Lectures on Modules 2

second course

The fourth stage

Mathematics Department
College of Education for Pure

Sciences

Anbar University
the first lecturer

4.1 INTRODUCTION

In last chapter, we have studied some more results on modules and rings. In Section, 4.2, we study more results on noetherian and artinian modules and rings. In next section, Weddernburn theorem is studied. Uniform modules, primary modules, noether-laskar theorem and smith normal theorem are studied in next two section. The last section is contained with finitely generated abelian groups.

4.2 MORE RESULTS ON NOETHERIAN AND ARTINIAN MODULES AND RINGS

4.2.1 Theorem. Every principal ideal domain is Noetherian.

Solution. Let D be a principal ideal domain and $\mathrm{I}_{1} \subseteq \mathrm{I}_{2} \subseteq \mathrm{I}_{3} \subseteq \ldots \subseteq \mathrm{I}_{\mathrm{n}} \subseteq \ldots$ be an ascending chain of ideals of D . Let $\mathrm{I}=\mathrm{U}$ Ii . Then I is an ideal of D . Since D is $i \geq 1$
principal ideal domain, therefore, there exist $\mathrm{b} \in \mathrm{D}$ such that $\mathrm{I}=\langle\mathrm{b}\rangle$. Since $\mathrm{b} \in \mathrm{D}$, therefore, $\mathrm{b} \in \mathrm{I}_{\mathrm{n}}$ for some n . Consequently, for $\mathrm{m} \geq \mathrm{n}, \mathrm{I} \subseteq \mathrm{I}_{\mathrm{n}} \subseteq \mathrm{I}_{\mathrm{m}} \subseteq \mathrm{I}$. Hence $\mathrm{I}_{\mathrm{n}}=\mathrm{I}_{\mathrm{m}}$ for $\mathrm{m} \geq \mathrm{n}$ implies that the given chain of ideals becomes stationary at some point i.e. R is Noetherian.
(2) $(\mathrm{Z},+,$.$) is a Notherian ring.$
(3) Every field is Notherian ring.
(4) Every finite ring is Notherian ring.
4.2.2 Theorem. (Hilbert basis Theorem). If R is Noetherian ring with identity, then $R[x]$ is also Noetherian ring.
Proof. Let I be an arbitrary ideal of $\mathrm{R}[\mathrm{x}]$. To prove the theorem, it is sufficient to show that I is finitely generated. For each integer $t \geq 0$, define;

$$
\mathrm{I}_{\mathrm{t}}=\left\{\mathrm{r} \in \mathrm{R}: \mathrm{a}_{0}+\mathrm{a}_{1} \mathrm{x}+\ldots+\mathrm{rx}^{\mathrm{t}}\right\} \cup\{0\}
$$

Then I_{t} is an ideal of R such that $\mathrm{I}_{\mathrm{t}} \subseteq \mathrm{I}_{\mathrm{t}+1}$ for all t . But then $\mathrm{I}_{0} \subseteq \mathrm{I}_{1} \subseteq \mathrm{I}_{2} \subseteq \ldots$ is an ascending chain of ideals of R. But R is Noetherian, therefore, there exist an integer n such $I_{n}=I_{m}$ for all $m \geq 0$. Also each ideal I_{i} of R is finitely generated. Suppose that $\mathrm{I}_{\mathrm{i}}=\left\langle\mathrm{a}_{\mathrm{i} 1}, \mathrm{a}_{\mathrm{i} 2}, \ldots, \mathrm{a}_{\mathrm{imi}}>\right.$ for $\mathrm{i}=0,1,2,3, \ldots, \mathrm{n}$, where a_{ij} is the leading coefficient of a polynomial $\mathrm{f}_{\mathrm{ij}} \in \mathrm{I}$ of degree i . We will show that
 $\mathrm{f}_{\mathrm{n} 1}, \mathrm{f}_{\mathrm{n} 2}, \ldots, \mathrm{f}_{\mathrm{nmn}}>$. Trivially $\mathrm{J} \subseteq \mathrm{I}$. Let $\mathrm{f}(\neq 0) \in \mathrm{R}[\mathrm{x}]$ be such that $\mathrm{f} \in \mathrm{I}$ and of degree t (say): $f=b_{0}+b_{1} x+\ldots+b_{t-1} x^{t-1}+b x^{t}$. We now apply induction on t. For $\mathrm{t}=0, \mathrm{f}=\mathrm{b}_{0} \in \mathrm{I}_{0} \subseteq \mathrm{~J}$. Further suppose that every polynomial of I whose degree less than t also belongs to J. Consider following cases:

Case 1. $\mathrm{t}>\mathrm{n}$. As $\mathrm{t}>\mathrm{n}$, therefore, leading coefficient $\mathrm{b}(\mathrm{of} \mathrm{f}) \in \mathrm{I}_{\mathrm{t}}=\mathrm{I}_{\mathrm{n}}$ (because $\mathrm{I}=\mathrm{In} \forall \mathrm{t} \geq \mathrm{n})$. But then $\mathrm{b}=\mathrm{r} 1 \mathrm{an} 1+\mathrm{r} 2 \mathrm{an} 1+\ldots+\mathrm{rm}_{\mathrm{n}} \mathrm{anm}_{\mathrm{n}}, \mathrm{ri}_{\mathrm{i}} \in \mathrm{R}$. Now $\mathrm{g}=\mathrm{f}-$ $\left(r_{1} f_{n 1}+r_{2} f_{n 1}+\ldots+r_{m n} f_{n m n}\right) x^{t-n} \in I$ having degree less than t (because the
coefficient of x^{t} in g is $\mathrm{b}-\mathrm{r}_{1} \mathrm{a}_{\mathrm{n} 1}+\mathrm{r}_{2} \mathrm{a}_{\mathrm{n} 1}+\ldots+\mathrm{r}_{\mathrm{mn}} \mathrm{a}_{\mathrm{nmn}}=0$, therefore, by induction, $\mathrm{f} \in \mathrm{J}$.

Case (2). $\mathrm{t} \leq \mathrm{n}$. As $\mathrm{b} \in \mathrm{I}_{\mathrm{t}}$, therefore, $\mathrm{b}=\mathrm{s}_{1} \mathrm{at}_{\mathrm{t}}+\mathrm{s}_{2} \mathrm{a} \mathrm{t} 2+\ldots+\mathrm{s}_{\mathrm{mt}} \mathrm{atmt} ; \mathrm{s}_{\mathrm{i}} \in \mathrm{R}$. Then $\mathrm{h}=\mathrm{f}-\left(\mathrm{s} 1 \mathrm{f}_{\mathrm{n} 1}+\mathrm{s}_{2} \mathrm{f}_{\mathrm{n} 1}+\ldots+\mathrm{s}_{\mathrm{mn}} \mathrm{f}_{\mathrm{nmn}}\right) \in \mathrm{I}$, having degree less than t . Now by lsinduction hypothesis, $\mathrm{h} \in \mathrm{J} \Rightarrow \mathrm{f} \in \mathrm{J}$. Consequently, in either case $\mathrm{I} \subseteq \mathrm{J}$ and hence $\mathrm{I}=\mathrm{J}$. Thus I is finitely generated and hence $\mathrm{R}[\mathrm{x}]$ is Noetherian. It prove the theorem.
4.2.3 Definition. A ring R is said to be an Artinian ring iff it satisfies the descending chain condition for ideals of R .
4.2.4 Definition. A ring R is said to satisfy the minimum condition (for ideals) iff every non empty set of ideals of R, partially ordered by inclusion, has a minimal element.
4.2.5 Theorem. Let R be a ring. Then R is Artinian iff R satisfies the minimum condition (for ideals).

