Y
linear function of ¢t linear function of t

It follows that ¢, (z(t)) =u(t) + iv(t) where u(t) and v(t) are linear functions .
Hence, ¢, (z(t)) represents a line in the w —plane .

It follows that lw —wy| = plcl. That is, w € Cycj(wp), i.e.
§01Cp(zo) = Cp|c|(§01(zo)) .



It remains to show that the mapping w = itransforms circles and lines into circles and
lines . Note that when a point w = u + iv is the image of a nonzero z = x + iy under
the transformation w = i writing w = # yields that

U= x2+y2 "’ v x2+y2 ° (2.3)
] 1 w
Moreover, since z = — = —,
w |w|?
u -V
X = u24+p2 Y = u2+p2 (24)

Now note that when A,B,C, and D are all real numbers satisfying the condition B? +
C? > 4AD, the equation

Ax>+vy?)+Bx+Cy+D =0 (2.5)

represents an arbitrary circle or line, where A # 0 fora circleand A = 0 for a line . If
A # 0 it is indeed necessary for B? + C? > 4AD since by completing the square we
may rewrite (2.5) as

(x+£>z+(y+£>z=<\/32+C2_4AD>2

2A 2A 2A

Note that if A =0 then B2 + C% > 0.Thus , either B or C is greater than 0 . Now
observe that if x and y satisfy (2.5), by (2.4) we may substitute . After simplification
we conclude that u and v satisfy the following equation

Du*+v*)+Bu—Cv+A=0, (2.6)

which also represents a circle or line . Conversely, if u and v satisfy (2.6), it follows
from (2.3) that x and y satisfy (2.5).

Now by (2.5) and (2.6) we may conclude that

(1) a circle (A # 0) not passing through the origin (D # 0) in the z—plane is
transformed into a circle not passing through the origin in the w—plane ;

(2) acircle (A # 0) through the origin (D = 0) in the z-plane is transformed into
a line that does not pass through the origin in the w-plane ;

(3) a line (A =0) not passing through the origin (D # 0) in the z—plane is
transformed into a circle not passing through the origin in the w—plane ;

(4) aline (A = 0) through the origin (D = 0) in the z-plane is transformed into a
line that does not pass through the origin in the w—plane .
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This concludes our proof . N

Itis left as an exercise to the reader to come up with a more elegant proof of Proposition
2.4.

Proposition 2.5. Given that ¢, and ¢, are Mobius transform it is follows that ¢, o
¢, 1S Mobius transform .

The proof is left as an exercise.

Proposition 2.6. Assume {z;, z,, z3} and {w;, w,, wy} are sets of distinct
numbers . Then there exist a Mobius transform , ¢ , where

(p(Zi) =w, [ = 1,2,3.

Moreover, ¢ can be explicitly constructed by

Z_Zl 22_23 W_W1 WZ_W3

Z—23 Zy—2; W—Ws Wy —W;
Proof . Consider z; , z,, z3 # o . Let

_ (z —23)(21 — 23)

S(z) =
(z — 2z3)(z1 — 23)
= S(Zl)zl ) S(ZZ)=0 , S(Z3)=OO.
_ (z—w3)(z1—w3) _ — —
LetT(z) = ooz ,thenT(w,) =1, T(wy,)=0 , T(wz) =00,

If we define p(z) =St oT(2),then p(zi) =T 1o S(z) =w; , (i =12,3).

Z—Zy

In case z; = oo then we let S(z) = .... Similarly for T.

Z—Z3

1—

In case z, = oo then we let S(2) = ZZ—Z3 .... Similarly for T.
3

In case z; = oo then we let S(z) = ZZ‘J .... Similarly for T.

1—

Uniqueness exercise.

Example .Find the Mobius transform ¢ which maps —1, 0, 1 to the point —i, 1,1 .

Assume ¢(z) = % . Since ¢(0) = S =1 = b=d and ¢(z) =

az+b
cZ+b

Similarly........ complete .



Example .Show that ¢ (z) = g maps y > 0 onto v > 0 and x axis onto u axis .

We first note that when the number z is real , so is the number w . Consequently, since
the image of the real axis y = 0 is either a circle or line it must be the real axis v =0
, for at point w in the point w —plaine ,

(z-1D(@z+1) 2y

v=Imw=Im —_— — , (z# -1
z+D(Ez+1) |z+1)? ( )
v,y have the same sign,
x axis - uaxis (since p(z)is1—1).
Exercise 27 Let U Dbe the open wunit disk in € , and let

Ut={zeC:Imz>0,|z| < 1}.

Exhibit a one —one conformal mapping from U* onto U .
(Hint: consider ¢,(z) = 5 ).

Exercise 2.8. Show that

p(z) = :—z maps C* onto D .



LECTURE 3

Complex Integration

Definition 3.1. A piecewise smooth curve y with parametric interval [a, b] is said to
be reparametrization of 7y (f), a<t< b if and only if there is ¢’ - map
o :[3,b] - [a, b] such that o'(0)=0,(3) =a,a(b)=b and Y(t) = y(«(t)) , some time
y and ¥ are said to be equivalent . Suppose f is continuous in D(open) containing all
the points of y(t) . Then we have

~

b
[ @) dz =] f(v(t)) y'(t)dt =% f (v(a(®)y'(at)a'(t)dt
Y Y

a() b
[ T(y(a))e't)dt= [ f(y(a(t)'(t)dt =f f(z) dz =
a(Q) a y

Therefore, if in immaterial which parametrization is useful .

