Rings and Modules

by Dr. Charudatta Hajarnavis

University of Warwick

Lectures in the module

Contents

1 Rings 4
1.1 Rings 4
1.2 Examples of Rings 5
1.3 Properties of Addition and Multiplication 5
1.4 Subrings and Ideals 6
1.5 Cosets and Homomorphisms 7
1.6 The Isomorphism Theorems 8
1.7 Direct Sums 9
1.8 Division Rings 10
1.9 Matrix Rings 11
1.10 The Field of Fractions 12
2 Modules 16
2.1 Modules 16
2.2 Factor Modules and Homomorphisms 17
2.3 The Isomorphism Theorems 18
2.4 Direct Sums of Modules 19
2.5 Products of Subsets 20
3 Zorn’s Lemma 21
3.1 Definitions and Zorn's Lemma 21
3.2 The Well-Ordering Principle 21
3.3 The Axiom of Choice 22
3.4 Applications 22
4 Completely Reducible Modules 24
4.1 Irreducible Modules 24
4.2 Completely Reducible Modules 24
4.3 Examples of Completely Reducible Modules 27
5 Chain Conditions 29
5.1 Cyclic and Finitely Generated Modules 29
5.2 Chain Conditions 29
6 Semi-Simple Artinian Rings 35
6.1 Nil and Nilpotent Subsets 35
6.2 Idempotent Elements 36
6.3 Annihilators and Minimal Right Ideals 38
6.4 Ideals in Semi-Simple Artinian Rings 42
6.5 Simple Artinian Rings 43
6.6 Modules over Semi-Simple Artinian Rings 44
6.7 The Artin-Wedderburn Theorem 44
7 Wedderburn's Theorem on Finite Division Rings 50
7.1 Roots of Unity 50
7.2 Group Theory 52
7.3 Finite Division Rings 53
8 Some Elementary Homological Algebra 55
8.1 Free Modules 55
8.2 The Canonical Free Module 55
8.3 Exact Sequences 56
8.4 Projective Modules 57

((the first lecturer))

1.1 Rings

Definitions 1.1.1. Let R be a non-empty set that has two laws of compo-sition defined on it. (We call these laws addition and multiplication and use the familian notatation.) We say that R is a ring (with respect to the given addition and multiplication) if the following hold:
(i) $a+b$ and $a b \quad R$ for all $a, b \quad R$;
(ii) $a+b=b+a$ for all $a, b \quad R$;
(iii) $a+(b+c)=(a+b)+c$ for all $a, b, c \quad R$;
(iv) there exists an element $0 \quad R$ such that $a+0=a$ for all $a \quad R$;
(v) given $a \quad R$ there exists an element $-a \quad R$ such that $a+(-a)=0$;
(vi) $a(b c)=(a b) c$ for all $a, b, c \quad R$;
(vii) $(a+b) c=a c+b c$ for all $a, b, c \quad R$;
(viii) $a(b+c)=a b+a c$ for all $a, b, c \quad R$.

Thus, a ring is an additive Abelian group on which an operation of multiplication is defined, this operation being associative and distributive (on both sides) with respect to the addition.
R is called a commutative ring if, in addition, it satisfies $a b=b a$ for all a, b R. The term non-commutative ring can be a little ambiguous. When applied to a particular example it clearly means that the ring is not com-mutative. However, when we discuss a class of "non-commutative rings" we mean "not necessarily commutative rings", and it is usually not intended to exclude the commutative rings in that class.

If there is an element $1 R$ such that $1 a=a 1=a$ for all $a R$ we say R has an identity.

1.2 Examples of Rings

Example 1.2.1. The integers Z, the rational numbers Q, the real numbers R, the complex numbers C all with the usual operations.

Example 1.2.2. $R[x]$, the polynomial ring in an indeterminate x with coefficients in R, with $x r=r x$ for all $r R$.

Example 1.2.3. $M_{n}(R):=\{n \times n$ matrices over the ring $R\}$.
Example 1.2.4. $T_{n}(R):=\{n \times n$ upper-triangular matrices over the ring $R\}$.

Example 1.2.5. $U_{n}(R):=\{n \times n$ strictly upper-triangular matrices over the ring $R\}$.
Example 1.2.6. $F x_{1}, \ldots, x_{n}$, the free algebra over a field F with generators x_{1}, \ldots, x_{n}. The generators do not commute, so $x_{1} x_{2} x_{1} x_{3}=x^{2}{ }_{1} x_{2} x_{3}$.

Example 1.2.7. $A_{1}(\mathrm{C})$, the first Weyl algebra, which is the ring of poly-nomials in x and y with coe cients in C, where x, y do not commute but $x y-y x=1$.
Example 1.2.8. Subrings of the above, such as $J:=\{a+i b / a, b$
Z $\}$.

1.3 Properties of Addition and Multiplication

We typically write $a-b$ for $a+(-b)$.
Proposition 1.3.1. The following hold for any ring R:
(i) the element $0 \quad R$ is unique;
(ii) given a R, -a is unique;
(iii) $-(-a)=a$ for all a R;
(iv) for any $a, b, c R, a+b=a+c b=c$;
(v) given a, b, the equation $x+a=b$ has a unique solution $x=b-a$;
(vi) $-(a+b)=-a-b$ for all $a, b \quad R$;
(vii) $-(a-b)=-a+b$ for all $a, b \quad R$;
(viii) $a 0=0 a=0$ for all $a \quad R$;
(ix) $a(-b)=(-a) b=-(a b)$ for all $a, b \quad R$;
(x) $(-a)(-b)=a b$ for all $a, b \quad R$;
(xi) $a(b-c)=a b-a c$ for all $a, b, c \quad R$.

1.4 Subrings and Ideals

Definition 1.4.1. A subset S of a ring R is called a subring of R if S is itself a ring with respect to the laws of composition of R.

Proposition 1.4.2. A non-empty subset S of a ring R is a subring of R if and only if $a-b S$ and $a b S$ whenever $a, b S$.

Proof. If S is a subring then obviously the given condition is satisfied. Conversly, suppose that the condition holds. Take any a S : $a-a=0 S$. For any $x S, 0-x=-x S$. So, if $a, b S, a-(-b)=a+b S$. So S is closed with respect to both addition and multiplication. Thus S is a subring since all the other axioms are automatically satisfied.

Examples 1.4.3. (i) $2 Z$, the subset of even integers, is a subring of Z.
(ii) Z is a subring of the polynomial ring $\mathrm{Z}[x]$.

Definition 1.4.4. A subset I of a ring R is called an ideal if
(i) l is a subring of R;
(ii) for all a $/$ and $r R$, ar I and $r a l$. If I is an ideal of R we denote this fact by $/ R$.

Examples 1.4.5. (i) Let R be a non-zero ring. Then R has at least two ideals, namely R and $\{0\}$. We often write 0 for $\{0\}$.
(ii) $2 Z$ is an ideal of Z.

Proposition 1.4.6. Let I be a non-empty subset of a ring R. Then I R if and only if for all a, bland r, $a-b I$, ar I, ra I.

Proof. Exercise.

1.5 Cosets and Homomorphisms

Definition 1.5.1. Let $/$ be
an ideal of a ring R and $x R$. Then the set of $I\}$ is elements $x+I:=\{x+i / i \quad$ the coset of x in R with respect to I.

When dealing with cosets, it is important to realise that, in general, a given coset can be represented in more than one way. The next lemma shows for the coset representatives are related.

Lemma 1.5.2. Let R be a ring with an ideal I and $x, y R$. Then $x+I=y+I x$ - yl.

Proof. Exercise.
We denote the set of all cosets of R with respect to / by \underline{R}_{I}. We can give \underline{R}_{I} the structure of a ring as follows: define

$$
(x+l)+(y+l):=(x+y)+I
$$

and

$$
(x+l)(y+I):=x y+1
$$

for $x, y R$. The key point here is that the sum and product on $\frac{R}{l}$ are welldefined; that is, they are independent of the coset representatives chosen. Check this and make sure that you understand why the fact that l is an ideal is crucial to the proof.
Definition 1.5.3. \underline{R}_{f} is called the residue class ring (or quotient ring or factor ring) of R with respect to I.

The zero element of $\underline{R} /$ is $0+I=i+I$ for any $i \quad I$.
If $I \quad S \quad R$ we denote by \underline{S}, the subset $\{s+I / s \quad S\} \quad \underline{R}$.
(i) every ideal of the ring $\frac{R}{K}$ is of the form ${ }^{K}$, where $K R$ and $K I$. Conversely, KR, KI $\underline{K}_{I} \underline{K}_{I}$;
(ii) there is a one-to-one correspondence between the ideals of ${ }^{R}$, and the ideals of R containing l.

Proof. (i) If $K^{\underline{R}}$, then define $K:=\{x R \mid x+I K\}$. Then $K R, K I$ and $\underline{K}_{I}=K$.
(ii) The correspondence is given by $K \leftrightarrow \frac{K}{I}$, where $I \quad K \quad R$.

Definitions 1.5.5. A map of rings $\theta: R \rightarrow S$ is a (ring) homomorphism if $\theta(x+$ $y)=\theta(x)+\theta(y)$ and $\theta(x y)=\theta(x) \theta(y)$ for all $x, y R$. θ defined by $\theta(r)=0$ for all $r R$ is a homomorphism; it is called the zero homomorphism.
φ defined by $\varphi(r)-r$ for all $r R$ is also a homomorphism; it is called the identity homomorphism. Let $I R$. Then $\sigma: R \rightarrow \underline{\underline{R}} /$ defined by $\sigma(x)=x+I$ for $x R$ is a homomorphism of R_{R} onto ${ }^{R}$; it is called the natural (or canonical) homomorphism (of R onto ${ }^{R}$).
Proposition 1.5.6. Let R, S be rings and $\theta: R \rightarrow S$ a homomorphism. Then
(i) $\theta\left(0_{R}\right)=0_{S}$;
(ii) $\theta(-r)=-\theta(r)$ for all $r R$;
(iii) the kernel ker $\theta:=\left\{x \quad R \mid \theta(x)=0_{S}\right\}$ is an ideal of R;
(iv) the image $\theta(R):=\{\theta(r) / r \quad R\}$ is a subring of S.

Proof. Exercise.
Definitions 1.5.7. Let $\theta: R \rightarrow S$ be a ring homomorphism. Then θ is called an isomorphism if θ is a bijection. We say that R and S are isomorphic rings

(The second lecture))

1.6 The Isomorphism Theorems

Theorem 1.6.1. (The First Isomorphism Theorem.) Let $\theta: R \rightarrow S$ be a homomorphism of rings. Then

$$
\theta(R)=\frac{R}{k \operatorname{ker} \theta} .
$$

Proof. Let $I:=\operatorname{ker} \theta$ and define $\sigma: \stackrel{R}{I}^{\sim} \rightarrow \theta(R)$ by $\sigma(x+I):=\theta(x)$ for $x R$. The map σ is well-defined since for $x, y R$,

$$
x+I=y+I \quad x-y \quad I=\operatorname{ker} \theta \quad \theta(x-y)=0 \quad \theta(x)=\theta(y)
$$

σ is easily seen to be the required isomorphism.

Theorem 1.6.2. (The Second Isomorphism Theorem.) Let I be an ideal and L a subring of R. Then

$$
L=L+I
$$

Proof $\sigma_{\sigma}^{L \cap I} I \quad{ }^{R}$. Restrict σ to the
Proof. Let ${ }^{\sigma}$ be the ${ }_{\substack{\text { natural homomorphism } R}}^{L+1}{ }^{\text {a }}$ $\rightarrow T$
ring L. We have $\sigma(L)=T$, a subring of T. The kernel of σ restricted to L is $L \cap I$. Now apply Theorem 1.6.1.
Theorem 1.6.3. (The Third Isomorphism Theorem.) Let I, KR be such that I K. Then

$$
\frac{R / I}{K / I}=\frac{R}{K}
$$

 $\mathrm{Y}(x+I):=x+K$ for all $x R$. The map y is easily seen to be well-defined and a homomorphism onto K^{R}. Further,

$$
\begin{array}{rll}
Y(x+I)=K x+K & =K \\
x & K & \\
x+I & \quad K \\
\text { since } K \quad l
\end{array}
$$

Therefore, $\operatorname{ker} y=K_{l}$. Now apply Theorem 1.6.1.

1.7 Direct Sums

Definitions 1.7.1. Let $\left\{I_{\Lambda}\right\}_{\lambda} \wedge$ be a collection of ideals of a ring R. We define their (internal) sum to be
the set of all finite sums of elements of the I_{Λ} 's. We say that the sum of the

Proof. Exercise.
Definition 1.7.3. Let R_{1}, \ldots, R_{n} be rings. We define their external direct sum S to be the set of all n-tuples $\left\{\left(r_{1}, \ldots, r_{n}\right) / r_{i} R_{i j}\right\}$. On S we define addition and multiplication componentwise, thus making S into a ring. We write $S=R_{1}$
$\cdots R_{n}$.
The set $\left(0, \ldots, 0, R_{j}, 0, \ldots, 0\right)$ is an ideal of S. Clearly S is the inter-nal direct sum of the ideals $\left(0, \ldots, 0, R_{j}, 0, \ldots, 0\right)$ for $j=1, \ldots, n$. But

$$
j \quad=\quad j
$$

which the R_{j} are ideals and S is their internal direct sum. Also, in Defini-tions 1.7.1 we can consider $I_{1} \cdots I_{n}$ to be the external direct sum of the rings I_{j}. Hence, in practice, we do not need to distinguish between external and internal direct sums.

1.8 Division Rings

Definition 1.8.1. Let R be a ring with 1. An element invertible element) if there is a $v R$ such that $u v=$ v is called the inverse of u and is denoted u^{-1}.
Definitions 1.8.2. A ring D with at least two elements is called a division ring (or a skew field) if D has an identity and every non-zero element of D has an inverse in D. A division ring in which the multiplication is commutative is called a field.

Example 1.8.3. (The Quaternions.) Let H be the set of all symbols $a_{0}+a_{1} i+$ $a_{2} j+a_{3} k$ where $a_{i} R$. Two such symbols $a_{0}+a_{1} i+a_{2} j+a_{3} k$ and $b_{0}+b_{1} i+$ $b_{2} j+b_{3} k$ are considered to be equal if and only if $a_{i}=b_{i}$ for $\mathrm{i}=0,1,2,3$.