Proof. Let R be Artinian and f be a nonempty set of ideal of R . If I_{1} is not a minimal element in f, then we can find another ideal I_{2} in f such that $\mathrm{I}_{1} \supset \mathrm{I}_{2}$. If f has no minimal element, the repetition of this process we get a non terminating descending chain of ideals of R , contradicting to the fact that R is Artinian. Hence f has minimal element.

Conversely suppose that R satisfies the minimal condition. Let $\mathrm{I}_{1} \supseteq \mathrm{I}_{2} \supseteq \mathrm{I}_{3} \ldots$ be an descending chain of ideals of R. Consider $\mathbf{F}=\left\{\mathrm{I}_{\mathrm{t}}: \mathrm{t}=1\right.$, $2,3, \ldots\} . \mathrm{I}_{1} \in \mathbf{F} \Rightarrow \mathbf{F}$ is non empty. Then by hypothesis, F has a minimal element I_{n} for some positive integer $\mathrm{n} \Rightarrow \mathrm{I}_{\mathrm{m}} \subseteq \mathrm{I}_{\mathrm{n}} \forall \mathrm{m} \geq \mathrm{n}$.

Now $\mathrm{I}_{\mathrm{m}} \neq \mathrm{I}_{\mathrm{n}} \Rightarrow \mathrm{I}_{\mathrm{m}} \notin \mathrm{F}$ (By the minimality of I_{n}), which is not possible. Hence $\mathrm{I}_{\mathrm{m}}=\mathrm{I}_{\mathrm{n}} \forall \mathrm{m} \geq \mathrm{n}$ i.e. R is Artinian.
4.2.6 Theorem. Prove that an homomorphic image of a Noetherian(Artinian) ring is also Noetherian(Artinian).

Proof. Let f be a homomorphic image of a Noetherian ring R onto the ring S . Consider the ascending chain of ideals of S :

$$
\begin{equation*}
\mathrm{J}_{1} \subseteq \mathrm{~J}_{2} \subseteq \ldots \subseteq \ldots \tag{1}
\end{equation*}
$$

Suppose $I_{r}=f^{-1}\left(J_{r}\right)$, for $r=1,2,3, \ldots$.

$$
\begin{equation*}
\mathrm{I}_{1} \subseteq \mathrm{I}_{2} \subseteq \ldots \subseteq \ldots \tag{2}
\end{equation*}
$$

Relation shown in (2) is an ascending chain of ideals of R. Since R is Noehterian, therefore, there exist positive integer n such that $I_{m}=I_{n} \quad \forall \mathrm{~m}$. This shows that $\mathrm{J}_{\mathrm{m}}=\mathrm{J}_{\mathrm{n}} \forall \mathrm{m} \geq \mathrm{n}$. But then S becomes Noetherian and the result follows.
4.2.7 Corollary. If I is an ideal of a Noetherian(Artinian) ring, then factor module R I is also Noetherian(Artinian).

Proof. Since $\frac{\mathrm{R}}{\mathrm{I}}$ is homomorphic image of R, therefore, by Theorem 4.2.10, R I is Noehterian.

The second lecture

4.2.8 Theorem. Let I be an ideal of a ring R. If R and $\frac{R}{I}$ are both Noehterian rings, then R is also Noetherian.

Proof. Let $\mathrm{I}_{1} \subseteq \mathrm{I}_{2} \subseteq \ldots \subseteq \ldots$ be an ascending chain of ideals of R. Let $\mathrm{f}: \mathrm{R} \rightarrow$ R I . It is an natural homomorphism. But then $f\left(\mathrm{I}_{1}\right) \subseteq \mathrm{f}\left(\mathrm{I}_{2}\right) \subseteq \ldots \subseteq$ is an ascending chain of ideals in $\frac{R}{I}$. Since $\frac{R}{I}$ is Noetherian, therefore, there exist a positive integer n such that $\mathrm{f}\left(\mathrm{I}_{\mathrm{n}}\right)=\mathrm{f}\left(\mathrm{I}_{\mathrm{n}+\mathrm{i}}\right) \forall \mathrm{i} \geq 0$. Also $\left(\mathrm{I}_{1} \cap \mathrm{I}\right) \subseteq\left(\mathrm{I}_{2} \cap \mathrm{I}\right) \subseteq$ $\ldots \subseteq \ldots$ is an ascending chain of ideals of I. As I is Noehterian, therefore, there exsit a positive integer m such that $\left(I_{m} \cap I\right)=\left(I_{m+i} \cap I\right)$. Let $r=\max \{m, n\}$. Then $\mathrm{f}\left(\mathrm{I}_{\mathrm{r}}\right)=\mathrm{f}\left(\mathrm{I}_{\mathrm{r}+\mathrm{i}}\right)$ and $\left(\mathrm{I}_{\mathrm{r}} \cap \mathrm{I}\right)=\left(\mathrm{I}_{\mathrm{r}+\mathrm{i}} \cap \mathrm{I}\right) \forall \mathrm{i} \geq 0$. Let $\mathrm{a} \in \mathrm{I}_{\mathrm{r}+\mathrm{i}}$, then there exist $\mathrm{x} \in \mathrm{I}_{\mathrm{r}}$ such that $f(a)=f(x)$ i.e. $a+I=x+I$. Then $a-x \in I$ and also $a-x \in I_{r+i}$. This shows that $a-x \in\left(I_{r+i} \cap I\right)=\left(I_{r} \cap I\right)$. Hence $a-x \in I_{r} \Rightarrow a \in I_{r}$ i.e. $I_{r+i} \subseteq I_{r}$. But then $I_{r+i}=I_{r}$
for all $\mathrm{i} \geq 0$. Now we have shown that every ascending chain of ideals of R terminates after a finite number of steps. It shows that R is Noetherian.
4.2.9 Definition. An Artinian domain R is an integral domain which is also an Artinian ring.
4.2.10 Theorem. Any left Artinian domain is a division ring.

Proof. Let a is a non zero element of R. Consider the ascending chain of ideals of R as: $\langle\mathrm{a}\rangle \supseteq\left\langle\mathrm{a}^{2}\right\rangle \supseteq\left\langle\mathrm{a}^{3}\right\rangle \supseteq \ldots$. . Since R is an Artinian ring, therefore, $\left\langle\mathrm{a}^{\mathrm{n}}\right\rangle$ $=\left\langle\mathrm{a}^{\mathrm{n}+\mathrm{i}}\right\rangle \forall \mathrm{i} \geq 0$. Now $\left\langle\mathrm{a}^{\mathrm{n}}\right\rangle=\left\langle\mathrm{a}^{\mathrm{n}+1}\right\rangle \Rightarrow \mathrm{a}^{\mathrm{n}}=\mathrm{ra}^{\mathrm{n}+1} \Rightarrow \mathrm{ar}=1$ i.e. a is invertible $\Rightarrow R$ is a division ring.
4.2.11 Theorem. Let M be a finitely generated free module over a commutative ring R. Then all the basis of M are finite.