Example. Evaluate I:'[f(z)dz ,f(z)=2" ,y(t)=e" ,0<t<2x
Y

y : is an arc of any circle centered of the origin,

21
[ = pntl j jem+Dit g4 []/ (t) — Teit]
0

itth+1) 727
r”*{e—} if nz-1
given | = n+1],
21 if n=-1
i 0 if nx-1
i.e. j f(z)dz=<_ . .
d 2 If n=-1

continuous hold id y and f are replaced by any circle centered at z, and (z — zy)"
respectively . This mean that



0 if nx-1
—72)'dz =
J@-z) 0 {2m‘ if n=-1

‘z—zo‘zl

Theorem 3.2. Let y be smooth curve and let f, g be continuous functions on D (open)
continuous B ([a, b]) and let « € C .Then

1) [ f(2)dz =~ f(2)dz
2) [[a f(2)+9(2)ldz=a [ f(2)dz — [ g(z)dz

If v,,v, are two paths such that v, (b) =v,(a)
3) [ f(2)dz=[f(2)dz+ [ f(z)dz

Y1+v, Y1 12

4) If L =L(y) is the length of the curve and M = .trer%ag]lf(y(t))l, then
a,

<ML.

[ f(z2)dz

Proof.

b

j f(z)dz = j f (y(b+at))d(y(b+at))

-y a

b
= j f (y(s)) dy(s)) bychang variable formt tos=b+ at

= —T f(y(s)) dy(s)) = f (2)dz
a ¥
1) Follows 2) follows from definition and linearity property of Riemann integral
3) As v,,v, are curve with v, (b)=v,(a), y=vy,+v, ,isthen
v,(2t-a) , asts(b+a%
ya2t-b), C+3 <r<q

and the assertion now follows the definition of the noting that for vy,,vy, a
reparametrization has been made

y(t) =

10



b
4) L={|dz|=[]y'(t)|dt and for a real-valued Riemann integral function ¢ on
v a

[a, b] , we know that |[ @(t)dt| < [|e(D)ldt..................... (+) .

If [ f(2)dz=0, then is nothing to prove .Therefore we assume [ f(z)dz 0 and
Y Y

write

[ f(2)dz =_Tf(y(t))y'(t) dt=Re", where R>0 and @=arg(|f(z)d2).

Therefore, we have Te"‘g f (y(t)y'(t) dt = e"ei f(y(t)y'(H) dt=R

LR vl Pl g ,
= Re [le'? £ ()] dt = [Rele ™ (GO o
Apply (), with (1) = Rele”” f (x)Y'(©], to et

b |
R =‘ [ f(2)d7 < jRe‘e"Hf(y(t))y’(t) ‘dt
¥ a

b
= ][ T (y(1))]
a

Y'(t)| dt.

Since \f(y(t))\ <M forall t € [a, b], and since fore positive integrands the
Riemann integral is larger integrand , we have 4 .

Theorem 3.3. Let {f,,} be a sequence of continuous functions, suppose that f,, —
f uniformly on a smooth curve y . Then

lL"IJI f,(2)dz= [ f(2)dz

Proof . Let € > 0 and f,, converge uniformly on y with parametric integral [a, b] .
Then there is an N such that

£,(Y®) = fF(y(®)| < efort € [a,,b] and n > N

11



by above theorem (3.2) , we have

[ f.(2)dz— [ f(2)dz =|[[ f,(2) - f (2)]dz

[Lf, (/O —F (D) ot

b
<
a

-0 as n— oo forarbitrary small € > 0.

f, @ f @)y ®[dt ] [y'@) fdt, n=N =

Theorem 3.4. If f = u + iv is analytic in open set D containing the smooth path y
with parametric interval [a, b] . i.e. y( [a, b]) € D, then

[T(z)dz=f(y(b)) - f(y(a)) .
V4
Proof . HW
The Cauchy Theorem
Note : a region is analytic is an open set .

The simplest region of Cauchy’s Theorem utilizes a theorem from calculus known as
"Green’s Theorem ".

"Given two real valued function M(x,y) and N(x,y) , which continuous with their
partial derivatives "

ON(x,y) oM (x,y)
OX dy

J'M(x,y)dx+N(x,y)dy: ” {

interionof y

}dxdy

Theorem 3.5. If f is analytic with ' is continuous inside and on simple closed
curvey, then |f(z)dz=0.

Y
Proof . Let f(z) = u(x,y) + iv(x,y)and Q = IntY .Then

[ f(2)dz = [ (udx—vdy) +i [ (udy+vdx).

v

By assumption , and by Green’s Theorem

12



[ f(@)dz = [[(~v, —u,)dxdy+i[(u, —v,)dxdy

by C. R.equation we have result and assents that the integral of a function, analytic
in a simple connected domain D along any closed curve y < D, is always zero .

Cauchy Goursat Theorem

Theorem 3.6. If f is analytic in a simple connected region D c C . Then
_|' f(z)dz=0 , (y: closed contour , y c D).
Y

Theorem 3.7. Let f be analytic on a (multiply ) connected domain and let
C;,C,,....,C, besimply connected region with positive oriented in D such that for all
k, IntC, c Int C and let Cy, are disjoint . If f is analytic on Int C / {U}-, Int C},

then | f(z)dz:zn: [ f(2)dz.

k=1 ¢y

Example .Evaluate | dz

5 for the following contour
s(z+1(z° +1)

(c)

Solution .