We make H into a ring as follows: addition is componentwise and two elements of H are multiplied term-by-term using the relations $i^{2}={ }_{j}^{2}=k^{2}=-1$, $i j=-j i=k, j k=-k j=i$ and $k i=-i k=j$. Then H is a non-commutative ring with zero $0:=0+0 \dot{i}+0 j+0 k$ and identity $1:=1+0 \dot{+}+0 j+0 k$.

Let $a_{0}+a_{1} i+a_{2} j+a_{3} k$ be a non-zero element of H , so not all the a_{i} are zero. We have

$$
\left(a_{0}+a_{1} i+a_{2} j+a_{3} k\right)\left(a_{0}-a_{1} i-a_{2} j-a_{3} k\right)=a_{0}^{2}+a^{2}{ }_{1}+a^{2}{ }_{2}+a^{2}{ }_{3}=0
$$

So, letting $n:=a^{2} 0+a^{2}+a^{2} 2+a^{2}$, the element $a_{n}^{0}-a_{n}^{1} i-a_{n}{ }^{2}-a_{n}^{3}$ is the inverse of $a_{0}+a_{1} i+a_{2} j+a_{3} k$.

Thus, H is a division ring. It is called the division ring of real quaternions. Rational quaternions can be defined similarly where the coe cients are from Q.

1.9 Matrix Rings

Definition 1.9.1. Let R be a ring with 1. Define $E_{i j} \quad M_{n}(R)$ to be the matrix with 1 in the (i, j) th position and 0 elsewhere. The $E_{i j}$ are called matrix units.

$$
\text { If (} \left.a_{i j}\right) \quad M_{n}(R) \text { is arbitrary then clearly }\left(a_{i j}\right)=\quad \sum_{i=1}^{n} a_{i j}\left\llcorner_{i j}, a_{i j} \quad R\right. \text {, }
$$ and this expression is unique. We also have

$$
E \quad \text { if } j=k
$$

$$
E_{i j} E_{k}=0^{i} \text { otherwise. }
$$

Theorem 1.9.2. Let R be a ring with 1. Then
(i) I $R M_{n}(I) \quad M_{n}(R)$;
(ii) conversely, every ideal of $M_{n}(R)$ is of the form $M_{n}(I)$ for some $I R$.

Proof. (i) Trivial.
(ii) Let $X M_{n}(R)$.

We need an $I R$ such that $X=M_{n}(I)$. Let
$A=\left(a_{i j}\right)=\quad a_{i, j} t_{i j} \quad X$. Consider fixed $\alpha, \beta, 1 \alpha, \beta \quad n$. We have

$$
\begin{equation*}
a_{\alpha \beta} E_{11} \quad X, \tag{1.9.1}
\end{equation*}
$$

that is, the matrix with $a_{\alpha \beta}$ in the $(1,1)$ position and 0 elsewhere belongs to X.

Now let $/$ be the set of all elements of R that occur in the $(1,1)$ position of some matrix in X. We show that $I R$ and $X=M_{n}(I)$.

Let $a, b l$. Then a, b occur in the $(1,1)$ positions of matrices $A, B X$. So $a-$ $b=(A-B)_{11} l$. Let $a l, r R$. Let a be the $(1,1)$ entry of

A X. Then $A=\left(a_{i j}\right)=$
since $X M_{n}(R)$. So $a_{11}$$r E_{11}^{i, j} a_{i j} E_{i j}$, so arl. \quad Similarly, ral. \quad Thus since $X M_{n}(R)$. So a_{11} l R.

$c E$

Now let $C=\left(c_{i j}\right)=$

$$
i, j \quad i j \quad i j \quad X, c_{i j}
$$

$$
\text { R. By (1.9.1), } c_{i j} \quad l .
$$

 $E_{i 1}\left(d_{i j} E_{11}\right) E_{1 j} \quad X$. So $d_{i j} E_{i j} \quad X$ for each $1 \leq i, j \leq n$. Since X is an ideal, we have $D=\quad i, j d_{i j} E_{i j} \quad X$. So $M_{n}(I) \quad X$, so $M_{n}(I)=X$.

Remark 1.9.3. The above does not hold for right ideals, e.g.

$$
\begin{array}{ll}
Z_{r} & Z_{r} M_{2}(Z) . \\
0 & 0
\end{array}
$$

Definition 1.9.4. A ring R is said to be simple if 0 and R are the only ideals of R.

Theorem 1.9.5. Let R be a ring with 1 . If R is simple then so is the ring $M_{n}(R)$.

Proof. 0 and R are the only ideals of R and so $M_{n}(0)$ and $M_{n}(R)$ are the only ideals of $M_{n}(R)$. So $M_{n}(R)$ is simple as well.

Corollary 1.9.6. Let D be a division ring. Then the ring $M_{n}(D)$ is a simple ring.

Proof. The only ideals of D are 0 and D.

((The Third lecture))

1.10 The Field of Fractions

Definition 1.10.1. A (commutative) ring R is called an integral domain if $a b=$ $0 a=0$ or $b=0$.

Example 1.10.2. Z; $F[x]$, where F is a field.
Beware - non-commutative integral domains exist in advanced ring the-ory.

Definition 1.10 .3 . Let R be a (commutative) integral domain that is a K is subring of a field K. Then of the field of fractions of R if every element $b=0$, K is expressible as $a b^{-1}, \quad a, b R$. We write $K=\operatorname{Frac}(R)$.

We now show that every commutative integral domain has a field of fractions that is in some sense unique.

Example 1.10.4. $Q=\operatorname{Frac}(Z)$. Note that $Z R, C$ as well, but $R, C=\operatorname{Frac}(Z)$.

Let R be a commutative integral domain, $R:=R \mid\{0\}$. Let $S=\{(a, b) / a R, b$ R \}. Define a relation on S by

$$
\left(a_{1}, b_{1}\right) \quad\left(a_{2}, b_{2}\right) \quad a_{1} b_{2}=a_{2} b_{1} .
$$

Lemma 1.10.5. is an equivalence relation on S.
Proof. Let $\left(a_{i}, b_{i}\right) \quad S, i=1,2,3$.
Reflexivity: $\left(a_{1}, b_{1}\right) \quad\left(a_{1}, b_{1}\right)$ since $a_{1} b_{1}=a_{1} b_{1}$.

Symmetry:

$$
\begin{gathered}
\left(a_{1}, b_{1}\right) \quad\left(a_{2}, b_{2}\right) \quad a_{1} b_{2}=a_{2} b_{1} \\
a_{2} b_{1}=a_{1} b_{2} \\
\left(a_{2}, b_{2}\right)\left(a_{1}, b_{1}\right)
\end{gathered}
$$

Transitivity:
$\left(a_{1}, b_{1}\right)$

$$
\begin{gathered}
\left(a_{2}, b_{2}\right)\left(a_{3}, b_{3}\right) a_{1} b_{2}=a_{2} b_{1}, a_{2} b_{3}=a_{3} b_{2} \\
a_{1} b_{2} b_{3}=a_{2} b_{1} b_{3} \\
a_{1} b_{2} b_{3}=b_{1} a_{3} b_{2} \\
\left(a_{1} b_{3}-a_{3} b_{1}\right) b_{2}=0 \\
a_{1} b_{3}=a_{3} b_{1}
\end{gathered}
$$

since $b_{2}=0$ and R is an integral domain

$$
\left(a_{1}, b_{1}\right) \quad\left(a_{3}, b_{3}\right)
$$

Theorem 1.10.6. Every (commutative) integral domain with 1 has a field of fractions.

Proof. Let R be an integral domain. Consider the equivalence relation as above. Denote the equivalence class of (a, b) by ${ }^{\underline{a}} b$. Let K be the set of all such equivalence classes. Define addition and multiplication in K by

$$
\frac{a}{b}+\frac{c}{d}:=\frac{a d+b c}{b d}
$$

and

$$
\frac{a c}{b \bar{d}}:=\frac{a c}{b d}
$$

for ${ }^{\frac{a}{a}}{ }_{b},{ }^{\frac{c}{d}} K$. We first make sure that these definitions are well-defined. Let $\underline{a}_{b}=\frac{a}{b}, \frac{c}{d}=\frac{c}{d}$. Then $(a, b)(a, b)$ and $(c, d)(c, d)$, so $a b=b a, c d=d c$. Hence

$$
\begin{aligned}
(a d+b c) b d & =a d b d+b c b d \\
& =a b d d+b b c d \\
& =(a d+b c) b d
\end{aligned}
$$

So $(a d+b c, b d)(a d+b c, b d)$. So + is well-defined. Similarly for multiplication.

Note that $\underline{0}_{b}=\underline{0}_{d}$ for any $b, d R$, since $0 d=b 0=0$.
It can be checked that K is a commutative ring under these operations. $\underline{0}_{b}$, for any $b R$, is the zero element of K; y^{x} is the additive inverse of ${ }^{x} y$; the commutative, associative and distributive laws can be easily verified.
$\underline{1}_{1}=\underline{b}_{b}$ for any $b R$ is clearly the multiplicative identity in K. The multiplication is clearly commutative. Let ${ }^{\underline{x}} y K$, so $x=0$, so $x y=0$. So ${ }_{x}^{\underline{y}}$ exists and

$$
\frac{x}{y} \frac{y}{x}=\frac{x y}{x y} \quad=\frac{1}{1}=1_{K}
$$

Thus every non-zero element of K has an inverse in K, so K is a field.
There is also a clear injective homomorphic embedding of R in K by $\theta: r \rightarrow$ ${ }_{1}$ for $r R$. Now we truly have K as a field of fractions for

$$
=
$$

Remark 1.10.7. There is no fundamental problem if R is without 1 , since we can still have $1_{K}=\underline{\underline{b}}_{b}$ for any $b R$. Now embed $R \rightarrow K$ by $r \rightarrow \underline{r b}_{b}$.

Lemma 1.10.8. Let R, R be commutative integral domains with fields of
fractions K, K respectively. Then $R=R \quad K=K$.
Proof. Let $\theta: R \rightarrow R$ be an isomorphism. We have $K=\quad{ }^{\prime} \quad{ }^{-1} a b(a, b)$ $R \quad R$. Define a map $\Theta: K \quad K$ by $\Theta(a b \quad):=\theta(a) \theta(b)$.
Θ is well-defined: suppose that $a b^{-1}=c d^{-1},(a, b),(c, d) R \times R$. Then $a d$ $=b c$, so $\theta(a d)=\theta(b c)$, so $\theta(a) \theta(d)=\theta(b) \theta(c)$, so $\theta(a) \theta(b)^{-1}=\theta(c) \theta(d)^{-1}$, so $\Theta\left(a b^{-1}\right)=\Theta\left(c d^{-1}\right)$.
Θ is a homomorphism: let $a b^{-1}, c d^{-1} \quad K$. Then

$$
\begin{aligned}
\Theta\left(a b^{-1}+c d^{-1}\right) & =\Theta\left((a d+b c) b^{-1} d^{-1}\right) \\
& =\theta(a d+b c) \theta(b d)^{-1} \\
& =(\theta(a) \theta(d)+\theta(b) \theta(c)) \theta(b)^{-1} \theta(d)^{-1} \\
& =\theta(a) \theta(b)^{-1}+\theta(c) \theta(d)^{-1} \\
& =\Theta\left(a b^{-1}\right)+\Theta\left(c d^{-1}\right) .
\end{aligned}
$$

Similarly, $\Theta\left(\left(a b^{-1}\right)\left(c d^{-1}\right)\right)=\Theta\left(a b^{-1}\right) \Theta\left(c d^{-1}\right)$.
Θ is surjective: every element of K is expressible as $a^{-} b^{-1} \quad,(-a, b) \quad R \quad R$. But θ is an isomorphism, so $a^{-}=\theta(a)$ for some $a \quad R$, and $b=\theta(b)$ for some $b \quad R$. So $a^{-} b=\theta(a) \theta(b)=\Theta(a b)$.

It is easy to check that Θ is injective.
Corollary 1.10.9. Let R be a commutative integral domain. Then its field of fractions is essentially unique, in that any two such fields of fractions are isomorphic.

Proof. Take $R=R, \theta=\mathrm{id}_{R}$ in the above.

2 Modules

2.1 Modules

Definitions 2.1.1. Let R be a ring. A set M is called a right R-module if
(i) M is an Abelian additive group;
(ii) a law of composition $M \times R \rightarrow M:(m, r) \rightarrow m r$ is defined that satisfies, for all $x, y M$ and r, $s R$,

$$
\begin{aligned}
(x+y) r & =x r+y r, \\
x(r+s) & =x r+x s, \\
x(r s) & =(x r) s .
\end{aligned}
$$

A left R-module is defined analagously. Here the composition law goes $R \times M$ $\rightarrow M$ and is denoted $r m$.
Examples 2.1.2. (i) R and $\{0\}$ are both left and right R-modules.
(ii) Let V be a vector space over a field F. Then V is left (alternatively, a right) F-module. The module axioms are part of the vector space axioms.
(iii) Any Abelian group A can be considered as a left Z-module: for $g A, k Z$, define

$$
k g:=\begin{array}{ccc}
g+\ldots+g & k \text { times } & k>0 \\
(-g)+\cdots+(-g) & k \text { times } & k<0 \\
0 A & & k=0
\end{array}
$$

(iv) Let R be a ring. Then $M_{n}(R)$ becomes a left R-module under the action $r\left(x_{i j}\right):=\left(r x_{i j}\right)$. Clearly, we can also make a similar right R-module action.

For technical reasons, it is easier to work with right modules in the theory of semi-simple Artinian rings.

Let R be a ring. The symbol M_{R} will denote M, a right R-module; similarly, ${ }_{R} M$ will denote M, a left R-module.

Proposition 2.1.3. Let M be a right R-module. Then
(i) $0_{M} r=0_{M}$ for all r;
(ii) $m 0_{R}=0_{M}$ for all $m M$;
(iii) $(-m) r=m(-r)=-(m r)$ for all $m \quad M, r R$.

Proof. (i), (ii). Exercises.
(iii) By (ii),

$$
m r+m(-r)=m(r+(-r))=m 0_{R}=0_{M} .
$$

So $m(-r)=-(m r)$ by the uniqueness of $-(m r)$ in the Abelian group M. Similarly $(-m) r=-(m r)$.

Definition 2.1.4. Let $K M_{R}$. Then K is a right R-submodule (or just submodule) if K is also a right R-module under the law of composition for M .

Proposition 2.1.5. Let $=K M_{R}$. Then K is a submodule of M if and only if for all $x, y K, r R, x-y K$ and $x r K$.