Proof. let $\left\{e_{i}\right\}_{i \in \Lambda}$ be a basis and $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a generator of M. Then each xj_{j} can be written as $\mathrm{x}_{\mathrm{j}}=\Sigma \beta_{i j} e_{i}$ where all except a finite number of β_{ij} 's are zero. Thus the set of all e_{i} 's that occurs in the expression of x_{j} 's, $j=1,2, \ldots, n$.
4.2.12 Theorem. Let M be finitely generated free module over a commutative ring R.

Then all the basis of M has same number of element.
Proof. Let M has two bases X and Y containing m and n elements respectively. But then $M \cong R^{n}$ and $M \cong R^{m}$. But then $R^{m} \cong R^{n}$. Now we will show that $\mathrm{m}=\mathrm{n}$. Let $\mathrm{m}<\mathrm{n}, \mathrm{f}$ is an isomorphism from R^{m} to R^{n} and $\mathrm{g}=\mathrm{f}^{-1}$. Let $\left\{\mathrm{x}_{1}\right.$, $\left.x_{2}, \ldots, x_{m}\right\}$ and $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ are basis element of R^{m} and R^{n} respectively. Define

$$
\begin{aligned}
& f\left(x_{i}\right)=a_{1 i} y_{1}+a_{2 i} y_{2}+\ldots+a_{n i} y_{n} \text { and } g\left(y_{j}\right)=b_{1 j} x_{1}+b_{2 j} x_{2}+\ldots+b_{m j} x_{m} \text {. Let } \\
& \mathrm{A}\left(\mathrm{a}_{\mathrm{ij}}\right) \text { and } \mathrm{B}=\left(\mathrm{b}_{\mathrm{kj}}\right) \text { be } \mathrm{n} \times \mathrm{m} \text { and } \mathrm{m} \times \mathrm{n} \text { matrices over R. Then } \mathrm{g} \\
& \underset{f(x i)=g\left(\sum_{j=1}^{n} a_{i j} y_{i}\right)}{=\sum_{j=1}^{n} a_{i i g}\left(y_{i}\right)} \quad=\sum_{k=1}^{m} \sum_{j=1}^{n} b_{k j a}{ }_{i j i x_{k}} . \quad 1 \leq i \leq m \text {. Since } \quad g f=I, \\
& \text { therefore, } \mathrm{x}_{\mathrm{i}}=\sum^{\mathrm{m}} \sum^{\mathrm{n}} \mathrm{~b} a \quad \mathrm{x} \quad \text { i.e. } \quad \sum^{\mathrm{n}} \mathrm{ba} \quad \mathrm{x}+\ldots+\sum^{\mathrm{n}}(\mathrm{ba}-1) \mathrm{x} \\
& \text { k=1 j=1 kj ji k } \quad \text { j=1 }{ }^{1 j} \text { ji } 1 \quad \text { j=1 } \quad \text { ij ji } \quad \text { i } \\
& +\ldots+\sum_{j=1}^{n} \text { bmja jixm }=0 \text {. As } x^{\prime} \text { 's are linearly independent, therefore, }
\end{aligned}
$$

$$
\begin{aligned}
& A^{*} B^{*}=I_{n} \text { and } B^{*} A^{*}=I_{m} \quad 0 \text {. But then } \operatorname{det}(A * B *)=I_{n} \text { and } \operatorname{det}\left(B^{*} A^{*}\right)=0 \text {. } \\
& 0 \quad 0
\end{aligned}
$$

Since A^{*} and B^{*} are matrices over commutative ring R , so $\operatorname{det}\left(\mathrm{A}^{*} \mathrm{~B}^{*}\right)$ $\operatorname{det}\left(B^{*} A^{*}\right)$, which yield a contradiction. Hence $M \geq N$. By symmetry $N \geq M$ i.e. $\mathrm{M}=\mathrm{N}$.

4.3 RESULT ON $H_{R}(M, M)$ AND WEDDENBURN ARTIN THEOREM

k
4.3.1 Theorem 4. Let $\mathrm{M}=\sum M_{i}$ be a direct sum of R -modules M_{i}. Then $i=1$
 ring (Here right hand side is a ring T (say) of $K \times K$ matrices $f=\left(f_{i j}\right)$ under the usual matrix addition and multiplication, where $f_{i j}$ is an element of $\operatorname{Hom}_{R}\left(M_{j}\right.$, M_{i}).
Proof. We know that for are submodules X and $\mathrm{Y}, \operatorname{Hom}_{\mathrm{R}}(\mathrm{X}, \mathrm{Y})$ (=set of all homomorphisms from X to Y) becomes a ring under the operations ($f+g$) $x=f(x)+g(x)$ and $f(x)=f(g(x)), f, g \operatorname{Hom}_{R}(X, Y)$ and x X. Further $\lambda_{j}: M_{j}$
$\rightarrow \mathrm{M}$ and $\Pi_{\mathrm{i}}: \mathrm{M} \rightarrow \mathrm{M}_{\mathrm{i}}$ are two mappings defined as:
$\lambda_{j}\left(x_{j}\right)=\left(0, \ldots, x_{j}, \ldots, 0\right)$ and $\pi_{i}\left(x_{1}, \ldots, x_{i}, \ldots, x_{k}\right)=x_{i}$. (These are called inclusion and projection mappings). Both are homomorphisms. Clearly, $\pi_{i} \varphi$ $\lambda_{j}: \mathrm{M}_{\mathrm{j}} \rightarrow \mathrm{M}_{\mathrm{i}}$ is an homomorphism, therefore, $\pi_{\mathrm{i}} \varphi \lambda_{\mathrm{j}} \operatorname{Hom}_{\mathrm{R}}\left(\mathrm{M}_{\mathrm{j}}, \mathrm{M}_{\mathrm{i}}\right)$. Define a mapping $\sigma: \operatorname{Hom}_{R}(M, M) \rightarrow T$ by $\sigma(\varphi)=\left(\pi_{i} \varphi \lambda_{j}\right), \varphi \operatorname{Hom}_{R}(M, M)$ and $\left(\pi_{i}\right.$ $\varphi \lambda_{\mathrm{j}}$) is $\mathrm{k} \times \mathrm{k}$ matrix whose $(\mathrm{i}, \mathrm{j})^{\text {th }}$ enrty is $\pi_{\mathrm{i}} \varphi \lambda_{\mathrm{j}}$. We will show that σ is an isomorphism. Let $\varphi_{1}, \varphi_{2} \operatorname{Hom}_{R}(M, M)$. Then