1
(z+1)(z%+1)

Note that f(z) = analyticon C / {—1,i,—i}.

1
1/, N Ya+ 02i /a1 - )(=20)
z+1 Z—1 Z+1

f(2) =

13



1 ( 1 N 1 1 1 1 )
2\z+1 i—1 z—1 14+i z+1i

we establish positively oriented circles of radius r , and respectively of center z; =
—1,z, =i,z = —i (take r = i), C, are disjoint , therefore a,, a,, a; being

coefficient , such that

J' f(Z)dZZ J‘ a,le + J~ ade + J- ast

Cr () @l ™h el ol
a, dz . )
= I “— (by linearity )
crm) £ L
By Cauchy theorem
. . ajdz
since  z;€IntC.(z), j+k =0
criz) £ 7L
a, dz dz
Now, [ ——=a, | .
criz) £ 7 criz) £ 7 L
Take z=2z, +re ,0 <t <2m
27 it- 27
re idt . )
J. = | =5 = Jidt=24
re 0
a, dz )
then , I K~ =27ia,
criz) £ 7 &

a) All C,(z,) defined above an in Int C .Hence by above theorem , we have
.[ dz _ljdz+1jdz_1 dz
@D +]) 2o pzH+l P10 20 i+l Gz

1

:1(2m’+ 27zi—_1 27)=n(1-1)=0
2 1+1

1-1

b) Only C,(i) and C,.(—i) are Int C, hence

dz 1 1 dz 1 dz
;[(z+1)(22+1):§[i—1j 70 i+l J z+iJ

Cr() Cr (1)

14



@A (- ) =

i—1 i+1

c) C.(—1) e Int C, then

dz 1 dz 1., . :
l(z+1)(z2+1)25{ J ﬁ]zi(zm):m

cr(-)

The Cauchy formula

Theorem 3.8 . Let f be analyticon E and C c E be positively oriented simple contour
. Then

f(z)
dz=1(z Vz,elntC.
2711-[2—2 (20), 0 €
Proof. Since 1@ analyticon E{z,} ,C~C (z,) forsomer .
-1,

By Theorem (*)

If(Z)dZ:I f(z)dz:J f(z)_f(ZO)dz+f(zo)j dz

c 74 g 7% gy L7 Crizg) £~ Zo
then we have

_ _ d
[Rk2A Ly Py A f(20)| 4y < max |f(2) - f(z,)] | 2
ez L7 %o ezl L7 % ‘ 2<Cr (20) el |2~ 2ol

—>0 asr—o0
take r—0 , we have
jf(z) dz =27if (z,) + im | H2)= 1(z) 4,

{ J

Y
-0

15



LECTURE 4

Corollary 4.1 . If f isanalytic on D,.(z,) and continuous on D,.(z,), then

@) = J," f(zo +7e'®)do .

dz

— of as in above example by using Cauchy formula
< (z+D(z° +1)

Example. Evaluate J'

. 1 1 1
solution .Let f (z) = T f, (Z)=m ) f3(z)=(z+1)(z_i)

C,=C(-), C,=C () ,C,=C.(-i) (rsmallenough)

therefore, C, , C, and C, are disjoint , also note that f, is analytic on
CulntC, ,k=1.23,..

jf(z)dz jzil) jf (2)y, +jf 5(2 )dz—27z1(f( )+ f, @) + f,(-0))

2 z—i

—2aif et ot _A@-1)=0
22 1-1 1+1

b) , c) left exercise .

The Maximum Modulus Principle

Definition 4.2. Let D be any subset of C . A complex function defined on D is said to
have (local) maximum modulus of a € D, ifthereexistsad > Osuchthat Dg(a) C
D and |f(2)| < |f(a)]| for all z € es(a), a minimum of |f| is similar defined .

Theorem 4.3. (M.M.P.) suppose that  f is analytic in D and a € D such that
|f(2)| < |f(a)| holds for all z € D. Then f is constant .

Example. Let f(z) =sinzandA={z:|z| <1}. Then
|f (x + iy)| < |sinx||cscecy]|

and so |f] attains its maximum value

1 1
1+=+=+--,0nAata=-1

3i 51

Similarly we see that |g| , where g(z) = e#, attains its maximum value e on A at
a=1.
16



Note that the minimum value of |f| is attained at on interior point of E with out f
being constant.
If we take f(z) =z forz € E, . Then

If (@) =1z| = 0 =|f(0)]

then the minimum value attains at the origin .

The maximum value of f(x + iy) = /x? + y? is attained at the boundary point |z| =
Tr.

Theorem 4.4.(Maximum M. T.).Let f be analytic function in boundary domain D and
continuous on D . Then |f| attains its maximum on boundary éD of D .

Proof. We know that a continuous function on a compact set is boundary, therefore by
hypothesis f is boundary on D and the maximum value of |f| is attained at some point
of D .By M.M.P. if cannot be in D so it must be on boundary éD .

Note : In M.M.T. that D is boundary cannot be dropped for instance if we consider
f(z)=e 2 with D={z:Imz>0},
then |f({) =1ondD={{:Im{ =0}.
Butforz=x+iy €D
If(x+iy)|=e” > oasy eR,y > +»
I.e. f itself note boundary .
Another example , see

f(z)=e¢, z€D={z:|Imz| <§ }. Then

for a+ib €9D ={{:|Im¢| =73

Again M.M.T. fails

ifz=x€RcD, f(x)=e® 5o asx - +w.