Proof. Exercise.
Definitions 2.1.6. Submodules of the module R_{R} are called right ideals. Submodules of ${ }_{R} R$ are called left ideals.

2.2 Factor Modules and Homomorphisms

Let K be a submodule of M_{R}. Consider the factor group ${ }^{\frac{M}{M}} K_{K} \cdot \underline{M}_{K}$ Elements of
are cosets of the form $m+K$ for $m M$. We can make ${ }^{\frac{M}{M}} K$ - into a right are cosets of the form $m+K$ for $m M$. We can make ${ }_{K}{ }_{K} R$ - into a right module by defining, for $m M, r R$,

$$
[m+K] r:=[m r+K] .
$$

Check that this action is well-defined and that the module axioms are satis-fied.

Definition 2.2.1. ${ }^{M} K$ with this action is called the factor (or quotient) module of M by K.

Example 2.2.2. Let $n \quad \mathrm{Z}, n \geq 2$. Then $n \bar{Z}$ is a natural Z-module.
Definitions 2.2.3. Let M, M be right R-modules. A map $\theta: M \rightarrow M$ is an R homomorphism if
(i) $\theta(x+y)=\theta(x)+\theta(y)$ for all $x, y \quad M$;
(ii) $\theta(x r)=\theta(x) r$ for all $x \quad M, r \quad R$.
(Similarly for left R-modules.) If K is a submodule of M_{R} then the map $\underline{S}_{K}: M \rightarrow{ }^{M}{ }_{K}$. It is called the canonical (or natural) R-homomorphism. $\sigma(m)=[m+K]$ is an R-homomorphism of M onto
Proposition 2.2.4. Let $\theta: M_{R} \rightarrow M_{R}$ be an R-homomorphism. Then
(i) $\theta\left(0_{M}\right)=0_{M}$;
(ii) the kernel ker $\theta:=\left\{\begin{array}{ll}x & M \mid \theta(x)=0_{M}\end{array}\right\}$ is a submodule of M;
(iii) the image $\theta(M):=\{\theta(m) / m \quad M\}$ is a submodule of M;
(iv) θ is injective if and only if $\operatorname{ker} \theta=\left\{0_{M}\right\}$.

Definition 2.2.5. Let $\theta: M_{R} \rightarrow M_{R}$ be an R-homomorphism. If θ is

((Fourth lecture))

2.3 The Isomorphism Theorems

These are similar to those for rings and have similar proofs. Theorem
2.3.1. Let $\theta: M_{R} \rightarrow M_{R}$ be an R-homomorphism. Then

$$
\theta(M)=\frac{M}{\operatorname{ker} \theta} .
$$

Theorem 2.3.2. If K, L are submodules of M_{R} then

$$
\frac{L+K}{K}=\frac{L}{L \cap K}
$$

Theorem $\quad M_{\text {2.3.3. If } K, L} L$ are submodules of $M{ }_{\text {fand }} K \quad L$ then $\frac{L}{K}$ is a submodule of \mathcal{K}_{K} and

$$
\frac{M K=M}{L / K} \quad \bar{L}
$$

When K is a submodule of M_{R} and $L K$ a submodule of M, then K^{L} is a submodule of ${ }^{\underline{M}}{ }_{K}$. Conversely, every submodule of ${ }^{M}{ }_{K}$ is K_{K}^{L} for L a submodule of M containing K. Thus
submodules of $\frac{M}{K} \leftrightarrow\{$ submodules of M containing $K\}$.

2.4 Direct Sums of Modules

Definition 2.4.1. Let M_{1}, \ldots, M_{n} be right R-modules. The set of all n-tuples $\left\{\left(m_{1}, \ldots, m_{n}\right) / m_{i} M_{i}\right\}$ becomes a right R-module if we define

$$
\begin{gathered}
\left(m_{1}, \ldots, m_{n}\right)+\left(m_{1}, \ldots, m_{n}\right):=\left(m_{1}+m_{1}, \ldots, m_{n}+m_{n}\right), \\
\left(m_{1}, \ldots, m_{n}\right) r:=\left(m_{1} r, \ldots, m_{n} r\right),
\end{gathered}
$$

for $m_{i}, m_{i n} \quad M_{i}, r \quad R$. This is the external direct sum of the M_{i}, which we M or $M \cdots M$.
denote $i=1 \quad i \quad 1 \quad n$
Definition 2.4.2. Let $\left\{M_{\lambda}\right\}_{\lambda} \wedge$ be a collection of subsets of M_{R}. We define their (internal) sum by

$$
M_{\lambda}:=\left\{m_{\lambda 1}+\cdots+m_{\lambda k} / m_{\lambda i} \quad M_{\lambda i} \quad \text { for finite subsets }\left\{\lambda_{1}, \ldots, \lambda_{k}\right\} \Lambda\right\} .
$$

Thus easy to see that
$\lambda \wedge M_{\lambda}$ is the set of all finite sums of elements from the M_{M}. It is

Definition 2.4.3.
$\wedge \wedge M_{\lambda}$ has a unique

- M ...

We can show that $\wedge \wedge M_{\lambda}$ is direct if and only if

$$
M_{\mu} \cap \underset{\wedge \wedge\{\mu\}}{ } M_{\lambda}=\{0\}
$$

for all $\mu \quad \Lambda$. If the sum is direct we use the same
notation as above.

As before with rings, there really is no di erence between (finite) internal and external direct sums of modules.

Definition 2.4.4. Let R be a ring with $1 . M_{R}$ is unital if $m 1=m$ for all $m M$. Similarly for $R_{R} M$.

Exercise 2.4.5. Let R be a ring with $1, M$ a right R-module. Show that M has submodules M_{1} and M_{2} such that $M=M_{1} M_{2}$ with M_{1} unital and $m_{2} r=$ 0 for all $m_{2} M_{2}, r R$.

Since modules like M_{2} give us no information about R, whenever R has 1 we assume that all R-modules are unital.

2.5 Products of Subsets

Let K, S be non-empty subsets of M_{R} and R respectively. Define their prod-uct $K S$ to be

$$
K S:={ }_{i=1}^{n} k_{i} s_{i} k_{i} \quad K, s_{i} \quad S, n \quad N
$$

I.e., $K S$ consists of all finite sums of elements of type $k s$ If $=$ for $k \quad K, s \quad S$. $K M, S_{r} R$, then $K S$ is a submodule of M - to make this we need finiteness work.

This definition applies, in particular, with $M=R$. Thus, if $=S \quad R$,

$$
S_{2}:=_{i=1}^{n} \quad s_{i} t_{i} s_{i}, t_{i} \quad S, n \quad \mathrm{~N} .
$$

Extending this inductively, S^{n} consists of all finite sums of elements of type $s_{1} s_{2} \ldots s_{n}, s_{i} S$. Note that $S_{r} R S^{n}{ }_{r} R$.

3 Zorn's Lemma

3.1 Definitions and Zorn's Lemma

Definition 3.1.1. A non-empty set S is said to be partially ordered if there is a binary relation \leq on S, defined for certain pairs of elements, such that for all a, $b, c S$,
(i) $a \leq a$;
(ii) $a \leq b$ and $b \leq c a \leq c$;
(iii) $a \leq b$ and $a \leq b a=b$.

Definition 3.1.2. Let S be a partially ordered set, a non-empty subset T is said to be totally ordered if for all $a, b c T, a \leq b$ or $b \leq a$.
Definitions 3.1.3. Let S be a partially ordered set. An element $x S$ is called maximal if $x \leq y$ and $y S x=y$. Similarly for minimal.
Definition 3.1.4. Let T be a totally ordered subset of a partially ordered set S. We say T has an upper bound (in S) if $c S$ such that $x \leq c$ for all $x T$.

Axiom 3.1.5. (Zorn's Lemma.) If a partially ordered set S has the property that every totally ordered subset of S has an upper bound then S contains a maximal element.

Remark 3.1.6. There may in fact be several maximal elements. Zorn's Lemma guarantees the existence of at least one such element.

3.2 The Well-Ordering Principle

Definition 3.2.1. A non-empty set S is said to be well-ordered if it is totally ordered and every non-empty subset of S has a minimal element.
Axiom 3.2.2. (The Well-Ordering Principle.) Any non-empty set can be wellordered.

3.3 The Axiom of Choice

Axiom 3.3.1. (The Axiom of Choice.) Given a class of non-empty sets there exists a "choice function", i.e. a function that assigns to each of the sets one of its elements.

It can shown that
Axiom of Choice Zorn's Lemma Well-Ordering Principle.

3.4 Applications

Definitions 3.4.1. let M be a right ideal of a ring $R . M$ is said to be a maximal right ideal if $M=R$ and $M M_{r} R M$ maximal $=R$, Similarly for left ideal and maximal two-sided ideal.

Theorem 3.4.2. Let R be a ring with 1 . Let $I=R$ be a (right) ideal of R. Then R contains a maximal (right) ideal M such that $I \quad M$.

Proof. We prove this for $I_{r} R$. Consider $S:=\left\{X_{r} R / X I, X=R\right\}$. $S=$ since I S. Partially order S by inclusion. Let $T:=\left\{X_{\alpha}\right\}_{\alpha} \wedge$ be a totally ordered subset of S.

Consider $X:=\quad \stackrel{-}{{ }_{a} \wedge x_{a} \text { II } x_{1}, x_{2}} \quad x_{\text {then }} x_{1} \quad{ }_{\alpha_{1}},{ }_{2} \wedge_{\alpha_{2}}$ for some α_{1}, α_{2}
Λ. Since T
is totally ordered, we can assume that $X_{\alpha 1} X_{\alpha 2}$. So $x_{1}, x_{2} \quad X_{\alpha 2}$, so $x_{1}-x_{2} \quad X_{\alpha 2} \quad X$. Clearly, also $x \quad X$, and $r R x$
X. Thus $X \quad r$. Also $X=R$ since

$$
\begin{aligned}
& X=R 1 \quad X \\
& 1 \quad X_{\alpha} \text { for some } \alpha \\
& X_{\alpha}=B,
\end{aligned}
$$

$$
S
$$

which is a contradiction. Trivially, $X I$ so X. Also clearly, $X_{\alpha} X$ for all $\alpha \Lambda$.

$S \quad T$

Thus, X is an upper bound in for . So Zorn's Lemma applies and hence S contains a maximal element M. Clearly M is a maximal right ideal of R and contains I.

The proof is similar for left ideals and two-sided ideals.

Remark 3.4.3. This result is false if R is without 1 .

Corollary 3.4.4. A ring with 1 contains a maximal (right) ideal.

Proof. Take $I=\{0\}$ in the above.
Note that $p \mathbf{Z}$ is a maximal ideal of \mathbf{Z} for each prime p.
Theorem 3.4.5. Every vector space has a basis.
Proof. Exercise. Hint: Apply Zorn's Lemma to obtain a maximal set of linearly independent vectors. Note that a set of vectors is defined to be linearly independent if every finite subset is linearly independent.

Exercises 3.4.6. Let R be a commutative ring with 1 . Show that
(i) if R is a finite integral domain then R is a field;
(ii) if $M \quad R$ and $M=R$ then M is maximal if and only if $\quad \frac{R}{M}$ is a field.

((Fifth lecture))

4 Completely Reducible Modules

4.1 Irreducible Modules

Definition 4.1.1. A right R-module M is irreducible if
(i) $M R=0$;
(ii) M has no submodules other than 0 and M.

If R has 1 and M is unital then (i) can be replaced by $M=0$.
Examples 4.1.2. (i) Let p be a prime; then $p^{Z} Z$ is an irreducible Z-module.
(ii) Every ring R with 1 has an irreducible right R-module. By Theorem 3.4.2, R has a maximal right ideal $M ; M^{R}$ is an irreducible right R-module.
(iii) Let V be a vector space over a field F. Then any 1 -dimensional sub-space of V is an irreducible F-module.

The vector space V has the following interesting property: V is a sum of 1dimensional irreducible submodules/subspaces, i.e. has a basis; this sum is direct. Not all modules over arbitrary rings have this property. Consider $Z_{Z} Z Z$ as a Z-module. ${ }^{2} Z Z$ is the only (irreducible) submodule of $4 Z$. So $4 Z$ is not expressed as a sum of irreducible submodules.

4.2 Completely Reducible Modules

Definition 4.2.1. M_{R} is said to be completely reducible if M is expressible as a sum of irreducible submodules.

Examples 4.2.2. (i) Let F be a field. Then every F-module is completely reducible, i.e. every vector space has a basis.
(ii) $\frac{Z}{6} Z$ is completely reducible as a Z-module: $6^{\frac{Z}{Z}}=\frac{2}{6} Z+\frac{3}{6} Z Z$.

Definition 4.2.3. Let $\left\{M_{\lambda}\right\}_{\lambda} \wedge$ be a family of submodules of M_{R}. The family is independent if the sum $\wedge \wedge M_{\lambda}$ is direct. Thus $\left\{M_{\lambda}\right\}_{\lambda} \wedge$ is inde-
pendent if and only if $M_{\mu} \cap \lambda \quad \Lambda \backslash\{\mu\} M_{\lambda} \quad=0$ for all $\mu \quad \Lambda$.

Lemma 4.2.4. Suppose $\left\{M_{\lambda}\right\}_{\lambda} \wedge$ is a family of irreducible submodules of M_{R} and let $M:=\quad \wedge \wedge M_{\lambda}$. Let K be a submodule of M. Then there is an independent subfamily $\left\{M_{\lambda}\right\}_{\lambda} \wedge$ such that $M=K \quad \mu \wedge M_{\mu}$.

Proof. We apply Zorn's Lemma to the independent families of the form $\{K\}$ $\left\{M_{\mu}\right\} \mu X, X \Lambda$.

Partially order the set S of all such families by inclusion. Let T be a to-tally ordered subset of S, C the union of all the families in T. Each member of T has the form $\{K\}\left\{M_{\mu}\right\} \mu X \wedge$, so we have the same form for C.

We need to show that $C S$, i.e. C is an independent family. Let I be any submodule in C and suppose Σ is the sum of all other submodules in C. Let $x l$ $\cap \Sigma$. Then $x=x_{1}+\cdots+x_{n}, x_{j} l_{j}=I, I_{j}$ a submodule in C for $j=1, \ldots, n$.

Now I, I_{1}, \ldots, I_{n} are all in C so each comes from some family in T. But T is totally ordered, so I, I_{1}, \ldots, I_{n} lie in some one family in T. But this family is independent, so $x=x_{1}=\cdots=x_{n}=0$. So $I \cap \Sigma=0$.