$$
\begin{aligned}
& \sigma\left(\varphi_{1}+\varphi_{2}\right)=\left(\Pi_{\mathrm{i}}\left(\varphi_{1}+\varphi_{2}\right) \lambda_{\mathrm{j}}\right)=\left(\Pi_{\mathrm{i}} \varphi_{1} \lambda_{\mathrm{j}}+\Pi_{\mathrm{i}} \varphi_{2} \lambda_{\mathrm{j}}\right)=\left(\Pi_{\mathrm{i}} \varphi_{1} \lambda_{\mathrm{j}}\right)+\quad\left(\pi_{\mathrm{i}}\right. \\
& \left.\varphi_{2} \lambda_{\mathrm{j}}\right) \\
& +\sigma\left(\varphi_{2}\right) \text { and } \sigma\left(\varphi_{1}\right) \sigma\left(\varphi_{2}\right)=\left(\Pi_{\mathrm{i}} \varphi_{1} \lambda_{\mathrm{j}}\right)\left(\Pi_{\mathrm{i}} \varphi_{2} \lambda_{\mathrm{j}}\right)=\Sigma \pi_{i} \varphi_{1} \lambda_{l} \Pi_{l} \varphi_{2} \lambda_{j}^{k} \\
& l=1
\end{aligned}
$$

$=\pi_{i} \varphi_{1} \lambda_{1} \Pi_{1} \varphi_{2} \lambda_{j}+\pi_{i} \varphi_{1} \lambda_{2} \Pi_{2} \varphi_{2} \lambda_{j}+\ldots+\pi_{i} \varphi_{1} \lambda_{k} \Pi_{k} \varphi_{2} \lambda_{j}$
$=\Pi i \varphi 1\left(\lambda 1 \pi_{1}+\ldots+\lambda k \pi k\right) \varphi 2 \lambda j$. Since for $(\mathrm{x} 1, \ldots, \mathrm{xi}, \ldots, \mathrm{xk})=\mathrm{x} \in \mathrm{M}, \lambda_{i} \Pi_{\mathrm{i}} \quad(\mathrm{x})=$
$\lambda_{\mathrm{i}}\left(\mathrm{xi}_{\mathrm{i}}\right)=\quad(0, \ldots, \quad \mathrm{Xi}, \quad \ldots, 0), \quad$ therefore,$\quad\left(\lambda 1 \Pi_{1}+\lambda 2 \Pi_{2}+\ldots+\lambda_{k} \Pi_{k}\right)(\mathrm{x})=$ $\left(\lambda_{1} \Pi_{1}(x)+\lambda_{2} \Pi_{2}(x)+\ldots+\lambda_{k} \Pi_{k}(x)=\left(\mathrm{x}_{1}, \ldots, 0\right)+\left(0, \mathrm{x}_{2}, \ldots, 0\right)+\ldots+\left(0, \ldots, \mathrm{x}_{\mathrm{k}}\right)=\right.$ $\left(x_{1}, x_{2}, \ldots, x_{k}\right)=x$. Hence $\left(\lambda_{1} \pi_{1}+\lambda_{2} \pi_{2}+\ldots+\lambda_{k} \pi_{k}\right)=I$ on M. Thus $\sigma\left(\varphi_{1}\right) \sigma\left(\varphi_{2}\right)=\Pi_{i} \varphi_{1} \varphi_{2} \lambda j=\sigma\left(\varphi_{1} \varphi_{2}\right)$. Hence σ is an homomorphism. Now we will show that σ is one-one. For it let $\sigma(\varphi)=\left(\Pi_{i} \varphi \lambda_{j}\right)=0$. Then $\Pi_{i} \varphi \lambda_{j}=0$ for each $\mathrm{i}, \mathrm{j} ; 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{k}$. But then $\Pi_{1} \varphi \lambda_{\mathrm{j}}+\pi_{2} \varphi \lambda_{\mathrm{j}}+\ldots+\Pi_{\mathrm{k}} \varphi \lambda_{\mathrm{j}}=0$. Since $\sum_{i}^{k} \pi_{i}$ is an $i=1$
identity mapping on M , therefore, $\underset{i=1}{\left(\sum_{i=1}^{k} \pi_{i}\right) \varphi \lambda_{i}} \Rightarrow \varphi \lambda_{j}=0$. But then $\varphi \sum_{j=1}^{k} \lambda_{j}=$ 0 and hence $\varphi=0$. Therefore, the mapping is one-one. Let $f=\left(f_{\mathrm{ij}}\right) \in \mathrm{T}$, where $f_{\mathrm{ij}}: \mathrm{M}_{\mathrm{j}} \rightarrow \mathrm{M}_{\mathrm{i}}$ is an R-homomorphism. Set $\Psi=\sum_{i, j} \lambda_{i} f_{i j} \pi j$. Since for each i and $\mathrm{j}, \lambda_{i} f_{i j} \pi j$ is an homomorphism from M to M , therefore, $\sum_{j i, j} \lambda_{i} f_{i j} \pi$ is also an element of $\operatorname{Hom}(M, M)$. Since $\sigma(\varphi)$ is a square matrix of order k, whose (s, t) entry is f_{st}, therefore, $\sigma(\Psi)=\left(\Pi_{\mathrm{s}}\left(\sum_{j} \lambda_{i} f_{i j} \Pi_{j}\right) \lambda_{\mathrm{t}}\right)$. As $\Pi_{\mathrm{p}} \lambda_{\mathrm{q}}=\delta_{\mathrm{pq}}$, therefore, $\Pi_{\mathrm{s}}(i$, $\left.\sum \lambda_{i} f_{i j}{ }^{\pi} j\right) \lambda_{\mathrm{t}}=f_{\mathrm{st}}$. Hence $\sigma(\Psi)=\left(f_{\mathrm{ij}}\right)=f$ i.e. mapping is onto also. Thus σ is an i, j
isomorphism. It proves the result.

Third lecture

4.3.2 Definition. Nil Ideal. A left ideal A of R is called nil ideal if each element of it nilpotent.

Example. Every Nilpotent ideal is nil ideal.
4.3.3 Theorem. If J is nil left ideal in an Artinian ring R, then J is nilpotent.

Proof. Suppose $\mathrm{J}^{\mathrm{k}} \neq(0)$. For some positive integer k. Consider a family $\left\{\mathrm{J}, \mathrm{J}^{2}\right.$, $\ldots\}$. Because R is Artinian ring, this family has minimal element say $\mathrm{B}=\mathrm{J}{ }^{\mathrm{m}}$. Then $\mathrm{B}^{2}=\mathrm{J}^{2 \mathrm{~m}}=\mathrm{J}{ }^{\mathrm{m}}=\mathrm{B}$ implies that $\mathrm{B}^{2}=\mathrm{B}$. Now consider another family $f=\{\mathrm{A} \mid \mathrm{A}$
is left ideal contained in B with $\mathrm{BA} \neq(0)$. $\mathrm{As} \mathrm{BB}=\mathrm{B} \neq(0)$, therefore, f is non empty. Since it is a family of left ideals of an Artinian ring R, therefore, it
has minimal element. Let A be that minimal element in f. Then $\mathrm{BA} \neq(0)$ i.e. there exist a in A such that $\mathrm{Ba} \neq(0)$ Because A is an ideal, therefore, $\mathrm{Ba} \subseteq \mathrm{A}$ and $\mathrm{B}(\mathrm{Ba})=\mathrm{B}^{2} \mathrm{a}=\mathrm{Ba} \neq(0)$. Hence $\mathrm{Ba} \in f$. Now the minimality of A implies that $\mathrm{Ba}=\mathrm{A}$. Thus $b a=a$ for some $b \in B$. But then $b^{i} a=a \forall i \geq 1$. Since b is nilpotent element, therefore, $\mathrm{a}=0$, a contradiction. Hence for some integer $\mathrm{k}, \mathrm{J}^{\mathrm{k}}=(0)$.