17



Example: find max | f(z)|for

a) f(z) =coszwithD ={z=x+iy:0<x,y<2m}
b) f(z) = coszfor ze C.

Solution
y
a) |f(2)| = /sinh?y + cos?x 4
Cs

by M.M.T , maximum attain on boundary €(0,2m) < D(2m, 21)

C4 Y
A C2
« > > X
0 C, A(2m,0)

v

0D = [0,2n] U [2m, 2 + 2mi] U [2m + 2mi, 2m] U [i2m, O].
For z € [0,2m], we have z = x + i(0) with 0 < x < 2,
then |cosz| has maximum 1 at z = 0,2.

For z € [2m, 2 + 2mi], we have z = 2 + iy with 0 < y < i,

then |cosz| has maximum \/1 + sinh?(2m) at z = 2w + 2mi, since sinhy increasing
of y.

Forz € [0 + 27], we have z = x + 2mi with 0 < x < 2,

then |cosz| has maximum \/1 + sinh?(2m) at z = 0 + 2mi , mw + 2mi .

For z € [2mi, 0], we have z = 2w + iy with 0 < y < im,

then |cosz| has maximum /1 + sinh2(2m) .

Hence max |cosz|= J 1+ sinh?(2m) = cosh2m.

b) H.W

18



Theorem 4.5 (Minimum M. T.).

If is @ non-constant analytic function in a bounded D and f(z) # 0 forany z € D , that
|f| cannot attain its minimum in D .

Theorem 4.6 (open mapping Theorem)

A non-constant analytic function maps open sets onto open sets .

Schwarz Lemma .

If £ is analytic and satisfies |f(z)| < 1 inEand f(0) = 0, then |f(z)| < |z| for each
z € Eand |f'(0)| <1.

Theorem 4.7 .Let f: E — E be analytic having n zeros of the origin .Then

i) If(2)| < |z|"forallz€ E
i) [f"(0)] =n!

and equality in (i) and (ii) for some point z, # 0 occurs iff
i)  f(z) =ez™with|e|] =1.

Note that if n = 1, then we obtain Schwarz Lemma .

Proof .

Since f has n — th order zero at the origin , the function g defined by

12 , forze E/0}
9(2)=1 2

f (O% forz=0

is analytic in E . Let ¢ such that 0 < |{| < 1 and choose r , such that |{| <r < 1.
Since |f(z)| < 1 forevery z € E , the M.M.P. applied to g(z) yields

f(2)

n

z

1
<—.
rn

18(D Sq;g\g(Z)\ = q;g\g(Z)\ = max

|zl=r

Since g({) < rinfor eachr ,theng({) <1

19



therefore, g({) < 1 for each z € E and this is same.

2) (). since = = |g(2)| and g(0)<1.
i)  follows.
In case|f(zo)|=|zo|"  for some z, with 0 < |z| < 1, then |g(zo)| = 1.

Therefore |g(z)| achieves its maximum modulus at z, . So g must reduce to
a constant ; that is f takes the form f(z) = ez™ , when |e| = 1. Then same
argument at z, = 0, shows (iii) holds when f’(O)\S n!l.

20



LECTURE S

Consequences of the Cauchy formula

Lemma 5.1. For all z € D, we have

1 _ (n+k—1)'
(1—z)n_k2 Kn—1) -

Proof. The geometric series

o0

% = E z¥ is uniformly convergent on D, (0) for r < 1, then by the following
~-z
k=0

(*)

n-1 _ |
and d 1( 1 j (n-1)! . therefore, the assertion is follows:
dz"\1-z) (@-2)"

{ *) If f(2) :Z:an(z—zo)n converges on Dg(zj)then f(2) is infinitely

differentiable on Dg(z,) and

Theorem 5.2. Let f be analytic on a simply connected region Eand C c E be a
positively oriented simple contour . Then f is differentiable on E infinitely many

times and
j (€ 4
2721 (é/ n+1

Corollary 5.3. (Morera’s Theorem ). Let f be continuous on a simply connected

domain E and J. f(z)dz=0 forall C c E . Then f is analytic on E.

C
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Liouville’s Theorem :

If £ is bounded and entire then f is constant an immediate consequences of Lioville’s

Theorem we conclude that if f is analytic in the extended complex plane , then f is

constant . This is due to the fact that if f is analytic at z = oo , then |1|im f(z) isfinite
Z|—00

. Let this limit be L

i.e.givene > 03R > 0 suchthat |f(z)| — |L] < |f(z) — L| < € where |z| > R, and
so, in particular f is bonded for |z| > R and thus by continuity of f on compact set
{z:|z| £ R}, f is bounded on the whole od C . Hence f is constant .

Another interesting application of Lioville’s Theorem is that f isentireand |f(z)| >
M > 0, Mis fixed for all z € C then f is constant . This because the given condition
imply that f'(z) exists, f(z) # 0in C, and so

E(Lj__f’(z)
dz\ f(2)) f2(z)

: : . 1
exists for all z € C . Thus — is analytic on C and |——
f(2) f(z)

<i for all z € C. Now
M

applying Lioville’s Theorem to % , therefore f is constant .