So C is independent. Also C has the form $\{K\}\left\{M_{\mu}\right\} \mu x \wedge$, so $C S$. Clearly C is an upper bound for T. So, by Zorn's Lemma, S contains a maximal element, say $\{K\}\left\{M_{\mu}\right\} \mu \wedge \wedge$. ().

Lemma 4.2.5. (Dedekind Modular Law.) Let A, B, C be submodules of M_{R} such that $B A$. Then $A \cap(B+C)=B+A \cap C$.

Proof. Elementary.
Theorem 4.2.6. Let M be a non-zero right R-module. The following are equivalent:
(i) M is completely reducible;
(ii) M is a direct sum of irreducible submodules;
(iii) $m R=0, m M m=0$ and every submodule of M is a direct summand of M.

Proof. (i) (ii). Take $K=0$ in Lemma 4.2.4 above.
(ii) (iii). Suppose that $m R=0$ for some $m \quad M$. Let $M=\quad \wedge \wedge M_{\lambda}$, M_{λ} irreducible. Then $m=m_{1}+\cdots+m_{k}$ for some $m_{i} \quad M_{\lambda i}$.

$$
\begin{gathered}
m r=0, r \quad R \quad m_{1} r+\cdots+m_{k} r=0 \\
m_{i} r=0 \text { for all } i,
\end{gathered}
$$

since the sum of the M_{λ} is direct.
Define $K_{j}:=\left\{x M_{\lambda j} \mid x R=0\right\}$ for $j=1, \ldots, k$. Then K_{j} is a submod-ule of $M_{\lambda j}$. So $K_{j}=0$ or $M_{\lambda j}$ since $M_{\lambda j}$ is irreducible. But $K_{j}=M_{\lambda j}$ since $M_{\lambda j} R=0$ by definition of irreducible submodule. So $K_{j}=0$ for $j=1, \ldots, k$. Thus $m_{j}=0$ for $j=1, \ldots, k$, so $m=0$. The second part follows from Lemma 4.2.4.
(iii) (i). Our first aim is to show that M has an irreducible submodule.

Note that by the Dedekind Modular Law the hypothesis on M is inher-ited by every submodule of M.

Let $0=y M$. Let S be the set of all submodules K of M such that $y K . S=$ since $\{0\} S$. Partially order S by inclusion; let T be a totally ordered subset of S. Let C be the union of all the submodules in T. Then $y C$ and C is a submodule of M. So $C S$ and C is an upper bound for T. By Zorn's Lemma, S has a maximal element B. y B so $B=M$. Hence, by hypothesis, there is a $B=0$ such that $B B=M$. We claim
that B is irreducible.
$B R=0$ by hypothesis. Suppose B contains a proper submodule $B_{1}=0$. Then there is a submodule $B_{2}=0$ such that $B=B_{1} B_{2}$. Now y $B_{1} B_{2}$ by the maximality of B S. So $y\left(B B_{1}\right) \cap\left(B B_{2}\right)=B$, a contradic-tion. So B is irreducible, and thus M has an irreducible. Let K be the sum of all these.

If $K=M$ there is a non-zero submodule L of M such that $M=K L$. But the above applied to L gives an irreducible in L, a contradiction since K contains all the irreducible submodules of M and $K \cap L=0$. Thus $K=M$ and M is completely reducible.

Remark 4.2.7. The first part of condition (iii) holds automatically when R has 1 and M is unital.

4.3 Examples of Completely Reducible Modules

Example 4.3.1. Let D be a division ring and $R:=M_{n}(D)$. Then both ${ }_{R} R$ and R_{R} are completely reducible.

Proof. Let

$$
0 \ldots 0
$$

$$
\begin{aligned}
& I_{i}:=\quad D \quad \ldots D \quad \leftarrow \text { jth row }
\end{aligned}
$$

l_{j} is the set of all matrices in $M_{n}(D)$ where all rows except the j th are zero.
Then $I_{j} \quad r R$ and $I_{j}=E_{j j} R$, where $E_{j j}$ is the (j, j) matrix unit.

We claim that each I_{j} is an irreducible R-module.
Suppose that $0 X I_{j}, X_{r} R$. Then X contains a non-zero matrix $A=\left(a_{\alpha \beta}\right)$. A must have a non-zero entry, and since $A I_{j}, a_{j k}=0$ for some k. Let B be he matrix with $a^{-}{ }_{j k}{ }^{1}$ in the (k, j) th place and 0 elsewhere. Then $A B=E_{j j}$. So $E_{j j} X$, since $A X_{r} R$. So $E_{j j} R X$ since $X_{r} R$. Thus $I_{j}=X$. Since R has $1, l_{j} R=0$, each I_{j} is an irreducible right R-module.

It is clear that $R=I_{1} \cdots I_{n}$, so R_{R} is completely reducible. Similarly for ${ }_{R} R$.

Example 4.3.2. Let $R:=R_{1} \cdots R_{m}$ be a direct sum of rings, where $R_{i}:=M_{n i}$ $\left(D_{i}\right), D_{i}$ division rings, $n_{i} \mathrm{~N}$. Again ${ }_{R} R$ and R_{R} are completely reducible.

Proof. Since each $R_{i} R$, each R_{i} can be viewed as an R_{i} module or an R module. Further, the $R_{\dot{\Gamma}}$ submodules and R-submodules coincide. Note that $R_{i} R_{j}$ $=0$ for $i=j$.

By the previous example, each R_{i} is a sum of irreducible $R_{\dot{r}}$ submodules. So each R_{i} is a sum of irreducible R-submodules. So R is a sum of irreducible R-submodules. Hence $R_{R} R$ and R_{R} are completely reducible.

The significance of this example is that we now aim to show that if R is a ring with 1 and R_{R} is completely reducible then it is necessarily a ring of the type given in the second example above. As a consequence we shall have R_{R} completely reducible ${ }_{R} R$ completely reducible.

((Sixth lecture))

5 Chain Conditions

5.1 Cyclic and Finitely Generated Modules

Definitions 5.1.1. Let $\quad=T \quad M_{R}$. By the submodule of M generated by T we mean the intersection of all submodules of M that contain T. We de-note this by (T). Thus (T) is the "smallest" submodule of M that contains T.

When T consists of a single element a $\quad M$ we have

$$
(a)=\{a r+\lambda a \mid r \quad R, \lambda \quad Z\}
$$

since the RHS
(i) is a submodule of M;
(ii) contains a;
(iii) lies inside any submodule of M containing a. If
R has 1 and M is unital then $(a)=a R$.

If $M=(a)$ for some $a M$ then M is said to be a cyclic module generated by a. A module M is said to be finitely generated if $M=\left(a_{1}\right)+\cdots+\left(a_{k}\right)$ for some finite collection $\left\{a_{1}, \ldots, a_{k}\right\} M$. The a_{i} are generators of M

If R has 1 and M_{R} is unital then M_{R} finitely generated

$$
M=a_{1} R+
$$ $\cdots+a_{k} R$ for some $a_{i} \quad M$.

A cyclic submodule of $R_{R}\left(\right.$ respectively ${ }_{R} R$) is called a principal right (respectively left) ideal of R. Thus $a Z Z$ is principal.

5.2 Chain Conditions

Definition 5.2.1. A set A is called an algebra over a field F if
(i) A is a vector space over F;
(ii) A is a ring with the same addition as in (i);
(iii) the ring and vector space products satisfy

$$
\lambda(a b)=\lambda(a b)=a(\lambda b)
$$

for all $a, b \quad A$ and $\lambda \quad F$.
Example 5.2.2. $M_{n}(F)$ is an n^{2}-dimensional algebra over the field F.
Substructures, homomorphisms etc. for algebras can be defined in the usual ways. Thus
Definition 5.2.3. I $\quad A$ is an (algebra) right ideal if
(i) $I r A$ as rings;
(ii) I is a subspace of the vector space A.

If A has identity 1 then the vector space structure is automatically preserved.
Example 5.2.4. Let $I_{r} A, K A$. Then for $\lambda F, x I, \lambda x=\lambda(x 1)=x(\lambda 1) I$, since I is a right ideal of the ring A and $\lambda 1 A$. Similarly, for
$\lambda \quad F, y K, \lambda y=\lambda(1 y)=(\lambda 1) y K$. In general, if A is an algebra over a field F and λF we cannot immediately say that λA.

However, if A has 1 we can overcome this problem: define

$$
F:=\{\lambda 1 \mid \lambda \quad F\} .
$$

Clearly F is a subalgebra of A and a field isomorphic to F. If we identify $F \quad F$ we can assume $F \quad A$.

Example 5.2.5. For $M_{n}(F)$,

Now let A be an n-dimensional algebra with 1 . Let $l_{1} l_{2} \ldots$ be an ascending chain of right ideals in A. Since each l_{j} is a subspace of A we have

$$
\operatorname{dim} l_{j}=\operatorname{dim} l_{j+1} \quad l_{j}=l_{j+1} .
$$

Hence, the chain can have at most $n+1$ terms. Similarly for descending chains. Many properties of algebras can be deduced from these facts alone. Moreover, there are rings (for example, Z) that are not algebras but that still satisfy something like the above property.

Definitions 5.2.6. (i) A module M_{R} has the ascending chain condition on submodules if every ascending chain of submodules $M_{1} \quad M_{2}$. . . has equal terms after a finite number of steps. Similarly for the descending chain condition.
(ii) M_{R} has the maximum condition if every non-empty set S of submodules of M contains a maximal element with respect to inclusion. Similarly for the minimum condition.

Remark 5.2.7. The ascending chain condition or descending chain condi-tion alone does not imply that all chains stop after a fixed n terms. For example, Z has the ascending chain condition (it's a principal ideal domain) but ascending chains of arbitrary length can be constructed:

$$
2^{k} Z \quad 2^{k-1} Z \cdots \quad 2 Z \quad Z
$$

However, if we have both the ascending chain condition and descending chain condition then such a "global" n does exist. This follows from the theory of composition series.

Theorem 5.2.8. Let M_{R} be a right R-module. The following are equivalent
(i) M has the maximum condition on submodules;
(ii) M has the ascending chain condition on submodules;
(iii) every submodule of M is finitely generated.

Proof. (i) (iii). Suppose that K is a submodule of M that is not finitely generated. Choose $x_{1} K$ and let $K_{1}:=\left(x_{1}\right)$. Then $K=K_{1}$. So $x_{2} K$ with $x_{2} K_{1}$. Let $K_{2}:=\left(x_{1}\right)+\left(x_{2}\right)$. Then $K_{2}=K$. So $x_{3} K$ such that $x_{3} K_{2} . K_{3}:=\left(x_{1}\right)+\left(x_{2}\right)+$ $\left(x_{3}\right)$. Define K_{i} inductively like this for positive integers i. Let $S:=\left\{K_{i} / i \mathrm{~N}\right\} ; S$ has no maximal element. So, by the contrapositive, if M has the maximum condition on submodules then every submodule is finitely generated.
(iii) (ii). Let $K_{1} \quad K_{2} \quad \ldots$ be an ascending chain of submodules of M. Let $K:={ }_{i=1} K_{i}$, then K is a submodule of M and K is finitely generated, generated by $x_{1}, \ldots, x_{n} K$, say. Then $t \mathrm{~N}$ such that $x_{1}, \ldots, x_{n} K_{t}$. So $K=\left(x_{1}\right)$ $+\cdots+\left(x_{n}\right) K_{t}$. Hence $K_{t}=K_{t+j}$ for all $j \geq 0$.
(ii) (i). Let S be a non-empty collection of submodules of M, Choose $K_{1} S$. If K_{1} is not maximal in $S, K_{2} S$ such that $K_{1} K_{2}$. If K_{2} is not maximal $K_{3} S$ such that $K_{2} K_{3}$. So, by the Axiom of Choice, we obtain an ascending chain K_{1} $K_{2} K_{3} \ldots$ of submodules of M.

Theorem 5.2.9. Let M_{R} be a right R-module. The following are equivalent
(i) M has the minimum condition on submodules;
(ii) M has the descending chain condition on submodules;

Proof. Similar to the above.
Examples 5.2.10. (i) A finite ring has both the ascending chain condi-tion and descending chain condition on right and left ideals.
(ii) A finite-dimensional algebra with 1 has both the ascending chain condition and descending chain condition on right and left ideals.
(iii) A commutative principal ideal domain has the ascending chain condition on ideals. $Z, F[x]$ and J are commutative principal ideal domains. So, in particular, these have the ascending chain condition on ideals; they do not have the descending chain condition on ideals.

Theorem 5.2.11. Let K be a submodule of a module M_{R}. Then M has the ascending chain condition (respectively the descending chain condition) on submodules if and only if ${ }^{M} K$ has the ascending chain condition (respectively the descending chain condition) on submodules.

Proof. (). Easy.
(). Let $M_{1} M_{2} \ldots$ be an ascending chain of submodules of M. Consider the chains

$$
\begin{array}{lll}
M_{1} \cap K & M_{2} \cap K & \ldots, \\
M_{1}+K & M_{2}+K & \ldots .
\end{array}
$$

The first chain consists of submodules of K, so $j \mathrm{~N}$ such that $M_{j} \cap K=\cap K$ for all $i \geq 0$. The second chain consists of submodules of M ${ }^{i v{ }_{j+i}}$
containing K. These are in one-to-one correspondence with submodules of
\underline{M}_{K}. So $k N$ such that $M_{k}+K=M_{k+i}+K$ for all $i \geq 0$. Let $n=\max \{j, k\}$. Now

$$
\begin{aligned}
M_{n+i} & =M_{n+i} \cap\left(M_{n+i} \cap K\right) \\
& =M_{n+i} \cap\left(M_{n}+K\right) \\
& =M_{n}+\left(M_{n+i} \cap K\right) \text { by the Dedekind Modular Law } \\
& =M_{n}+\left(M_{n} \cap K\right) \\
& =M_{n}
\end{aligned}
$$

So M has the ascending chain condition on submodules. Similarly for the descending chain condition.

Corollary 5.2.12. Let M_{1}, \ldots, M_{n} be submodules of M_{R}. If each M_{i} has the ascending chain condition (respectively, the descending chain condition) on submodules then so does $K:=M_{1}+\cdots+M_{n}$.