Theorem. Let R be Noetherian ring. Then the sum of nilpotent ideals in R is a nilpotent ideal.

$$
\text { Proof. Let } \mathrm{B}=\sum_{i \in \Lambda} A i \text { be the sum of nilpotent ideals in R. Since } \mathrm{R} \text { is }
$$

noetherian, therefore, every ideal of R is finitely generated. Hence B is also finitely generated. Let $\mathrm{B}=\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{t}}\right\rangle$. Then each x_{i} lies in some finite number of A_{i} 's say $A_{1}, A_{2}, \ldots, A_{n}$. Thus $B=A_{1}+A_{2}+\ldots+A_{n}$. But we know that finite sum of nilpotent ideals is nilpotent. Hence B is nilpotent.
4.3.4 Lemma. Let A be a minimal left ideal in R. Then either $A^{2}=(0)$ or $A=R e$.

Proof. Suppose that $A^{2} \neq(0)$. Then there exist $a \in A$ sucht that $A a \neq(0)$. But $\mathrm{Aa} \subseteq \mathrm{A}$ and the minimality of A shows that $\mathrm{Aa}=\mathrm{A}$. From this it follows that there exist e in A such that ea=a. As a is non zero, therefore, ea $\neq 0$ and hence $e \neq 0$. Let $B=\{c \in A \mid c a=0\}$, then B is a left ideal of A. Since ea $\neq 0$, therefore, $e \notin B$. Hence B is proper ideal of A. Again minimality of A implies that $\mathrm{B}=(0)$. Since $\mathrm{e}^{2} \mathrm{a}=$ eea $=e \mathrm{a} \Rightarrow\left(\mathrm{e}^{2}-e\right) \mathrm{a}=0$, therefore, $\left(\mathrm{e}^{2}-e\right) \in \mathrm{B}=(0)$. Hence $\mathrm{e}^{2}=e$. i.e e is an idempotent in R. As $0 \neq \mathrm{e}=\mathrm{e}^{2}=\mathrm{e} . \mathrm{e} \in \operatorname{Re}$, therefore, Re is a non zero subset of A . But then $\mathrm{Re}=\mathrm{A}$. It proves the result.
4.3.5 Theorem. (Wedderburn-Artin). Let R be a left (or right) artinian ring with unity and no nonzero nilpotent ideals. Then R is isomorphic to a finite direct sum of matrix rings over the division ring.

Proof. First we will show that each non zero left ideal in R is of the form Re for some idempotent. Let A be a non-zero left ideal in R. Since R is artinian, therefore, A is also artinian and hence every family of left ideal of A contains a minimal element i.e. A has a minimal ideal M say. But then $\mathrm{M}^{2}=(0)$ or $\mathrm{M}=$ Re for some idempotent e of R . If $\mathrm{M}^{2}=(0)$, then
$(M R)^{2}=(M R)(M R)=M(R M) R=M M R=M^{2} R=(0)$. But then $M R$ is nilpotent. Thus by given hypothesis $\mathrm{MR}=(0)$. Now $\mathrm{MR}=(0)$ implies that $\mathrm{M}=(0)$, a contradiction. Hence $\mathrm{M}=\mathrm{Re}$. This yields that each non zero left ideal contains a nonzero idempotent. Let $\mathrm{f}=\{\mathrm{R}(1-\mathrm{e}) \cap \mathrm{A} \mid \mathrm{e}$ is a non-zero idempotent in A$\}$. Then f is non empty. Because M is artinian, f has a minimal member say $R(1-e) \cap A$. We will show that $\mathrm{R}(1-\mathrm{e}) \cap \mathrm{A}=(0)$. If $\mathrm{R}(1-\mathrm{e}) \cap \mathrm{A} \neq(0)$ then it has a non zero idempotent e_{1}. Since $e_{1}=r(1-e)$, therefore, $e_{1} e=r(1-e) e r\left(e-e^{2}\right)=0$. Take $e^{*}=e+e_{1}-e e_{1}$. Then $\left(e^{*}\right)^{2}=\left(e+e_{1}-e e_{1}\right)\left(e+e_{1}-e e_{1}\right)=e e+e_{1} e-e e_{1} e+e e_{1}+e_{1} e_{1}-e e_{1} e_{1}-$ eee $_{1}-\mathrm{e}_{1} \mathrm{ee}_{1}+$ ee $_{1} \mathrm{ee}_{1}=\mathrm{e}+0-\mathrm{e} 0+\mathrm{ee}{ }_{1}+\mathrm{e}_{1}-\mathrm{ee}_{1}-\mathrm{ee}_{1}-0 e_{1}+e 0 e_{1}=e+e_{1}-\mathrm{ee}_{1}=$ e^{*} i.e. we have shown that e^{*} is an idempotent. But $e_{1} e^{*}=e_{1} e+e_{1} e_{1}$
$-e_{1} e_{1}=e_{1} \neq 0$ implies that $e_{1} \notin R\left(1-e^{*}\right) \cap A$. (Because if $e_{1} \in R\left(1-e^{*}\right) \cap A$, then $e_{1}=r\left(1-e^{*}\right)$ for some $r \in R$ and then $\left.e_{1} e^{*}=r\left(1-e^{*}\right) e^{*}=r\left(e^{*}-e^{*} e^{*}\right)=0\right)$. More over for $r\left(1-e^{*}\right) \in R\left(1-e^{*}\right), r\left(1-e^{*}\right)=r\left(1-e-e_{1}+e e_{1}\right)=r\left(1-e-e_{1}(1-e)\right)=r(1-$ $\left.e_{1}\right)(1-e)=s(1-e)$ for $s=r\left(1-e_{1}\right) \in R$, therefore, Hence $R\left(1-e^{*}\right) \cap A$ is proper subset of $R(1-e) \cap A$. But it is a contradiction to the minimality of $R(1-e) \cap A$ in f. Hence $R(1-e) \cap A=(0)$. Since for $a \in A, a(1-e) \in R(1-e) \cap A$, therefore, $a(1-$ e) $=(0)$ i.e. $\mathrm{a}=\mathrm{ae}$. Then $\mathrm{A} \supseteq \operatorname{Re} \supseteq \mathrm{Ae} \supseteq \mathrm{A} \Rightarrow \mathrm{A}=\operatorname{Re}$.