Taylor series

Definition 5.4. We say a sequence of function {f,,} defined on C converges uniformly
to fif

sup|f,(z)- f(z)) >0 asn - o

Theorem 5.5. Let {f,,(z)} be a sequence of continuous function on a contour C of
finite length . Then £, converges uniformly implies that

jfn(z)dz —>J‘f(z)dz ,N —
C

C

Proof. Note that
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jfn(z)dz—jf(z)dz = J‘(fn(z)dz—f(z))dz

C C C

< j 1,(2) - £ (2)d

C

< J' suplf, 2) - f (2t < J' suplfy ()~ F(2IC
C C

—->0a n—o>w

Corollary 5.6. Let C be a contour of finite length and {f;,} be a sequence of continuous

functionson C . If Z f,(z) converges uniformly on C, then

n=0
ji f,(z2)dz = ji f,(z)dz

C n=0 C n>0
Proof . Exercise

Theorem 5.7. (Taylor Theorem): Every analytic function on a disk D, (z,) can be

uniquely expanded into the Taylor series f(z) = Zan (z—24)", where
n=0

a, :% f " (z,) and the above series in absolutely convergent D, (z;)
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LECTURE 6

Theorem 6.1. (Taylor Theorem): Every analytic function on a disk D, (z,) can be
uniquely expanded into the Taylor series f(z) = Zan (z—2,)", where
n=0

a, :$ f " (z,) and the above series in absolutely convergent D, (z;)

Proof.

Let g(z)= f(z+zg), its clear that g will be analytic on D, (0) and by Cauchy’s
Theorem

9(2) = j‘g(é)dg vzeD,(0), r<R
C(O)

Now

1 1 1 1(2) |z
=—._ - == Z 15 <
(-1 ¢ ¢ 4;@ 7"

1- =
4

0 n

since Z[?j is uniformly converge to Lz then
= 1-—
n=0

4

1 9(4“) 9(<)
Wgr L[ 300 U

cr 0) C,(0) n=0

o0 o0 n
by above Corollary =Z i J.Mdcj z" :Zanz” where a, = 9 (0) :
2m ¢ n!

n=0 C,(0) n=0

Thus, g(z):Zanzn
n=0
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Recall, f(z)=g(z+z,) and note that g"(0)= f"(z,).
Uniqueness Exercise .

Laurent series

Suppose that f not defined , or not analytic at a point z,. Then we cannot express if
in neighborhood at z, as a convergent power series expansion at the form

(D)= ) an(@-2)"
n=0

for, if we could do so then f would be analytic at z, . A series at the form

an (z—12z,)™" can be thought of as a power series in the variable
n=0

letting
-1,

¢ = 1 , then the above series we will be of the form ancj“.

Z-12,

n=0

Definition 6.2. A Laurent series about z, is a series of the form

iAn(z—zo)” ZiAn(Z—Zo)n JriA_n(Z—Zo)_n
n=0 n=1

N=-—o0

which analytic function in annulus R; <|z — zy| < R, . As amotivation for Laurent series
, We consider

1

f(z):(z—a)(z—b) ,a#b

Then f is analytic every where except z=a,b, then we cannot express if in the
neighborhood of a as a convergent series of positive power of z—a, so
1

f(z)= { L } If 0<al<zl«|b],then
a—-b|(z-a)(z-b)

E<1,‘E <1,
b Z

o0

n n
f=_1 12(&) 1 (z)
a—-b|z y4 b b
n=0 n=0
25



1 ol an 1
a-b Z zn
n=1

therefore, f(z)= Z A.z", where

OO Zn _ 1 —n1 n
n=

N=—o00

N=—o0
a —_
Fo = 1
— if n<-1
(a—b)a""
is Laurent series of f .
b a
If |z|>|b|>|a| (then |—=|<1, ‘— <1), then we have
Z Z

1 — 3" ZOO b" 1 Z a" —b"
f (Z) - n+l n+1 - n+1
a-b 7 7 a—b Z
n=0 n=0

N=-—o0

Theorem 6.3. ( Laurent Theorem).

Any function f(z) that is analytic on an annulus R, <|z —zy|<R, can be expressed
into the Laurent series

f(z):Zan(z—zo)” where a”ZZ;j(g g(z'/;;mldg“ ,neZ
n=0 C -0 ,,"//

where , C is any contour like .

Proof.

Let g(z) = f(z+20) , Ry <|z—20| <R, , By Cauchy formula
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_ 1 9(¢) - _ 1 9(¢) 1 9(¢)
005 | e[ e [ K g 0,00

Cr, U(-Cp) Cr,
where C, and C,, analikein.

But we know that

;z 41_5 JZU

Crz U (_Crl)
If £eC, ,then |— ‘<1 and uniformly convergent on IntC, and hence
— Z 2
o0 n o0
9(¢) z
0.5 | HEIYS
2 C, é’ n=0 é— n=0
n
27 §n+1 n!
sz
00 n
If £ €C, ,then £ <land — it :—l (QJ converges uniformly on
: z -z 746 1 i\ Z

L A AT o Y R
0@ [ 902X (5) e =Yk [aren acy

-C n=0 n=0

n
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then substitute in g(z) , we have

9(2) = 1))+ 02(2) = ) _anz", where

I?fﬂdg’,ns-l
oLl
" 2 J-ggad , n>0
g 4

Note: two contours are said to be equivalent with respect to connected region € if one can
be continuous deformed in E in to the other

But C, ~C, ~C, where C is contourin R; <|z|<R, and hence

1 g(g)
a”:27zi,“ gné’:ldg,nS—l
C

n

therefore, the Laurent replantation of an analytic function is not unique and depends
on the of choice of annulus for example

0

1 :Zz” ,  0<|z|<1
1-z

n=0

o0

:ZZn ,  1<|z|<w

n=1
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LECTURE 7

Classification of sinqularities

Definition 7.1: A point z, is called an isolated singularity of an analytic function f(z)
if there exists some R > 0  such that f is analytic on D (z,)[z,] {puncture disk}.