Proof. Let $K_{1}:=M_{1}+M_{2}$. Then by the Second Isomorphism Theorem,

Now $\frac{M_{2}}{M_{1} \cap M_{2}} \quad$ has the ascending chain condition on submodules, since it is a factor of M_{2}. So $\frac{k_{1}}{M_{1}}$ has the ascending chain condition on submodules. Thus M_{1} and $\frac{K_{1}}{M_{1}}$ have the ascending chain condition on submodules. So, by Theorem 5.2.11, K_{1} has the ascending chain condition on submodules. Extend to K by induction.

Analagously for the descending chain condition.
Corollary 5.2.13. Let R have 1 and the ascending chain condition (respectively, the descending chain condition) on ideals. Let M_{R} be a (unital) finitely generated R-module. Then M has the ascending chain condition (respectively, the descending chain condition) on submodules.

Proof. Since M_{R} is unital and finitely generated, there exist m_{1}, \ldots, m_{k} M such that $M=m_{1} R+\cdots+m_{k} R$. By Corollary 5.2.12, it is enough to show that each $m_{i} R$ has the ascending chain condition on submodules. Let $\theta_{i}: R_{R} \rightarrow$ $m_{i} R: r \rightarrow m_{i}$. Then θ_{i} is an R-homomorphism onto $m_{i} R$. So each $m_{i} R$ is a factor module of R_{R}. Since R_{R} has the ascending chain con-dition on submodules it follows that $m_{i} R$ has the ascending chain condition
on submodules.

Similarly for the descending chain condition.
Remark 5.2.14. For the ascending chain condition the above result is still true even if R does not have 1 ; for the descending chain condition the result is false.

Corollary 5.2.15. If R has the ascending chain condition (respectively, the descending chain condition) on right ideals then so does the ring $M_{n}(R)$.

Corollary 5.2.12, $M_{n}(R)$ has the ascending chain condition on R-submodules. Clearly, however, a right ideal of $M_{n}(R)$ is also an R-submodule of $M_{n}(R)$.
So $M_{n}(R)$ has the ascending chain condition on right ideals.
Similarly for the descending chain condition.
Example 5.2.16. Let D be a division ring. Then $M_{n}(D)$ has both the ascending chain condition and descending chain condition on right ideals, since 0 and D are the only (right) ideals of D.

Exercise 5.2.17. Let S be a subring of $M_{n}(Z)$ such that S contains the identity of $M_{n}(Z)$. Show that S is a ring with the ascending chain condition on right ideals.

Definitions 5.2.18. A module with the ascending chain condition on submodules is called a Noetherian ${ }^{1}$ module. A module with the descending chain condition on submodules is called an Artinian ${ }^{2}$ module. A ring with the ascending chain condition on right ideals is called a right Noetherian ring. A ring with the descending chain condition on right ideals is called a right Artinian ring. Similarly for left Noetherian ring and left Artinian ring.

Theorem 5.2.19. (The Hilbert Basis Theorem.) If R is a right Noetherian ring then so is the polynomial ring $R[x]$.

1Amalie (Emmy) Noether (1883-1935)
2Emil Artin (1898-1962)

((Seventh lecture))

6 Semi-Simple Artinian Rings

6.1 Nil and Nilpotent Subsets

Definitions 6.1.1. Let R be a ring.
(i) $x \quad R$ is nilpotent if $x^{n}=0$ for some $n \geq 1$.
(ii) A subset $S R$ is a nil subset if every element of S is nilpotent. Thus S nil, $x S n(x) \mathrm{N}$ such that $x^{n(x)}=0$.
(iii) S is a nilpotent subset if $S^{n}=0$ for some $n \geq 1$. Recall that

$$
S_{n}^{n}=\quad s_{1} s_{2} \ldots s_{n} s_{i} \quad S .
$$

$$
\begin{array}{lll}
\text { finite } & 0 & 1
\end{array}
$$

Examples 6.1.2. \quad (i) In $M_{2}(Z), 0 \quad 0$ is a nilpotent element.
(ii) $\ln \frac{Z}{4 Z}, \frac{2 Z}{4 Z}$ is a nilpotent ideal.

Lemma 6.1.3. (i) If I, K are nilpotent right ideals than so are I + K and RI.
(ii) Every nilpotent right ideal is contained in a nilpotent ideal.

Proof. (i) There are positive integers r, s such that $I^{r}=K^{s}=0$. Con-sider ($I+$ $K)^{r+s-1}=(I+K)(I+K) \ldots(I+K)$. This, when expanded, has 2^{r+s-1} terms, each of which has the form $T=A_{1} A_{2} \ldots A_{r+s-1}$, where each $A_{i}=I$ or K. So in a typical term either l occurs $\geq r$ times or K occurs $\geq s$ times.

Suppose I occurs $\geq r$ times. Then $T K^{i} I^{k}$ where $i \geq 0, k \geq r$, with the convention $K^{0} I=I$. We have used the fact that $I K I$. So $T=0$. So every term in the expansion of $(I+K)^{r+S-1}$ vanishes. So $I+K$ is nilpotent.

$$
(R I)^{r}=(R I)(R I) \ldots(R I)=R(I R) \ldots(I R) I \quad R I^{r}=0 .
$$

(ii) Let $I_{r} R$. If I is nilpotent then so is $I+R I$ by (i). Clearly $I+R I R$ and $I I$ + RI. \qquad

Definition 6.1.4. The sum of all nilpotent ideals of R is calles the nilpotent radical of R, usually denoted $N(R)$.

It follows from Lemma 6.1.3 that

$$
N(R)=\quad \text { nilpotent right ideals }=\quad \text { nilpotent left ideals } .
$$

Clearly $N(R)$ is a nil ideal. It is not, in general, nilpotent.
Exercise 6.1.5. Let R be a commutative ring. Show that $N(R)=$ the set of all nilpotent elements of R. (Hint: use the Binomial Theorem.) Give an example to show that this is false in general for non-commutative rings.

Example 6.1.6. (A Zassenhaus Algebra.) Let F be a field, I the interval $(0,1), R$ the vector space over F with basis $\left\{x_{i} / i l\right\}$. Define multiplication on R by extending the following product on basis elements:

$$
x_{i} x_{j}:=\quad \begin{array}{ll}
+j & \text { if } i+j<1, \\
i_{0} & \text { if } i+j \geq 1 .
\end{array}
$$

Thus every element of R can be written uniquely in the form
a. $\quad F$, with $a=0$ for all but a finite number of indices i. Check th
nil but not nilpotent and that $N(R)=R$.

6.2 Idempotent Elements

Definition 6.2.1. An element $e \quad R$ is idempotent if $e=e^{2}$.
Examples 6.2.2. (i) In any ring, 0 is an idempotent element. If 1 exists, it is idempotent.

$$
\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}
$$

(ii) In $M_{2}(Z), \quad 0 \quad 0 \quad$ and $0 \quad 1$ are idempotents.

Lemma 6.2.3. Let e be an idempotent in a ring R. Then $R=e R K$, where K $=\{x-e x \mid x R\}_{r} R$.

Proof. Clearly $K_{r} R$. Now $x R x=e x+(x-e x) e R+K$. If $z e R \cap K$ then $z=e a=e b-b$ for some $a, b R$. Then

$$
e^{2} a=e^{2} b-e b=e b-e b=0
$$

and

$$
e^{2} a=e a=0
$$

So $z=0$. So $R=e R \quad K$

Corollary 6.2.4. (Peirce Decomposition.) Let R be a ring with 1 and e R an idempotent. Then $R=e R(1-e) R$

Proof. $K=(1-e) R$ in the above if R has 1 .
Remark 6.2.5. e is idempotent $\quad 1-e$ is idempotent.
Exercise 6.2.6. Take an idempotent in $M_{2}(Z)$ and write down a Peirce decomposition.

Proposition 6.2.7. Let R be a ring with 1. Suppose $R=$ sum of right ideals. Then we can write $1=e_{1}+\ldots+e_{n}$ with e ${ }_{j}{ }_{j}^{j_{i=1}^{\prime}, j \text { a }}$ having the following properties:
(i) each e_{j} is an idempotent;
(ii) $e_{i} e_{j}=0$ for all $i=j$;
(iii) $l_{j}=e_{j} R$ for $j=1, \ldots, n$;
(iv) $R=R e_{1} \quad \cdots R e_{n}$, a direct sum of left ideals.

Proof. (i) and (ii). For each j we have

$$
e_{j}=1 e_{j}=e_{1} e_{j}+\cdots+e_{j-1} e_{j}+e_{j}^{2}+e_{j+1} e_{j}+\cdots+e_{n} e_{j}
$$

So

$$
e_{j}-e^{2}=e_{1} e_{j}+\cdots+e_{j-1} e_{j}+e_{j+1} e_{j}+\cdots+e_{n} e_{j} \quad l_{j} \cap{ }_{s=j} I_{s}=0
$$

by directness. So $e_{j}=e_{j}^{2}$ and $e_{s=j} e_{j}=0$. Since the sum of the l_{j} is direct, we have $e_{i} e_{j}=0$ for all $i=j$.
(iii), (iv). Exercises. \square Example 6.2.8. Take $R=M_{n}(Z), e_{j}=E_{j j}$ matrix unit. Then $1=e_{1}+$ $\cdots+e_{n}$ and $R=e_{1} R \cdots e_{n} R=R e_{1} \cdots R e_{n}$.
Definition 6.2.9. Let R be a ring. The centre of R is

$$
C(R):=\left\{\begin{array}{lll}
x & R / r & R, x r=r x
\end{array}\right\} .
$$

$C(R)$ is a subring of R but not, in general, an ideal.
 F as rings.

Proposition 6.2.11. Let R be a ring with 1 , with $R=A_{1} \cdots A_{k}$ a direct sum of ideals. Let $1=e_{1}+\cdots+e_{k}, e_{j} A_{j}$. Then
(i) $e_{j} C(R)$ for $j=1, \ldots, k$;
(ii) $e^{2}{ }_{j}=e_{j}$ for all j; $e_{i} e_{j}=0$ for $i=j$;
(iii) $A_{j}=e_{j} R=R e_{j}$;
(iv) e_{j} is the identity of the ring A_{j}.

Proof. (ii) follows from Proposition 6.2.7.
(iii) $A_{j}=e_{j} R=R e_{j}$ as in Proposition 6.2 .7 since $A_{j} \quad r \quad R$ and $A_{j} R$.
(iv) Let $x A_{j}$. Then $x=e_{j} t_{1}=t_{2} e_{j}$ for some t_{1}, t_{2}. Then $e_{j} x=e^{2}{ }_{j} t_{1}=e_{j} t_{1}$ $=x$ and $x e_{j}=t_{2} e_{j}^{2}=t_{2} e_{j}=x$. Thus $x e_{j}=e_{j} x=x$ for all $x A_{j}$. Since $e_{j} A_{j}$, it follows that e_{j} is the identity of the ring A_{j}.
(i) Let $x R$. Then $e_{j} x=e^{2}{ }_{j} x=e_{j}\left(e_{j} x\right)=\left(e_{j} x\right) e_{j}$ since $e_{j} x A_{j}$ and e_{j} is the identity of A_{j}. Also $x e_{j}=x e^{2}\left(x e_{j}\right) e_{j}=e_{j}\left(x e_{j}\right)$ similarly. By associativity, $e_{j} x=x e_{j}$ for all $x \quad R$, so $e_{j} \quad C(R)$.

Definition 6.2.12. Such an $e_{j} \quad C(R)$ is called a central idempotent.

6.3 Annihilators and Minimal Right Ideals

Definitions 6.3.1. Let $=S M_{R}$. We define the right annihilator of S to be $r(S)$ $:=\{r R / S r=0\}$. Clearly, $r(S)_{r} R$. When S is a submodule of $M, r(S) R$. (S), the left annihilator of S, is defined analagously when M is a left R-module.

In most applications, $S R$ itself, and so we can consider both $r(S)$ and (S).

Definition 6.3.2. A non-zero right ideal M of a ring R is a minimal right ideal if whenever $M M, M_{r} R$, it follows that $M=0$.

If R has 1 then the minimal right ideals of R are precisely the irreducible submodules of R_{R}.

Lemma 6.3.3. Let M be a minimal right ideal of a ring R. Then either $M^{2}=$ 0 or $M=e R$ from some $e=e^{2} M$.

Proof. Suppose $M^{2}=0$. Then a M such that $a M=0 . a M_{r} R$ and $a M M$ since $a M$. So $a M=M$. Thus $e M$ such that $a=a e . a=0 e=0$. Also $a=a e=$ $a e^{2}$. So $a\left(e-e^{2}\right)=0$.

Now consider $M \cap r(a) . M \cap r(a)_{r} R$ and $M \cap r(a) M$. So $M \cap r(a)=0$ or M. Suppose for a contradiction that $M \cap r(a)=M$. So $M r(a)$, so $a M=0$. Thus M $\cap r(a)=0$.

But $e-e^{2} \quad M \cap r(a)=0$, so $e=e^{2}$. Now $0=e^{2} \quad e R$. So $e R=0$. But $e R r R$ and $e R \quad M$ since $e M$. Thus $e R=M$ as required.

$\underset{0}{\operatorname{Example}}$ 6.3.4. Take $R:=\quad$| Q Q |
| :---: |
| 0 |$. \quad$| 0 Q |
| :---: |
| 0 |\quad Consider $M_{1}:=00 \quad, M_{2}:=$

$0 \quad Q \cdot \underset{0}{\operatorname{Both}} M_{1}, M_{2}$ are minimal right ideals. Now $M_{1}^{2}=0, M_{2}=e R$
where $e:=0 \quad 1$
Definition 6.3.5. A ring with no non-zero nilpotent ideal and the descending chain condition on right ideals is called a semi-simple Artinian ring.

Note that by Lemma 6.1.3(ii) and symmetry such a ring has no non-zero nilpotent right or left ideals.

Remarks 6.3.6. (i) The left-right symmetry of semi-simple Artinian rings will be established later.
(ii) We will justify the term "Artinian" by showing the existence of an identity.
(iii) We shall not define "semi-simple" on its own, but in this context it can be thought of as meaning a direct sum of simple rings.

Proposition 6.3.7. Let R be a semi-simple Artinian ring and $I_{r} R$. Then $I=$ $e R$ for some $e=e^{2}$.

Proof. By the minimum condition every non-zero right ideal of R con-tains a minimal right ideal. Hence, by Lemma 6.3.3, since R contains non non-zero nilpotent right ideal, every non-zero right ideal of R contains a non-zero idempotent.