For an idempotent e of $R, \operatorname{Re} \cap \mathrm{R}(1-\mathrm{e})=(0)$. Because if $x \in \operatorname{Re} \cap \mathrm{R}(1-\mathrm{e})$, then $\mathrm{x}=\mathrm{re}$ and $\mathrm{x}=\mathrm{s}(1-\mathrm{e})$ for some r and s belonging to R . But then $\mathrm{re}=\mathrm{s}(1-\mathrm{e}) \Rightarrow$ ree $=s(1-e) e \Rightarrow r e=s\left(e-e^{2}\right)=0$ i.e. $x=0$. Hence $\operatorname{Re} \cap R(1-e)=(0)$. Now let S be the sum of all minimal left ideals in R. Then $S=R e$ for some idempotent e in R. If $\mathrm{R}(1-\mathrm{e}) \neq(0)$, then there exist a minimal left ideal A in $\mathrm{R}(1-\mathrm{e})$. But then $\mathrm{A} \subseteq$ $\operatorname{Re} \cap \mathrm{R}(1-\mathrm{e})=(0)$, a contradiction. Hence, $\mathrm{R}(1-\mathrm{e})=(0)$ i.e
$R=\operatorname{Re}=S=\sum A_{i}$ where $\left(A_{i}\right)_{i} \in \Lambda$ is the family of minimal left ideals in R. But $i \in \Lambda$
then there exist a subfamily $\left(A_{i}\right)_{i} \in \Lambda *$ of the family $\left(A_{i}\right)_{i} \in \Lambda$ such that $\mathrm{R}=\oplus \sum_{\mathrm{i} \in \Lambda^{*}} \mathrm{~A}_{\mathrm{i}}$. Let $1=\mathrm{e}_{\mathrm{i}} \underset{1}{ }+\mathrm{e}_{\mathrm{i}_{2}}+\ldots+\mathrm{e}_{\mathrm{i}}^{\mathrm{n}}$. Then $\mathrm{R}=\mathrm{Re}_{\mathrm{i}_{1}}{ }_{1}^{\oplus} . . \oplus \mathrm{Re}_{\mathrm{i}}{ }_{\mathrm{n}}$ (because for $\left.r \in R, 1=e_{i}+e_{i}+\ldots+e_{i} \Rightarrow r=r e_{i}+r e_{i}+\ldots+r e_{i}\right)$. After reindexing if necessary, we may write $\quad \mathrm{R}=\mathrm{Re}_{1} \oplus \mathrm{Re}_{2}{ }^{\oplus} \ldots \oplus \mathrm{Re}_{\mathrm{n}}$, a direct sum of minimal left ideals. In this family of minimal left ideals $\mathrm{Re}_{1}, \mathrm{Re}_{2}, \ldots, \mathrm{Re}_{\mathrm{n}}$, choose a largest subfamily consisting of all minimal left ideals that are not isomorphic to each other as left R-modules. After renumbering if necessary, let this
subfamily be $\operatorname{Re}_{1}, \operatorname{Re}_{2}, \ldots, \operatorname{Re}_{\mathrm{k}}$. Suppose the number of left ideal in the family $\left(\operatorname{Re}_{\mathrm{i}}\right), 1 \leq \mathrm{i} \leq \mathrm{n}$, that are isomorphic to Re_{i} is n_{i}. Then
$\mathrm{n}_{1} \underset{64748}{\text { summands }} \quad \mathrm{n}_{2} \underset{64748}{\text { summands }} \quad \mathrm{n}_{\mathrm{k}}$ summands
$\mathrm{R}=\left[\operatorname{Re}_{1}{ }^{\oplus} \ldots\right] \quad \oplus\left[\operatorname{Re}_{2}{ }^{\oplus} \ldots\right] \quad \oplus \ldots \oplus\left[\operatorname{Re}_{\mathrm{k}}{ }^{\oplus} \ldots\right]$ where each set of brackets contains pair wise isomorphic minimal left ideals, and no minimal left ideal in any pair of bracket is isomorphic to minimal left ideal in another pair. Since $\operatorname{Hom}_{\mathrm{R}}\left(\mathrm{Re}_{\mathrm{i}}, \mathrm{Re}_{\mathrm{j}}\right)=(0)$ for $\mathrm{i} \neq \mathrm{j}, 1 \leq \mathrm{i}, \mathrm{j} \leq \mathrm{k}$ and $\operatorname{Hom}_{\mathrm{R}}\left(\mathrm{Re}_{\mathrm{i}}, \mathrm{Re}_{\mathrm{i}}\right)=\mathrm{D}_{\mathrm{i}}$ is a division ring(by shcur's lemma). Thus by Theorem 4, we get $\operatorname{Hom}_{R}(R, R) \cong$

0
$\left|\begin{array}{ccc}D_{k} & L D_{k} \\ M & & M \\ D_{k} & L & D_{k}\end{array}\right|$
$\cong\left(D_{1}\right)_{n 1} \quad \ldots\left(D_{k}\right)_{n k}$. But since $\operatorname{Hom}_{R}(M, M) \cong R^{o p}$ (under the mapping f: $R^{\text {op }} \rightarrow \operatorname{Hom}_{R}(M, M)$ given by $f(a)=a^{*}$ where $\left.a^{*}(x)=a o x=x a\right)$ as rings and the opposite ring of a division ring is a division ring. Since $R^{\text {op }} \cong R$, therefore, R is finite direct sum of matrix rings over division rings.

4.4 UNIFORM MODULES, PRIMARY MODULES AND NOETHERLASKAR THOEREM

4.4.1 Definition. Uniform module. A non zero module M is called uniform if any two nonzero submodules of M have non zero intersection.

Example. Z as Z-module is uniform as: Since Z is principal ideal domain, therefore, the two sub-modules of it are <a> and say, then <ab> is another submodule which is contained in both <a> and . Hence intersection of any two nonzero sub-modules of M is non zero. Thus Z is a uniform module over Z.
4.4.2 Definition. If U and V are uniform modules, we say U is sub-isomorphic to V provided that U and V contains non zero isomorphic sub-modules.
4.4.3 Definition. A module M is called primary if each non zero sub-module of M has uniform sub-module and any two uniform sub-modules of M are subisomorphic.
Example. Z is a primary module over Z.

Fourth lecture

4.4.4 Theorem. Let M be a Noetherian module or any module over a Noetherian ring. Then each non zero submodule contains a uniform module.

Proof. Let N be a non zero submodule of M. Then there exist $x(\neq 0) \in N$. Consider the submodule $x R$ of N. Then it is enough to prove that $x R$ contains a uniform module. If M is Noetherian, then the every submodule of M is noetherian and hence $x R$ is also noetherian and if R is Noethrian then, being a homomorphic image of Noetherian ring R, xR is also Noetherian. Thus, for both cases, xR is Noetherian.