If a function f(z) ha an isolated singularity at z, , then by the Laurent Theorem if can
be expressed as

f2)=Ya,(z-2,)"+Ya, (@ —2,)" =f,(2) +1,(2)

on some annulus Dy (zy)[z0] -
Now, if
1) If f,(z)=0, then z, is called removable singularity
2QIf f.(z)= NZa_nz "N <o and a_ #0,then z, iscalleda pole of order N
=

3)If f,(z) has infinitely many non-zeros terms , then z, is called an essential
singularity .

Example. Discuss the singularities of g(z)—i where

f(z)

FZ)=uly)+ivix,y)= sm{ ]cosh( y ]—lcos[ X ]smh( Y J
2f 2f 2| 2|

Solution.

f is analytic every where except z = 0, therefore, the singularity of g at z = 0 and
the points where f(z) = 0.

i.e.when u(x,y)=0 and iv(x,y)=0

since cosh[‘y‘ J>1 u(x,y)=0 implies sin[L‘Z]:O ......... @
z

in this case COS(‘X‘ }to Thus v (x,y)=0,implies that smh{ y J (0 [ (2).
z
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X

Thus (1) =nz, n=0,¥1,+2,.......

2f

And (2) yields = 0.

Further, y =0 gives x=i for n=0,*%1,... . This means that
nz

u(x,y)=0 and iv(x,y)=0 holds if and only if x =ni for n=0,¥1,.... . Thus the
T

singularities of g are at points x 1 for n=0,+1,.... , and their limit point z = 0
nz

.Thus g has an isolated singularities at z _1 and non-isolated singularities at the
nz

limit pointz =0 .

Analytic Continuation

In an important concept because if provides a method for making the domain of
definition of an analytic functions as large as possible . Usually analytic functions are
defined by means of some mathematical expressions such as polynomial infinite series
, integrals etc. The domain of definition of such an analytic is often representation as
such of analytic function dose not provide any direct information as to whether we
could have a function analytic in a domain larger that the circular domain of
convergence which coincides with the given function . The make this point more
precise, let us start by examining the analytic continuation of the function

f(z)= Zz " itis convergent for |z| < 1 and diverges for |z| > 1. On the other hand
n=0

the sum of series for |z| < 1 is 1—; . Now F(z) = 1—; defined for all values of z + 1
and analytic for C{1} (f G) = (127" = —isanalyticat 0, F(z) analytic at o
).

f(z)=F(z) for ze C{1} nD = {z:|z| < 1}, and we call F analytic continuation
of £ from D into C{1} .

Next, we consider G(z):jexp[(z —Dt]dt .
0
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(z-Dt |® 1

IfRez <1,thenG(z)= = :
z -1, 1-z

Thus the integral is convergent in the half-plane H = {z: Re z < 1} and represent the
sum function é for ze H, we have F(z)=G(z) for zeH nD, F the
continuation of pointat z = 1.

Definition 7.2. Let f and F are two functions such

1) f is defined and analytic on E .
2) F is defined and analytic in E , such that E, "NE #¢p and E, o E

3)f(z)=F(z) for z €eE NE,.
Then we call F the analytic continuation of f from E' into E; .
Example. If E, =C\{z:Rez>=1,Imz =1}, Log(1 —2z) is the analytic

o &7
continuation of the power series Z— D into E;.
n=1 n

Calculus of Residues

Definition 7.3. Let z, be isolated singularity of C simply connected contour enclosing
zy and laying in the domain of analyticity of f . Then

1
H!f (z)dz =Res[f (z),z,]

Theorem 7.4 . If f has a removable singularity of z, , then Res [f (z ),zo] =0

Proof .

Since f has removable singularity at z, , then there is

f(z), 0<z-z,ko
g(z):{limf(z), 7 -7,

71,

Hence by Cauchy Theorem

Jo)dg=0, C={gil¢-z,k=r <o}
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Clearly g(z) = f(z) for z € C. Then jf (z)dz =0., then Res[f (z),z,]=0.
C

Theorem 7.5. If f has a pole of order n at z,, then

L 4" 2y (z)}

n—-1dz"*

Res[f (z).z,]=

-1
Proof. Exercise

Corollary 7.6 . If zy isasimple pole , then Res[f (z),z,]=lim(z —z,)f (z)

Residue of the point at infinity

Consider z = % ifwesetz = Me~ thenw = M~1e'® Thus the point Zy =
pe~%  p > M outside |z| = M corresponds to a point w, = p~te'® inside |w| = %(as
in figure )
1
z==
w
t v |
x /\2 .
— ﬂ; > < >
X _

z-plane w-plane

Let f be analytic in a deleted neighborhood of the point at infinity . Then by Laurent

f(z)=> az",|z>R, 0<R<w
k =—c0

DefineC'={z |z =M >R,M is sufficiently Laurent}
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Put z=Me™  Then jf (z)dz = Zakakdz
C k=—o C

o0 2z 2z
=Y ia M et g=—ia, [do=-2ria,.
k=—o0 0 0
Thatis Res|f (z),oo]:i_jf (z)dz =—a,