Now if $I=0$ then the result is trivial with $e=0$, so assume that $I=0$. Let E be the set of all non-zero idempotents in I. By the above, $E=$. We claim that there is an idempotent $e E$ such that $I \cap r(e)=0$.

Suppose not. Let $I \cap r(z)$ be minimal in the set $S:=\{I \cap r(x) / x E\}$. By assumption, $I \cap r(z)=0$. So $I \cap r(z)$ contains a non-zero idempotent z. So $(z)^{2}$ $=z, z z=0$. Consider $z_{1}=z+z-z z . z_{1} I$ since $z, z l$. We have

$$
z_{1} z=(z+z-z z) z=z+z z-z z=z .
$$

So, in particular, $z_{1}=0$.

$$
z_{1} z=(z+z-z z) z=(z)^{2}=z
$$

so

$$
z_{1}^{2}=z_{1}(z=z-z z)=z+z-z z=z_{1} .
$$

Thus $z_{1} \quad E$. We shall now show that

$$
\begin{equation*}
r\left(z_{1}\right) \cap I \quad r(z) \cap I \tag{6.3.1}
\end{equation*}
$$

$t r\left(z_{1}\right) \cap I z_{1} t=0 z z_{1} t=0 z t=0$, since $z z_{1}=z t \quad r(z) \cap I$.
Also, $z r\left(z_{1}\right) \cap /$ but $z r(z) \cap /$ since $z_{1} z=z=0$. This establishes (6.3.1). But (6.3.1) contradicts the minimality of $r(z) \cap I$. This proves our claim. So there is an $e E$ such that $I \cap r(e)=0$.

Now define $K:=\{x-e x|x|\}$. Then $K_{r} R, K I$, and $e K=0$. So $K I \cap r(e)=0$. Thus $x=e x$ for all $x I$. Hence $I e R$. But clearly $e R I$ since $e I$ and $I_{r} R$. So $I=$ $e R$ as required.

Corollary 6.3.8. Let R be a semi-simple Artinian ring and $A R$. Then there is an $e=e^{2} A$ such that $A=e R=R e$.

Proof. By Proposition 6.3.7, $A=e R$ for some $e=e^{2} A$, since $A_{r} R$. Let K $:=\{x-x e / x A\}$. Then $K R$, since $A R$. Also, $K e=0$, so
$K e R=0$ and $K^{2}=0$ since $K A=e R$. So $K=0$ as R has no non-zero nilpotent left ideal. Thus $x=x e$ for all $x A$. So $A \operatorname{Re}$. But $R e A$ since $e A$ and $A R$. Thus $A=e R=R e$.

Corollary 6.3.9. A semi-simple Artinian ring has identity.
Proof. Take $A=R$ in Corollary 6.3.8.
Theorem 6.3.10. The following are equivalent for any ring R :
(i) R is semi-simple Artinian ring;
(ii) R has 1 and R_{R} is completely reducible.

Proof. (i) (ii). By Corollary 6.3.9 R has 1 . Let $I_{r} R$. By Proposition 6.3.7 $I=$ $e R$ for some $e=e^{2} I$. By Peirce Decomposition, Corollary 6.2.4, I is a direct summand of R. So every submodule of R_{R} is a direct summand of R_{R}. So by Theorem 4.2.6, R_{R} is completely reducible.
Then $1=\quad+\cdots+{ }_{n}$ for $\quad i \quad{ }_{i}$
(ii) (i). We have $R=\wedge \wedge I_{\lambda}$, I_{λ} an irreducible submodule of R_{R}. $x \quad x \quad$ some $x \quad l$. Now for any $x \quad R$,

$$
x=1 x=x_{1} x+\cdots+x_{n} x \quad I_{\lambda_{1}} \quad \cdots \quad I_{\lambda n},
$$

so $R=I_{\lambda 1} \quad \cdots I_{\lambda n} \quad$ and $\mid \Lambda /<\infty$. So by Corollary 5.2.12, R_{R} has the descending chain condition on R-submodules, i.e. R has the descending chain condition on right ideals. Now let T be a nilpotent right ideal of R. Then
$R=T \quad K$ for some $K \quad R \quad$ Theorem 4.2.6. We have $1=t+k$ for some $t \quad T_{k} \quad K \quad t \underset{\text { mipeoensot }}{ } \quad$ by $n=0$ for some $n \geq 1$. Thus $\left(1_{~} \quad k\right)^{n}=0$. So $1--n k+\cdots \pm k^{\text {is } n}=0,1=n k-\cdots k^{n} \quad \geq$. So $K=R$, so $T=0$ as required.

Remark 6.3.11. Note that we have shown $R=I_{1} \cdots I_{n}$, a finite direct sum of minimal right ideals, when R is semi-simple Artinian.

Corollary 6.3.12. A direct sum of matrix rings over division rings is a semisimple Artinian ring.

Proof. It was shown in Theorem 4.2.6 that for such a ring R_{R} is com-pletely reducible.

((Eighth lecture))

6.4 Ideals in Semi-Simple Artinian Rings

Proposition 6.4.1. Let R be a semi-simple Artinian ring:
(i) Every ideal of R is generated by an idempotent lying in the centre of R.
(ii) There is a 1-1 correspondence between ideals of R and idempotents in $C(R)$.

Proof. (i) See proofs of of Corollary 6.3.8 and Proposition 6.2.11.
(ii) For each $e C(R)$ define $f(e):=e R R$. Check that f is the required 1-1 correspondence.

Definition 6.4.2. $I \quad R$ is a minimal ideal if $I=0, I \quad I, I \quad R \quad I=0$.
Theorem 6.4.3. Let R be a semi-simple Artinian ring. Then R has a finite number of minimal ideals, their sum is direct, and is R.

Proof. Note that at least one minimal ideal exists since R has the descending chain condition on right ideals . Let S_{2} be a minimal ideal of R. Then by Proposition 6.4.1, $S_{1}=e_{1} R=R e_{1}, e_{1}=e^{2}{ }_{1} C(R)$. Note that $\left(1-e_{1}\right)^{2}=1$ $-e_{1}, 1-e_{1} C(R)$, and we have a direct sum of ideals $\mathrm{R}=S_{1} \quad T_{1}, T_{1}:=\left(1-e_{1}\right) R=R\left(1-e_{1}\right)$. (Note that T_{1} is two-sided.)

If $T_{1}=0, T_{1}$ contains a minimal $S_{2} R$. As above, $R=S_{2} K, K R$. Now

$$
T_{1}=T_{1} \cap R=T_{1} \cap\left(S_{2} \quad K\right)=S_{2} \quad\left(T_{1} \cap K\right)=S_{2} T_{2}
$$

by the Dedekind Modular Law. We have $R=S_{1} T_{1}=S_{1} S_{2} T_{2}$. If $T_{2}=0$ proceed inductively.

We have $T_{1} T_{2} T_{3} \ldots$, so by descending chain condition this pro-cess must terminate. It can only stop when some $T_{m}=0$. At this stage we have $R=S_{1}$. - S_{m}, a finite direct sum of minimal ideals.

Now let S be a minimal ideal of R. We have $S R=0$ since R has 1 . So $S S_{j}=$ 0 for some $j, 1 \leq j \leq m$. Now $S S_{j} R$ and $S S_{j} S, S S_{j} S_{j}$. Since both S and S_{j} are minimal, we have $S=S S_{j}=S_{j}$.

6.5 Simple Artinian Rings

Let R be a simple ring. Consider $R^{2} . R^{2} R$ so $R^{2}=0$ or R. Suppose $R^{2}=0$. Then $x y=0$ for all $x, y R$. So any additive subgroup of R is an ideal of R. Thus R has no additive subgroups other than 0 and R. Thus the additive group of R must be cyclic of prime order p; the ring structure of
R is completely determined: $R=\{0,1, \ldots, p-1\}$ with addition modulo p, multiplication identically 0 .

Thus, when studying simple rings, we assume that $R^{2}=R$. Therefore, in this case, $N(R)=0$.

Note that a simple Artinian ring is semi-simple Artinian.
Lemma 6.5.1. Let R be a semi-simple Artinian ring and $0=I \quad R$. Then
I itself is a semi-simple Artinian ring. In particular, when I is a minimal ideal, I is a simple Artinian ring.

Proof. We claim that $K \quad r l \quad K \quad r R$.
We have $I=e R=R e$ where $e=e^{2} \quad I$ by Corollary 6.3.8. Now $k \quad K$, $r E k r=(k e) r$ since e is the identity of I and $k I$. So $k r=k(e r) K$ since er $e R$ $=I$. This proves the claim.

It follows that $/$ considered as a ring has the descending chain condition on right ideals and no non-zero nilpotent ideal.

If I is minimal then by the above it must be a simple Artinian ring. (Note that $r^{2}=I$ since $I^{2}=0$ - i.e., I is a simple ring of the type that we are considering.

Theorem 6.5.2. Let R be a semi-simple Artinian ring. Then R is a direct sum of simple Artinian rings and this representation is unique.

Proof. By Theorem 6.4.3 and Lemma 6.5.1 above we have $R=S_{1}$
$\cdots S_{m}$, where the S_{i} are minimal ideals of R, hence simple Artinian rings. The uniqueness follows from the fact that the S_{i} are precisely the minimal ideals of R.

6.6 Modules over Semi-Simple Artinian Rings

Proposition 6.6.1. Let R be a semi-simple Artinian ring. Let M_{R} be unital and irreducible. Then $M=I$ as R-modules, where $I \quad R$.

Proof. $M={ }^{K}{ }^{K}, K$ a maximal right ideal of R, by Exercise Sheet 3. By Corollary 6.2.4 and Proposition 6.3.7 (or by Theorem 6.3.10 and Theorem
$k \quad K, x \quad I$ unique; consider $r \quad x)$. So $M \stackrel{R}{=}=I$ as R-modules.
Theorem 6.6.2. Every non-zero unital module over a semi-simple Artinian ring is completely reducible.

Proof. Let R be semi-simple Artinian. We have $R=I_{1} \cdots I_{n}$, a direct sum of minimal right ideals of R (see Remark 6.3.11). Let $0=M_{R}$ be unital and let $m M$. Then $m=m 1 m l_{1}+\cdots+m l_{n}$. We claim that each $m l_{j}$ is either irreducible or 0 .

Consider the map $\theta: l_{j} \rightarrow m l_{j}$ given by $\theta(x)=m x$ for $x l_{j}$. Clearly θ is an $R-$ homomorphism onto $m l_{j}$. $\operatorname{ker} \theta$ is a submodule of $\left(l_{j}\right)_{R}$. So $\operatorname{ker} \theta=0$ or l_{j}. This implies that either θ is an isomorphism or the zero map. This proves the claim.

Thus, m irreducible submodules. So $M=\quad$ irreducible submod-
ules. So is

6.7 The Artin-Wedderburn Theorem

Definitions 6.7.1. Let M be a right R-module. An R-homomorphism θ :
M $\rightarrow M$ is called an R-endomorphism. The set of all R-endomorphisms of M is denoted by $E_{R}(M)$ or simply $E(M)$. On $E_{R}(M)$ we define a sum and product as follows. Let $\theta, \varphi E_{R}(M)$. Define $\theta+\varphi$ and $\theta \varphi$ by

$$
\begin{aligned}
(\theta+\varphi)(m) & :=\theta(m)+\varphi(m) \\
(\theta \varphi)(m) & :=\theta(\varphi(m))
\end{aligned}
$$

for $m M$. Check that $(\theta+\varphi),(\theta \varphi) E_{R}(M)$. It is routine to check that $E_{R}(M)$ is a ring under these operations.

Exercise 6.7.2. Show that if $M^{\prime}=M^{2}$ as R-modules then $\quad\left(M^{\prime}\right)=$ $E_{R}\left(M_{2}\right)$ as rings.

More generally,
Definitions 6.7.3. For right R-modules X and Y denote the set of all R homomorphisms $X \rightarrow Y$ by $\operatorname{Hom}_{R}(X, Y)$. For $\alpha, \beta \operatorname{Hom}_{R}(X, Y)$ define $\alpha+\beta$ as above. $\operatorname{Hom}_{R}(X, Y)$ is easily seen to be an Abelian group.

Definitions 6.7.4. Let $V=V_{1} \cdots V_{n}, W=W_{1} \cdots W_{m}$ be right R-modules. Let $\varepsilon_{j}: V_{j} \rightarrow V$ be the injection $\operatorname{map} \varepsilon_{j}\left(V_{j}\right):=\left(0, \ldots, 0, v_{j}, 0, \ldots, 0\right)$ for $v_{j} V_{j}$ (the v_{j} is in the j th place).

Let $\pi_{i}: W \rightarrow W_{i}$ be the projection map, $\pi_{i}\left(w_{1}, \ldots, w_{m}\right)=w_{i}, w_{k} \quad W_{k}$.
For a module M, write $M^{(n)}$ for $M \quad \cdots M$ (n times).
Lemma 6.7.5. Let $V=V_{1} \cdots V_{n}, W=W_{1} \cdots W_{m}$ be right R-modules.
(i) If $\varphi_{i j} \operatorname{Hom}_{R}\left(V_{j}, W_{i}\right)$ are given for each $1 \leq i \leq m, 1 \leq j \leq n$, then we can define $\varphi \operatorname{Hom}_{R}(V, W)$ by

$$
=\left(\varphi_{11} v_{1}+\cdots+\varphi_{1 n} v_{n}, \ldots, \varphi_{m 1} v_{1}+\cdots+\varphi_{m n} v_{n}\right) .
$$

(ii)
as Abelian groups.
(iii) In particular, for a right R-module M we have

$$
\begin{array}{ll}
R(M)= \\
E & \begin{array}{c}
(n) \\
E_{R}(M) \\
\left.E_{R} \dot{M}\right) \ldots
\end{array}
\end{array}
$$

as rings.