Consider a family \boldsymbol{f} of submodules of xR as: $\boldsymbol{f}=\{\mathrm{N} \mid \mathrm{N}$ has a zero intersection with at least one submodule of xR$\}$. Then $\{0\} \in f$. Since xR is noetherian, therefore, f has maximal element K (say). Then there exist an submodule U of $x R$ such that $K \cap U=\{0\}$. We claim U is uniform. Otherwise, there exist submodules A, B of U such that $A \cap B=\{0\}$. Since $K \cap U=\{0\}$, therefore, we can talk about $K \oplus A$ as a submodule of $x R$ such that $K \oplus A$ $\cap \mathrm{B}=\{0\}$. But then $\mathrm{K} \oplus \mathrm{A} \in f$, a contradiction to the maximality of K . This contradiction show that U is uniform. Hence $\mathrm{U} \subseteq x \mathrm{R} \subseteq \mathrm{N}$. Thus every submodule N contains a uniform submodule.
4.4.5 Definition. If R is a commutative noetherian ring and P is a prime ideal of R, then P is said to be associated with module M if R / P imbeds in M or equivalently, $P=r(x)$ for some $x \in M$, where $r(x)=\{a \in R \mid x a=0\}$.
4.4.6 Definition. A module M is called P - primary for some prime ideal P if P is the only prime associated with M.
4.4.7 Theorem. Let U be a uniform module over a commutative noetherain ring R . Then U contains a submodule isomorphic to R / P for precisely one prime ideal P. In other words U subisomorphic to R / P for precisely one ideal P. Proof. Consider the family f of annihilators of ideals $\mathrm{r}(\mathrm{x})$ for non zero $\mathrm{x} \in \mathrm{U}$. Being a family of ideals of noetherian ring R, f has a maximal element $\mathrm{r}(\mathrm{x})$ say. We will show that $\mathrm{P}=\mathrm{r}(\mathrm{x})$ is prime ideal of R . For it let $\mathrm{ab} \in \mathrm{r}(\mathrm{x}), \mathrm{a} \notin \mathrm{r}(\mathrm{x})$. As $a b \in r(x) \Rightarrow(a b) x=0$. Since $x a \neq 0$, therefore, $b(x a)=0 \Rightarrow b \in r(x a)$. More over for $\mathrm{t} \in \mathrm{r}(\mathrm{xa}) \Rightarrow \mathrm{t}(\mathrm{xa})=0 \Rightarrow(\mathrm{ta}) \mathrm{x}=0 \Rightarrow \mathrm{r}(\mathrm{xa}) \in f$. Clearly $\mathrm{r}(\mathrm{x}) \subseteq$ $\mathrm{r}(\mathrm{xa})$. Thus the maximality of $\mathrm{r}(\mathrm{x})$ in f implies that $\mathrm{r}(\mathrm{xa})=\mathrm{r}(\mathrm{x})$ i.e. $\mathrm{b} \in \mathrm{r}(\mathrm{x})$. Hence $r(x)$ is prime ideal of R. Define a mapping from R to $x R$ by $\theta(r)=x r$. Then it is an homomorphism from R to $x R$. Kernal $\theta=\{r \in R \mid x r=0\}$. Then Kernal $\theta=r(x)$. Hence by fundamental theorem on homomorphism, $R / r(x) \cong$ $x R=R / P$. Therefore R / P is embeddable in U. Hence $[R / P]=[R / Q]$. this implies that there exist cyclic submodules $x R$ and $y R$ of R / P and R / Q respectively such that $x R \cong y R$. But then $R / P \cong R / Q$, which yields $P=Q$. It prove the theorem.
4.4.8 Note. The ideal in the above theorem is called the prime ideal associated with the uniform module U .
4.4.9 Theorem. Let M be a finitely generated ideal over a commutative noetherian ring R. Then there are only a finite number of primes associated with M. Proof. Take a family f consisting of the direct sum of cyclic uniform submodules of M . Since every submodule M over a noehtrian ring contains a uniform submdule, therefore, f is non empty. Define a relation \leq, on the set of elements of f by $\oplus \sum \mathrm{xiR} \leq \oplus \sum \mathrm{x} \mathrm{jR}$ iff $\mathrm{I} \subseteq \mathrm{J}$ and $\mathrm{xi} \mathrm{R} \subseteq \mathrm{yj}_{\mathrm{j}} \mathrm{f}$ for some $\mathrm{j} \in \mathrm{J}$.

$$
i \in I \quad j \in J
$$

This relation is a partial order relation on f. By Zorn's lemma F has a maximal member $K=\oplus \sum x i R$. Since M is noetherian, therefore, K is finitely

$$
\mathrm{i} \in \mathrm{I}
$$

generated. Thus $K=\oplus \sum_{i=1} x i R^{2}$. By theorem, 4.2.7, there exist $x_{i a i} \in x i R^{R}$ such
that $r\left(x_{i a i}\right)=P i$, the ideal associated with $x i R$. Set $x_{i}{ }^{*}=x i a i$ and $K^{*}=\oplus \sum^{t} x^{*}{ }_{i R}$.

Let $\mathrm{Q}=\mathrm{r}(\mathrm{x})$ be the prime ideal associated with M . We shall show that $\mathrm{Q}=\mathrm{P}_{\mathrm{i}}$ for some $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{t}$.

Since K is a maximal member of f, therefore, K as well as K * has the property that each has non zero intersection with each submodule L of

$$
\text { M. Now let } 0 \neq \mathrm{y} \in \mathrm{xR} \cap \mathrm{~K}^{*} \text {. Write } \mathrm{y}=\oplus \Sigma^{\mathrm{t}} \mathrm{x}^{*} \text { ibi }=\mathrm{xb} \text {. We will show }
$$ that $r\left(x_{i} \quad b_{i}\right)=i=1$

$r\left(x_{i}{ }^{*}\right)$ whenever $\mathrm{x}_{\mathrm{i}}{ }^{*} \mathrm{~b}_{\mathrm{i}} \neq 0$. Clearly, $\mathrm{r}\left(\mathrm{x}_{\mathrm{i}}\right) \subseteq \mathrm{r}\left(\mathrm{x}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}\right)$. Let $\mathrm{x}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}} \mathrm{c}=0$. Then $\mathrm{b}_{\mathrm{i}} \mathrm{c}$ $r\left(x_{i}{ }^{*}\right)=P_{i}$ and so $c \in P_{i}$ since $b_{i} \notin P_{i}$. Hence, $c \in r\left(x_{i}{ }^{*}\right)$.

$$
\text { Further, we note } Q=r(x)=r(y)=\operatorname{lr}\left(x_{i}{ }_{i} b_{i}\right)={ }_{i=1}^{t} \quad \operatorname{IP}_{i \in \Lambda} \text {, omitting those terms }
$$

from $\mathrm{x}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}=0$, where $\wedge \subset\{1,2, \ldots, \mathrm{t}\}$. Therefore, $\mathrm{Q} \subseteq \mathrm{P}_{\mathrm{i}}$ for all $\mathrm{i} \in \wedge$. Also $\Pi \mathrm{P}_{\mathrm{i}} \subset \mathrm{IP}_{\mathrm{i}}=\mathrm{Q}$. Since Q is a prime ideal, at least one P_{i} appearing in the $i \in \Lambda \quad i \in \Lambda$
product $\Pi \mathrm{P}_{\mathrm{i}}$ must be contained in Q . Hence $\mathrm{Q}=\mathrm{P}_{\mathrm{i}}$ for some i .
$\mathrm{i} \in \wedge$
4.4.10 Theorem.(Noether-Laskar theorem). Let M be a finitely generated ideal over a commutative noetherian ring R. Then there exist a finite family $N_{1}, N_{2}, \ldots, N_{t}$ of submodules of M such that
(a) $\underset{\substack{\mathrm{t} \\ \mathrm{i}=1}}{\mathrm{~N}_{\mathrm{i}}=(0) \text { and }} \underset{\mathrm{i}=1}{\mathrm{I}} \mathrm{N}_{\mathrm{i}} \neq(0)$ for $1 \leq \mathrm{i} 0 \quad \leq \mathrm{t}$.
$i \neq \mathrm{i}_{0}$
(b) Each quotient module $\mathrm{M} / \mathrm{N}_{\mathrm{i}}$ is a P_{i} - primary module for some prime ideal P_{i}.
(c) The P_{i} are all distinct, $1 \leq \mathrm{i} \leq \mathrm{t}$.
(d) The primary component N_{i} is unique iff P_{i} does not contain P_{j} for some $\mathrm{j} \neq \mathrm{i}$.