27l ¢ -

Further we observe that z = Me ™% with M :%

Res [f (z),oo]:ﬁjf (z)dz :—%Tf (Me"9)iMe"d 6

1 Z”f( 1 jd(R'e“g)

27i 5 \Re'" (Rbmy
1
F ()
- L i (ijdlz_—Re W_ o
2l g \W Jw w

where C ={w :|w |= % Is described in the anti-clock wise direction .

f ()
Hence , Res[f (z),]=-Res| —%-,0
z

2

Example. Consider the function f(z) = 1+ z~1. Then F(w) = f (%) =1+wand

lil’r(l) F(w) = 1. Thus F has removable singularity at w = 0 and therefore the point at
w-—

infinity is a removable singularity of f . Further we have Res[f (z),o0]=-1

Exercise . (1) prove Liouville's Theorem by using the above information .

(2) Determine the residue of all singularity of f,
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1
z"e?

, n€EN.
1+z

f(z)=

Residue Theorem

If £ is analytic in a domain E except for isolated singularities a ,a,...a, , then any
closed curve y in E.on which none of the points a;, lie we have

[ @)z =271 Y n(ria,)Res[f (2);a,]

o ifa, isinthe unbounded component of C\{y}
1 ifa, isinside y

n(j/;ak)|:

Now, if » is a simple closed curve then under the hypothesis of above Theorem , we
have .

Theorem 7.7. jf (z)dz =27i Zn(y;ak)Res[f (z);a, ]item the sum is taken over all
e

k=1

a; inside y .

Theorem 7.8. Let f be analytic with the exception of finitely many isolated
singularities at a; in the extended complex plane .Then the sum of all residues
(residue at infinity included of f equal zero.)

2n+3m-1
Z

(z?+a)"(z®+b)"

Example . Evaluate 1= 1. j
27l 2R

dz, a b € C{0},

1
where R >max{/|al,|b|?},nez.

2n+3m-1
YA

(z*+a)"(z®+b)"

solution. Let f (z) =

z°+a=0 1z,z,arepoles of ordern .

z°+b=0 1z,z,,2, are poles of order m , therefore

I :iRes(f (2)z;)
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5 5
by above theorem , we have Y Res(f (z);z,)+ > Res(f (z);%) =0 .
j=1

i1

As calculation of the residue is quite difficult , thus

| =Res(f (z);oo):Res(Zizf (Zl);O)

Res > nl -0 |=1
al+az“)"(1+bz")

1' _[ 1 -
27 1, (2 =3)(z" -1)

=2

. n=1.2,...

Example. | =

| =Res(f (z);z;),where z; are nothing but the n-th roots of unity .

As previous example , we must have

VRes(f (2):z,)=—Res(f (z):3)+Res(f (z);)

j

and

We note that Res(f (z);3)=1lim(z —3)f (z)= 7 1

Res (f (z);oo):—Res(Zizf (Zl);O):—Res((l_BZZ)”(l_Z n);oj:o.

Hence | = —

2r+a

Integral at type I R (cosé,sin6)d 6 .

a

R (cosd,sin @) is a rational function of cos@ and sinf ,

2 2
ifz=1re®  |r| =1, then COS(9=Z +1, Sin(9=Z - 1, dﬁz(_j—z
27 212 1z

27 21Z 1Z

[t @)z =[R (Z ‘12 2__1j(_j—2:27zi iRes(f )a,)
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a, inside C (C positive direction ).

27
Example. Evaluates Id—e a,breal, |b] < |a]
v a+bsing

Solution.

2 1 ) ..
| =—|f (z)dz, f (z)= . . C={z:|z|=1} the only singularities of
bcj() (2) @) {zlz=1} y sing f

are the poles

la_ (an a for + sign
-1 —=F,]|—] -1]|= _

b b S for -sign
Since |b| < |a| , then

1) 0<b<a
) a<b<O
) bh<0<a
iv) a<0<b

Therefore if is enough to consider either (i) and (ii) or (ii) and (iv),
since aff = —1, then one root inside C

1) Suppose 0 < b <a= % > 1 B inside |z| < 1, then by Residue Theorem

:E[Zni Res(f (z); 8)]

IZEJ' dz
bi(z-a)z-p) b

Ari

o 1
H[Zm lim@ - ) (Z)}:T(ﬂ—a)

27

Ja?-b?

(iiifb<0<a= Z < 0 and so the pole at a = « inside |z| < 1, using the

thatis | =

residue theorem we have

4mi

"=ra-p
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LECTURE 8

2
Example: Evalute | :j > do , Ifa>0
v 1+a” —2acosd
Solution .
| =2 [f @)z, f(@2)= L -
“e (2-a)1--)
o
where C={zeC:|z| =1}, singular points are the singular poles at
1
Z,=a, 1,=—.
o

If 0<a <1 thenz =« isinside |z|<1 other outside | =I—{27ri Res(f (z2),a)}
(04

——2lim(z —a)= 2”2 0<a<l.
o 1o -«
Similarly for & >1, we deduce that | :1_2—”2 , a>1 . Integral of type If (x)dx .
- b

The improper integral of continuous functions f(x) defined on [0, oo) is defined by

© R
jf (x )dx =|imjf (X )dX .
R —
0 0
If £ (x) is continuous for all , its improper integral over —co < x < oo is defined by

0 0 R,
| = jf (x)dx = lim jf (x)dx = lim jf (x )dx ,and both of limits exists .
—00 l_wole 2% 0

R,S >w

S
We can now write lim jf (x )dx .
-R

0 R
Now, Cauchy principle value (P.V.) of above integral PV ..[f (x )dx :Fleim _[f (x )dx
—0 -R

, provided this single limit exists .
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R —>w

lim _R[f (x )dx :Fleigl j.f (x)dx +Tf (x )dx
= lim if (x )dx +F!imjf (x )dx

R —o0

We start by the following example .