Proof. (i) Easy to see that φ as defined above does indeed belong to $\operatorname{Hom}_{R}(V, W)$.
(ii) Let $\psi \operatorname{Hom}_{R}(V, W)$. Define $\psi_{i j}:=\pi_{i} \psi \varepsilon_{j}$. Then $\psi_{i j} \operatorname{Hom}_{R}\left(V_{j}, W_{i}\right)$. Define a map
$\Theta: \operatorname{Hom}_{R}(V, W)$

$$
\begin{array}{ccc}
\operatorname{Hom}_{R}\left(\dot{V}_{1} \quad, W_{1}\right) & \cdots & \operatorname{Hom}_{R}\left(\dot{V}_{n}, W_{1}\right) \\
\cdot & \operatorname{Hom}_{R}\left(V_{1}, w_{m}\right) & \ldots
\end{array} \operatorname{Hom}_{R}\left(\dot{V}_{n}, w_{m}\right)
$$

by $\Theta(\psi):=\left(\psi_{i j}\right)$. It is easy to see that Θ is an additive group homomorphism. Θ is injective:

$$
\begin{array}{cl}
\Psi_{i j}=0 \quad i, j & \Pi i \psi \varepsilon_{j}=0 \text { for all } i, j \\
& \psi \varepsilon_{j}=0 \text { for all } j \\
& \psi=0
\end{array}
$$

Θ is surjective: let $\left(\theta_{i j}\right.$ be given with $\theta_{i j} \quad \operatorname{Hom}_{R}\left(V_{j}, W_{i}\right)$. Define $\theta: V \rightarrow W$ by

$$
\begin{array}{cccc}
\varphi_{11} & \ldots & \varphi_{1 n} & v_{1} \\
. . & . & \cdot & .
\end{array}
$$

Then $\theta \quad \operatorname{Hom}_{R}(V, W)$ by part (i). For $v_{j} \quad V_{j}$ we have

$$
\begin{aligned}
\pi_{\theta} \theta \varepsilon_{j}\left(v_{j}\right) & =\pi \theta\left(0, \ldots, 0, v_{j}, 0, \ldots, 0\right) \\
& =\pi_{\mathcal{A}}\left(\theta_{1 j}\left(v_{j}\right), \ldots, \theta_{m j}\left(v_{j}\right)\right) \\
& =\theta_{i j}\left(v_{j}\right)
\end{aligned}
$$

So $\pi_{i} \theta \varepsilon_{j}=\theta_{i j}$. Hence Θ is an isomorphism.
(iii) We must check that when $V=W=M^{(n)}$ then Θ defined above is a
ring homomorphism. Let $\theta, \varphi \quad E_{R}\left(M^{(n)}\right)$. We have

$$
\begin{aligned}
& (\theta \varphi)_{i j}=\pi_{i}(\theta \varphi) \varepsilon_{j} \\
& =\pi_{i} \theta \operatorname{id}_{M(n)} \varphi \varepsilon_{j} \\
& =\pi_{i} \theta^{n} \quad \varepsilon_{k} \pi_{k} \varphi \varepsilon_{j} \\
& k=1 \\
& ={ }_{k=1}\left(\pi_{i} \theta \varepsilon_{k}\right)\left(\pi_{k} \varphi \varepsilon_{j}\right) \\
& n \\
& =\underset{\substack{k=1 \\
n}}{ }\left(\theta_{i k}\right)\left(\varphi_{k j}\right) \\
& \left((\theta \varphi)_{i j}\right)=\left(\theta_{i k}\right)\left(\varphi_{k j}\right) \\
& k=1 \\
& \Theta(\theta \varphi)=\Theta(\theta) \Theta(\varphi)
\end{aligned}
$$

So Θ is a ring homomorphism.
Note that if $\theta: M_{R} \rightarrow K_{R}$ is an isomorphism then the inverse map exists and is an isomorphism from K onto M.

Corollary 6.7.6. (Schur's Lemma.) Let R be a ring and M_{R} an irreducible module. Then $E_{R}(M)$ is a division ring.

Proof. Let $0=\theta E_{R}(M)$. We must show that θ is an isomorphism. θ is injective since ker θ is a submodule of M, so $\operatorname{ker} \theta=0$ or M. But $\operatorname{ker} \theta=M \theta$ $=0$, a contradiction, so ker $\theta=0$ and θ is injective.
θ is surjective since $\theta(M)$ is a submodule of M. As above, $\theta(M)=0$, so $\theta(M)=M$ and θ is surjective.

Thus θ is an isomorphism. Thus every non-zero element of $E_{R}(M)$ has an inverse, and so $E_{R}(M)$ is a division ring.
Lemma 6.7.7. Let R be a simple ring with $R^{2}=R$. Then any two minimal right ideals of R are isomorphic as R-modules.

Proof. Let l_{1}, l_{2} be two minimal right ideals of R. Then $r\left(l_{1}\right) R$ and $r\left(l_{1}\right)=$ R. So $r\left(l_{1}\right)=0$, so $I_{1} I_{2}=0$. So $x I_{1}$ such that $x l_{2}=0 . x l_{2} r R$
and $x I_{2} I_{1}$ since $I_{1} r$. So $x I_{2}=I_{1}$. Now define a map $\theta: I_{2} \rightarrow I_{1}$ by $\theta(r)=x r$ for $r I_{2}$. Check that $\operatorname{ker} \theta=0$ so that θ is an isomorphism from I_{2} onto $x I_{2}=I_{1}$. Lemma 6.7.8. Let R be a ring with 1 . Then R

$$
E_{(R)} \text { as rings. }
$$

$$
=R \quad R
$$

Proof. Let $x R$. Define $\rho_{x} E_{R}\left(R_{R}\right)$ by $\rho_{x}(r)=x r$ for $r R$. Fopr $r, s R$,

$$
\rho_{X}(r+s)=x(r+s)=x r+x s=\rho_{X}(r)+\rho_{X}(s)
$$

and

$$
\rho_{X}(r t)=x(r t)=(x r) t=\rho_{X}(r) t
$$

So we do indeed have that $\rho_{X} \quad E_{R}\left(R_{R}\right)$.
Now define $\Theta: R \rightarrow E_{R}\left(R_{R}\right)$ by $\Theta(x)=\rho_{X}$ for $x R$. We claim that Θ is an isomorphism of rings. Let $x_{1}, x_{2} R$. Then for any $r R$,

$$
\rho_{x 1+x 2}(r)+\left(x_{1}+x_{2}\right) r=x_{1} r+x_{2} r=\rho_{x 1}(r)+\rho_{x 2}(r)=\left(\rho_{x 1}+\rho_{X 2}\right)(r),
$$

so $\rho_{X 1+X 2}=\rho_{X 1}+\rho_{X 2}$, and hence $\Theta\left(x_{1}+x_{2}\right)=\Theta\left(x_{1}\right)+\Theta\left(x_{2}\right)$. Also

$$
\rho_{x 1 \times 2}(r)+\left(x_{1} x_{2}\right) r=x_{1}\left(x_{2} r\right)=\rho_{x 1}\left(\rho_{x 2}(r)\right)=\left(\rho_{x 1} \rho_{x 2}\right)(r),
$$

so $\Theta\left(x_{1} x_{2}\right)=\Theta\left(x_{1}\right) \Theta\left(x_{2}\right)$. Θ is injective since $\rho_{X}=0 \rho_{x}(1)=x 1=0 x=0$. Θ is surjective: let $\varphi E_{R}\left(R_{R}\right)$. Let $y:=\varphi(1) R$. Then $\varphi(r)=\varphi(1 r)=y r=\rho_{y}(r)$, for all $r R$. So $\varphi=\rho_{y}$. Thus Θ is an isomorphism of rings.

Remark 6.7.9. If we work with left modules then we would have to define $\rho_{X}(r)$ $=r x$. But then we get an anti-isomorphism between R and $E_{R}\left(R_{R}\right): \Theta(x y)=$ $\Theta(y) \Theta(x)$. To get an isomorphsim we need to write our maps on the right.

Theorem 6.7.10. (The Artin-Wedderburn Theorem.) R is semi-simple Artinian if and only if $R=S^{\prime \cdots} \quad S^{\prime \prime}$, where $S^{\prime}=M^{\prime \prime}\left(D^{\prime}\right)$ for some integers n_{i} and division rings D_{i}.

Proof. $R=S_{1} \cdots S_{m}, S_{i}$ simple Artinian by Theorem 6.5.2. $S_{i}=I_{1}$ $\cdots I_{n i}$, a direct sum of minimal right ideal, for some integer n_{i}, by Remark
6.3.11. But $I^{i}=I^{k}$ for all j, k, by Lemma 6.7.7. Thus $S^{i}=I^{1 \cdots} \quad I^{1}\left(n^{i}\right.$ summands). Thus,

$$
\begin{aligned}
& S_{i E_{S_{i}}} \quad\left(\left(S_{i}\right)_{S_{i}}\right) \text { by Lemma 6.7.8 } \\
& \left.=M \sum_{\left(\Sigma_{i}\right.}^{\left(n_{i}\right)}\left(I_{1}\right)\right) \text { by Lemma 6.7.5 } \\
& =M_{n i}^{n_{i}}\left(D_{i}\right),
\end{aligned}
$$

where $D_{i}:=E_{S i}\left(I_{1}\right)$ is a division ring by Schur's Lemma.
Theorem 6.7.11. A semi-simple Artinian ring is left-right symmetric.
Proof. Right-hand conditions R is a direct sum of matrix rings over division rings left-hand conditions.

For another proof, see Exercise Sheet 5, Question 7.

((The ninth lecture))
 Wedderburn's Theorem on Finite Division Rings

In this chapter we prove that every finite division ring is a field.
Our strategy is to let D be a finite division ring. We show that $|D|=q^{n}$ for some $q \geq 2, n>1$. If we $\quad q-1$ set $D:=D \mid\{0\}$ then D is not an Abelian group. Counting elements in each conjugacy class of D we get an equation

$$
q^{n}-1=q-1+\quad n(a) / n, n(a)=n \quad \overline{q^{n(a)}-1 \cdot}
$$

We then show that such an equation is impossible on number theoretic grounds.

7.1 Roots of Unity

Definitions 7.1.1. (i) θ is called a primitive nth root of unity if $\theta^{n}=1$ and $\theta^{m}=$ 1 for all $m<n$, where m and n are integers.
(ii) $\Phi_{n}(x):=\quad(x-\theta)$, where the product is taken over all primitive nth
roots of
We note that the primitive nth roots of unity exist because of $y=$ $e^{2 \pi k i / n}$
C. Thus

$$
\begin{aligned}
& \Phi_{1}(x)=x-1 \\
& \Phi_{2}(x)=x+1 \\
& \Phi_{3}(x)=x^{2}+x+1 \\
& \Phi_{4}(x)=x^{2}+1
\end{aligned}
$$

Lemma 7.1.2. Every cyclotomic polynomial is monic with integer coe cients.

Proof. First note that

$$
\begin{equation*}
x^{n}-1=\Phi_{d / n} \Phi_{d}(x) \tag{7.1.1}
\end{equation*}
$$

Now we prove our claim by induction on n. If $n=1, \Phi_{1}(x)=x-1$. So, assume all $\Phi_{k}(x)$ monic with integer coe cients for $k<n$. Now we can write

$$
x^{n}-1=\Phi_{n}(x) \underset{d \| n, d=n}{ } \Phi_{d}(x) .
$$

By the induction hypothesis we can write $x^{n}-1=\Phi_{n}(x) f(x)$, where $f(x)$ is monic with coe cients in \mathbf{Z}. Therefore, we may assume that

$$
f(x)=x+a_{-1} x^{-1}+\cdots+a_{1} x+a_{0}
$$

$a_{i} \quad Z$, and

$$
\Phi_{n}(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+
$$

b_{0}, b_{i} C. We see that

$$
x^{n}-1=b_{m} x^{m+}+\left(b_{m-1}+b_{m} a-1\right) x^{m+-1}+\cdots+a_{0} b_{0} .
$$

Comparing these two polynomials, we have $b_{m}=1$, so Φ_{n} is monic; $m+=n$; $b_{m-1}+b_{m} a_{-1}=0$, so $b_{m-1}=-1 \cdot a_{-1} Z$. By continuing this method, we see that $b_{i} Z$ for $0 \leq i \leq m$.
Lemma 7.1.3. If d / n and $d=n$ then
$\Phi(X)$

$$
\frac{x^{n}-1}{x^{d}-1}
$$

in the sense that the quotient is polynomial with integer coe cients.
Proof. By (7.1.1) we can write

Because every divisor of d is a divisor of n, we have

$$
\frac{x^{n}-1}{x^{d}-1}=\Phi_{n}(x){ }_{d{ }^{d, d a}} \Phi_{d}(x)
$$

and so ${ }^{\underline{x}}{ }_{x d}-\overline{-}_{1} \underline{1}=\Phi_{n}(x) f(x)$, where

$$
f(x)={ }_{n, d d} \Phi_{d}(x) .
$$

So $f(x)$ is a monic polynomial in $\mathrm{Z}[x]$ by the previous lemma. So

$$
\frac{x^{n}-1}{x d-1}
$$

Lemma 7.1.4. Let q, n, m be positive integers, $q>1$. Then

$$
q^{m}-1 / q^{n}-1 m / n .
$$

Proof. (). Evident.
(). We may assume that $n>m$. Then $n=k m+r, 0 \leq r<m, k>0$. Now

$$
\begin{aligned}
\frac{q^{n}-1}{q^{\prime \prime \prime}-1} & =\frac{q^{k m} q^{r}-1}{q^{\prime \prime \prime}-1} \\
& =q^{k m} q^{r} q^{r}+q^{r}-1 \\
& =\frac{q^{r}\left(\left(q^{m}\right)^{k}-1\right.}{q^{m}-1}+\frac{q^{r}-1}{q^{m}-1}
\end{aligned}
$$

By our assumption, the LHS is an integer, and $\frac{q^{r}\left(\left(q^{m}\right)^{k}-1\right.}{q^{\prime \prime \prime}-1}$ Z, so $\frac{q^{r}-1}{q^{n \prime \prime}-1}$ Z, so $r=0$. Thus m / n.

7.2 Group Theory

Definitions 7.2.1. Let G be a group. We say that $x, y G$ are conjugate if a G such that $x=a^{-1} y a$, and so we can define an equivalence relation of conjugacy, and the corresponding conjugacy classes: $x^{G}:=\left\{a^{-1} x a / a G\right\}$. We define $C(x)=\{a \quad G / a x=x a\}$ to be the centralizer of x in
G. The centre of G is

$$
Z(G):=\{g \quad G / h \quad G, g h=h g\} .
$$

Proposition 7.2.2. For G a group, $x \quad G, C(x)$ is a subgroup of G.
Theorem 7.2.3. Let G be a finite group. Then $\left|x^{G}\right|=|G: C(x)|$.

Proof. Let $a, b \quad G$. Then

$$
\begin{array}{rl}
a^{-1} x a=b^{-1} x b & x a b^{-1}=a b^{-1} x \\
& \left(a b^{-1}\right) C(x) \\
& C(x) a=C(x) b
\end{array}
$$

So there are as many elements in x^{G} as there are cosets of $C(x)$.

7.3 Finite Division Rings

Lemma 7.3.1. Let K be a non-zero subring of a finite division ring D. Then K is also a division ring.

Proof. Exercise. Need $1_{D} \quad K$ and $x^{-1} \quad K$ for $x \quad K, x=0$.

Corollary 7.3.2. The centre of a finite division ring is a field.

Lemma 7.3.3. Let D be a finite division ring with centre C. Then $|D|=q^{n}$ where $q=|C|>1$ and n is some positive integer.

Proof. C is a field. We can view D as a vector space over C. Let $n=\operatorname{dim}_{C}$ D, with d_{1}, \ldots, d_{n} a basis for D over C. So every element of D is uniquely expressible as $c_{1} d_{1}+\cdots+c_{n} d_{n}$ with $c_{i} C$. So we have $|D|=q^{n}$. \square Theorem 7.3.4. (Wedderburn 1905.) A finite division ring is necessarily a field.

Proof. Let D be a finite division ring with centre $C,|C|=q$. Then $|D|=q^{n}$, $q \geq 2, n \geq 1$, by Lemma 7.3.3. We want to show that $D=C$, or, equivalently, that $n=1$.

Assume that $n>1$. Let $a D, C(a):=\{x D \mid x a=a x\}$. Then $C(a)$ is a subring of D. By Lemma 7.3.1, it is a division ring with $C(A) C$. So $|C(a)|=q^{n(a)}$ for some $n(a) \geq 1$. $C(a):=C(a) \backslash\{0\}$ is a multiplicative subgroup of D. We have $/ C$ (a) $\left|=q^{n(a)}-1,|D|=q^{n}-1\right.$. By Lagrange's Theorem, $q^{n(a)}-1 / q^{n}-1$. Lemma 7.1.4 implies that $n(a) / n$. Theorem 7.2.3 applied to D implies that the number of elements conjugate to $a=$ the index
of $C(a)$ in $D=q^{n}-1$. Now a $\quad C(a) \quad n(a)=n$. By counting elements of D :

$$
\begin{equation*}
q^{n}-1=q-{ }^{1+}{ }_{n(a) /} \frac{q^{\prime \prime}-1}{a^{n}(a)-1}, \tag{7.3.1}
\end{equation*}
$$

where the sum is carried out for one a in each conjugacy class for elements not in the centre. Now $\Phi_{n}(q)=q^{n}-1$ by Lemma 7.1.2; $n(a)=n$ by
Lemma 7.1.3. $\operatorname{By}(7.3 .1)$,

$$
\begin{equation*}
\Phi_{n}(q)=q-1 . \tag{7.3.2}
\end{equation*}
$$

We have $\Phi_{n}(q)=\quad(q-\theta), \theta$ a primitive nth root of $1 . \quad$ So $\left|\Phi_{n}(q)\right|=$
$|q-\theta|>q-1$ since $n>1$. This contradicts (7.3.2). So the assumption $n>$ 1 is false, and $D=C$ is a field.

To answer the question of what finite fields look like, we need Galois Theory.

((tenth lecture))

8 Some Elementary Homological Algebra

In this section all rings have 1 and all modules are unital.

8.1 Free Modules

Definitions 8.1.1. A right R-module F is free if
(i) F is generated by a subset $S \quad F$;
(ii) $\quad i S_{i} r_{i}=0 \quad r_{i}=0$ for all such finite sums with $s_{i} \quad S, r_{i} \quad R$.

We say that free basis for F. (Convention: $\{0\}$ is the free module generated by .)

An element of F has a unique epression as $s_{1} r_{1}+\cdots+s_{k} r_{k}$. A typical free module is isomorphic to $(R \cdots R \ldots)_{R}$. F_{R} free and finitely generated

$$
F^{\beta}=\left(\begin{array}{ll}
R & R
\end{array}\right) \quad \text { (a finite direct sum) } .
$$

The Z-module $\underset{n}{\mathrm{Z}} \mathrm{Z}, n>1$, cannot be free: for suppose that $a^{-}=a+n Z$ is
an element of a free basis. Then $a n^{-}=0$, with $n=0$, a contradiction.

8.2 The Canonical Free Module

Definition 8.2.1. Let A be a set indexed by Λ. Let F_{A} be the set of all formal sums

$$
\begin{aligned}
& \wedge_{a_{r} r_{i}} \quad a_{\lambda} \quad \operatorname{many}_{A, r_{\lambda}} r_{A,}=0 \\
& \wedge \wedge \wedge_{\lambda}
\end{aligned}
$$

witur $a_{\lambda} \wedge_{\lambda \lambda}^{\prime}=$
canonical free right R-module by defining

$$
a_{\lambda} r_{\lambda}+\quad a_{\lambda} s_{\lambda}:=\quad a_{\lambda}\left(r_{\lambda}+s_{\lambda}\right)
$$

and

$$
a_{\lambda} r_{\lambda} \quad r:=\quad a_{\lambda}\left(r_{\lambda} r\right)
$$

A is a free basis for F_{A}; we identify a $\quad A$ with al F_{A}.
Proposition 8.2.2. Every right R-module is the homomorphic image of a free right R-module.

Proof. Let M be a free right R-module. Index the elements of M and form the free module F_{M}, considering M merely as a set. Elements
of F_{M} are formal sums of the form $\left(m_{i}\right) r_{i}, m_{i} \quad M, r_{i} R$. Define
$\theta: F_{M} \rightarrow M:\left(m_{i}\right) r_{i} \rightarrow m_{i} r_{i} \quad M$. This map is well-defined and is an R-homomorphism by the definition of F_{M}

8.3 Exact Sequences

Definitions 8.3.1. Let M_{i} be a sequence of right R-modules and f_{i} a sequence of R-homomorphisms $M_{i} \rightarrow M_{i-1}$. The sequence (which may be finite or infinite)
is said to be exact if im $f_{i+1}=\operatorname{ker} f_{i} \quad$ for all i. A short exact sequence is an exact sequence of the form

$$
0 \rightarrow M \xrightarrow{f} M \rightarrow{ }^{g} M \quad 0 .
$$

In a short exact sequence, since $0 \rightarrow M{ }^{f} \rightarrow M$ is exact, ker $f=0$ and so f is a monomorphism (an injective homomorphism). Since $M \rightarrow{ }^{g} M \rightarrow 0$ is exact, im $g=M$ and g is an epimorphism (a surjective homomorphism).

$$
\begin{aligned}
& M=\quad \operatorname{im~} f=f(M) \quad M \text {, so } M \text { is isomorphic to a submodule of } M . \\
& \text { Also } M=M={ }^{\prime N 1} .
\end{aligned}
$$

$$
\overline{\operatorname{ker} g} \quad \overline{\operatorname{imf} f}
$$

Given modules A and B we can construct the short exact sequence
where i is the inclusion map and π the natural projection.
Proposition 8.3.2. Given a short exact sequence

$$
\stackrel{\alpha}{0 \rightarrow A \xrightarrow{\beta} B \xrightarrow{\beta} C \rightarrow 0}
$$

of right R-modules the following are equivalent:

$$
\begin{aligned}
& \begin{array}{lll}
f & f_{i+1} & f_{i}
\end{array} f_{i-1}^{f} \\
& \cdots-M_{i+1} \rightarrow M_{i} \rightarrow M_{i-1} \rightarrow \ldots
\end{aligned}
$$

(i) im α is a direct summand of B;
(ii) an R-homomorphism $\gamma: C \rightarrow B$ with $\beta \gamma=\operatorname{id}_{C}$;
(iii) an R-homomorphism $\delta: B \rightarrow A$ with $\delta \alpha=\mathrm{id}_{A}$.

Proof. (i) (ii). Let $B=\operatorname{im} \alpha B_{1}, B_{1}$ a submodule of B. So $B=\operatorname{ker} \beta B_{1}$. Let $\beta_{1}:=\left.\beta\right|_{B 1}$. We have

$$
C=\beta(B)=\beta\left(\operatorname{ker} \beta \quad B_{1}\right)=\beta B_{1}=\beta_{1} B_{1},
$$

so β_{1} is an epimorphism. Also $\operatorname{ker} \beta_{1} \operatorname{ker} \beta \cap B_{1}=0$. Thus β_{1} is an isomorphism of B_{1} onto C. Define $\gamma:=\beta_{1}{ }^{-1}: C \rightarrow B$. Then $\beta \gamma=\operatorname{id}_{C}$.
(ii) (i). We shall show that $B=\operatorname{ker} \beta \gamma \beta(B)$. If $b B, b=(b-\gamma \beta b)+\gamma \beta(b)$. b $-\gamma \beta(b)$ ker β since

$$
\beta(b-\gamma \beta(b))=\beta(b)-\beta \gamma \beta(b)=\beta(b)-\operatorname{id}_{C} \beta(b)=\beta(b)-\beta(b)=0,
$$

and if $z \quad \operatorname{ker} \beta \cap \gamma \beta(B)$ then $z=\gamma \beta(b)$ for some $b \quad B$, and $\beta(z)=0$. Thus

$$
0=\beta(z)=\beta \gamma \beta(b)=\beta(b),
$$

so $z=0, B=\operatorname{ker} \beta \quad \gamma \beta(B)=\operatorname{im} \alpha \quad \gamma \beta(B)$.
Similarly, we can show the equivalence of (i) and (iii).
Definition 8.3.3. We say that the short exact sequence

$$
\begin{gathered}
\alpha \stackrel{\beta}{\alpha} \\
0 \longrightarrow A \longrightarrow \\
0 \longrightarrow
\end{gathered}
$$

splits if any one (and hence all) of the above conditions holds.
Note that if the above sequence splits then $B=\operatorname{im} \alpha$
$\stackrel{1}{B}, B^{1}=C$; i.e., =

8.4 Projective Modules

Definition 8.4.1. A right R-module P is said to be projective if given any diagram of the form

there is an R-homomorphism $\mu^{\top}: P \rightarrow A$ such that $\mu=\pi \mu^{-}$, i.e. $\mu(x)=\pi($ $\mu^{-}(x)$) for all $x P$.

Lemma 8.4.2. A free module is projective.

Proof. Let F be a free module with a free basis $\left\{e_{\alpha}\right\}$. Consider

Let $b_{\alpha}:=\mu\left(e_{\alpha}\right)$. As π is an epimorphism we can choose $a_{\alpha} \quad A$ such that $b_{\alpha}=\pi\left(a_{\alpha}\right)$. Define $\mu^{-}: F \rightarrow A$ by $\mu^{-}\left(\quad \alpha e_{\alpha} r_{\alpha}\right):=\quad \alpha a_{\alpha} r_{\alpha}, r_{\alpha} \quad R$. Then μ^{-} is an R-homomorphism $F \rightarrow A$ and

$$
\pi \mu^{-} \quad a \quad e_{\alpha} r_{\alpha} \quad=\pi \quad a \quad a_{\alpha} r_{\alpha}
$$

$$
\begin{aligned}
& =\quad{ }_{\alpha} \quad \pi\left(a_{\alpha}\right) r_{\alpha} \\
& =\quad{ }_{\alpha}{ }_{\alpha \alpha}{ }^{\prime} \\
& =\quad{ }_{\alpha} \mu\left(e_{\alpha}\right) r_{\alpha} \\
& =\mu^{\alpha} \quad \alpha \quad e_{\alpha} r_{\alpha} .
\end{aligned}
$$

So $\pi \mu^{-}=\mu$.
We shall see that a projective module need not be free.
Lemma 8.4.3. Let $P_{\alpha}, \alpha \Lambda$, be right R-modules. Then ${ }_{\alpha} \wedge P_{\alpha}$ is pro-jective if and only if all P_{α} are projective.

() Consider the diagram

This gives rise to diagrams

Since each P_{α} is projective there are R-homomorphisms $f_{\alpha}: P_{\alpha} \rightarrow A$ such
 sense: for any $z \quad P \quad$ we have $p(z)=0$ for all except a finite number of α 's.) We have $\quad=\alpha \wedge \quad{ }_{\alpha}{ }^{=} \quad \alpha \wedge \quad \alpha \alpha=$ as required.
() For any $\beta \quad \Lambda$ consider

This gives rise to

P_{β} is projective.
Proposition 8.4.4. The following are equivalent:
(i) P is a projective module;
(ii) P is a direct summand of a free module;
(iii) every short exact sequence $0 \rightarrow M \rightarrow M \rightarrow P \rightarrow 0$ splits.

Proof. (iii) (ii). Consider the short exact sequence

$$
0 \rightarrow K_{P} \rightarrow F_{P} \rightarrow P \rightarrow 0
$$

where K_{P} is the kernel of the canonical map $F_{P} \rightarrow P$. Since this short exact sequence splits we have $F^{P}=P \quad K^{P}$.
(ii) (i). Follows from Lemma 8.4.2 and Lemma 8.4.3.
(i) (iii). Consider

Since P is projective, there is an R-homomorphism $\mu^{-}: P \rightarrow M$ such that $g \mu^{-}=$ $\mathrm{id} P$. Thus the given short exact sequence splits.

Theorem 8.4.5. The following are equivalent:
(i) R is semi-simple Artinian;
(ii) every unital right R-module is projective.

Proof. (i) (ii). Let M be a right R-module. By Theorem 6.6.2, $M=\lambda \wedge M_{\lambda}$, each M_{λ} irreducible. Proposition 6.6.1 implies that each M_{λ} is isomorphic to a right ideal of R. A right ideal of R is a direct sum-mand of R since R_{R} is completely reducible. So, by Lemma 8.4.2 and Lemma 8.4.3, right ideals of R are projective. So M is projective by Lemma 8.4.3.
(ii) (i). Let $l \quad r$. Consider the short exact sequence

$$
0 \rightarrow \stackrel{\pi}{\pi} \frac{R}{-\longrightarrow} \frac{R}{R}
$$

This short exact sequence splits since $\frac{R}{,}$ is a projective R-module. So $R=$ I K,K R. Thus I is a direct summand of R. So R_{R} is completely
reducible and thus R is semi-simple Artinian.

If R is a ring with 1 , then all right R-modules are free if and only if R is a division ring (Exercise Sheet 5, Question 8).

Example 8.4.6. Projective free. Let $R={ }_{6} Z Z, A=\frac{2}{6} Z, B=\frac{3}{6} Z$. Then $R=A$ B, and A and B are projective by Lemma 8.4.2 and Lemma 8.4.3. A, B cannot be free since they have fewer elements than R.