2

Example: Let f (x):1 ! and consider jf (z )dz with the path of integration is

+X
the line z = y = 0 . By Cauchy integral formula J = Iﬂd
z —1i
Write J =J, +J, with
R Rel” i0
dz d(Re'")
I I I1+z _I1+(Re‘9)2d0
RI0
: T Todx
Since |J,|< =
% 0 J.1+x2 "
then J = _[ =2
1+x% 2

Now, we discuss the following example

j dXZH, n=12,....
c 14X

Solution .

Observe that [ f (x)dx =2[f (x)dx, f @)= OI)z(z”
J J +

(k)7
Poles of f are located at 2n — throotsat—1,a =e 2» , k=01..,2n-1

Let C =[0,R]u{z:z =Re"?,0<0< 3 {z:z =re", 0<r <R}
n

=[O,R]JUTR Ly, .
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1 .| 2 -a
Res|[f (z =lim—————=Ilim| — |=—2
[ ( )aO] 7 >a, 2n ZZn—l Z—>ao|:2n:‘ 2n

where a, is a simple pole lie inside C . Then by Residue Theorem

!f (z)dz:( j +j+j ]f(z)dz

[R,R] TR IR

=271 Y _Res(f (x),C]

_ i 2n
o[ i
2n n

since f (z)|£|Z |2}—1S|z|22" ,as R — oo

we have ‘_"f (z)dz

s%ﬁeo as R— oo
R n

and so If(x)dx —>0 as R—> o

" L 5 =R dr
Next, f(z)dz=—|f|rem | d|lre" |=—en
[rawe e ] o ¥ [

0

as above with R —» o

I7Z'
iz ©

B n)J_ |7Z'92n

dx 7 i B T
2n - i i -
X Mewm _gn 2nsin(”j
2n

Example . an I Xy

Solution.
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_al2z .
Consider f (z):l1 © —  (since sin’x :(%) singular point a, =i, a =-i
+7

o 1-e” i
Res[f (z),i1=lim =——(1-e?
(-t aee)

Since iisthe only poleinsideC, C = [-R,R]UTR

Iy ={z:|z|]=R, 0<anyz <z}

then _1f (x)dx + jf (z)dz =27i [—%(1—e‘2)}:7r(1—e‘2)

Ig

since

“dz\: ZfR —>0as R—>w
R--1

_[f (z )dz

Ig

< JIF @lidz| =

Ig Ig

R
we have Jf (x)dx =7z(L—e?) , by equation real parts
-R

_ z(l—e™®)

o = 2
then, then, jSIZI—de
o X7 +1 2

Integration Involving Branch Cuts

Definition 8.1: A function f(z) is called meromorphic if f is analytic on the whole of
C except for poles .

Since z “ is multivalued , we must first specify the branch of z“ defined as follows

a __ ra(lnr+if)

z”% =e =r“(cosaf+isinal), 0<0<2r.
If «eZ,y, the necessity of the branch cut disappears as e'***, VaeZ.

Proposition 8.2 . Let (x) , x € R*, have meromorphic continuation f(z) , assume

f(2) has a finite number of poles [z,] . . zx € R" and zf(z) has a removable

k=1
singularity at oo .

Vae(0,1) Ix ~f (x)dx :i#mZRes [z “f (z),zk], z " definedon C\0 +
0 - k=1
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Proof .

Let ¢(z)=z*f (z). Then its analytic on C \[] + except of finite number of poles

[z, ], - Take Casin figure

Zﬂizn:Res((p(z),zk){j +j +j +j ]q)(z)dz

limzf (z) exciteand 3M >0 suchthat |zf (z)|<M forany |z| = R . Hence for

Z —0

M M
all z €Cr, |p@)=2°|f @)|<[] B[ R
M 27M

Therefore, |I,|< j|¢)(z )|ldz | < 27R :?—w as R—w
Cr

Rl+a
and  |1,|< [|p@)|ldz|= [|z| “If (z)]z|
C, c,

<sup [f (z)|. 2mee™* —0 as & —>oo ,bounded as 0 not pole

|z]=¢

R
1] =[x f (x)dx
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l4: ifz€y_then z =xe?",x >0 ,thenz™% = x~%e~27@ therefore

l, :jz-“f (z )dz :Jx‘“e‘z”‘“f (x)dx =—e 24,
v R
then I, +1, =(1—e )1, :(1—e-2”'“)jx—af (x )dx

=27i ) Res(pz,)— 1,1,

k=1

then Ix‘“f (x)dx :H#_Zm(hi ZRes(go,zk)— Il—lz)
. _

k=1

take limitas R — oo, € — 0, we have the required results .

Example. | = Jd—x , 0<a<l
o X (X +1)
1 : : : : :
Note that oy > 0, has a meromorphic continuous into C with one simple pole
+ X
atz = —1

lim 2—1 =1, by applying the above proposition
Z —>0 Z +

2ri 1 27l T

_1_e—27ria (_1)a e—;ria _e—ﬂia - Sinﬂ'a
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