Proof. Let $\mathrm{U}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{t}$, be a uniform sub module obtained as in the proof of the Theorem 4.4.9. Consider the family $\{\mathrm{K} \mid \mathrm{K}$ is a subset of M and K contains no submodule subisomorphic to $\left.\mathrm{U}_{\mathrm{i}}\right\}$. Let N_{i} be a maximal member of this family, then with this choice of N_{i}, (a), (b) and (c) follows directly.

Fifth lecture

4.5 SMITH NORMAL FORM

4.5.1 Theorem. Obtain Smith normal form of given matrix. Or if A is $m \times n$ matrix over a principal ideal domain R. Then A is equivalent to a matrix that has the

Proof. For non zero a, define the length $l(\mathrm{a})=$ no of prime factors appearing in the factorizing of , $\mathrm{a}=\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{r}}$ (p_{i} need not be distinct primes). We also take $l(a)$ if a is unit in R. If $A=0$, then the result is trivial otherwise, let $a_{i j}$ be the non zero element with minimum $l\left(\mathrm{a}_{\mathrm{ij}}\right)$. Apply elementary row and column operation to bring it $(1,1)$ position. Now a_{11} entry of the matrix so obtained is of smallest l value i.e. the non zero element of this matrix at $(1,1)$ position. Let a_{11} does not divide $\mathrm{a}_{1 \mathrm{k}}$. Interchanging second and $\mathrm{k}^{\text {th }}$ column so that we may suppose that a_{11} does not divide a_{12}. Let $\mathrm{d}=\left(\mathrm{a}_{11}, \mathrm{a}_{12}\right)$ be the greatest common divisor of a_{11} and a_{12}, then $\mathrm{a}_{11}=\mathrm{du}, \mathrm{a}_{12}=\mathrm{dv}$ and $l(\mathrm{~d})<l\left(\mathrm{a}_{11}\right)$. As $d=\left(a_{11}, a_{12}\right)$, therefore we can find s and $t R$ such that $d=\left(s a_{11}+\operatorname{ta}_{12}\right)=d(s u+$
$\mathrm{vt})$. Then we get that A

1 1
is a matrix whose first row is $(\mathrm{d}, 0$,
$\left.\mathrm{b}_{13}, \mathrm{~b}_{14}, \ldots \mathrm{~b}_{1 \mathrm{n}}\right)$ where $l(\mathrm{~d})<l\left(\mathrm{a}_{11}\right)$. If $\mathrm{a}_{11} \mid \mathrm{a}_{12}$, then $\mathrm{a}_{12}=\mathrm{ka}_{11}$. On applying, the operation $\mathrm{C}_{2}-\mathrm{kC}_{1}$ and $u^{\underline{1}} C_{1}$ we get the matrix whose first row is again of the form ($d, 0, b_{13}, b_{14}, \ldots b_{1 n}$). Continuing in this way we get a matrix whose first row and first column has all its entries zero except the first entry. This

$$
\mathrm{a}_{1} 0 \quad \mathrm{~L} 0
$$

matrix is $P_{1} A Q_{1} \quad 0 \quad$, where A_{1} is $(m-1) \times(n-1)$ matrix, and P_{1} and
M $\quad \mathrm{A}_{1}$
0
Q_{1} are $\mathrm{m} \times \mathrm{m}$ and $\mathrm{n} \times \mathrm{n}$ invertible matrices respectively. Now applying the same

$$
\begin{array}{llll}
a_{2} & 0 & L & 0
\end{array}
$$

process of A_{1}, we get that $\mathrm{P} \quad \underset{2}{\mathrm{AQ}}=0 \quad$, where A_{2} is $(\mathrm{m}-2) \times(\mathrm{n}-$

M	A_{2}
0	

2) matrix, and P_{2}^{\prime} and Q_{2} are $(\mathrm{m}-1) \times(\mathrm{m}-1)$ and $(\mathrm{n}-1) \times(\mathrm{n}-1)$ invertible matrices
respectively. Let $\mathrm{P}_{2} \quad \begin{array}{cc}1 & 0 \\ ={ }_{0} & \mathrm{P} \\ 2\end{array}$ and $\quad \mathrm{Q}_{2} \quad \begin{aligned} & 1 \\ & { }_{0}\end{aligned} \begin{aligned} & 0 \\ & \\ & \\ & 2\end{aligned}$. Then $\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{AQ}_{1} \mathrm{Q}_{2}=$ a1 $0 \quad \mathrm{~L} 0$
$0 \quad$ a2 \quad. Continuing in this way we get matrices P and Q such that $M \quad A_{2}$
0
$P A Q=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{r}, 0, \ldots 0\right)$. Finally we show that we can reduce PAQ so that $a_{1}\left|a_{2}\right| a_{3} \mid \ldots$. For it if a_{1} does not divide a_{2}, then add second row to the first row and obtain the matrix whose first row is $\left(a_{1}, a_{2}, 0,0, \ldots, 0\right)$. Again u t
multiplying PAQ by a matrix of the form

1 1

1
matrix such that $a_{1} \mid a_{2}$. Hence we can always obtain a matrix of required form.
4.5.2 Example. Obtain the normal smith form for a matrix $\begin{array}{lll}1 & 2 & 3 \\ 4\end{array}$.

$$
50
$$

Solution.

$$
\begin{aligned}
& 12 \quad 3^{n}{ }_{2}-4 R_{1} \\
& 4 \\
& 12^{5} \quad 0{ }_{3} \imath_{2}-\varkappa_{1} \iota_{3}-x_{1} \\
& \rightarrow \\
& \begin{array}{ccc}
0 & -3 & -12 \\
1 & 0 & 0
\end{array}{\underset{3}{ }-4 \mathrm{C}_{2}} \\
& u \quad \rightarrow
\end{aligned}
$$

4.6 FINITELY GENERATED ABELIAN GROUPS

4.6.1 Note. Let $G_{1}, G_{2}, \ldots G_{n}$ be a family of subgroup of G and let $G^{*}=G_{1} \ldots G_{n}$. Then the following are equivalent.
(i) $G_{1} \times \ldots \times G_{n} \quad G^{*}$ under the mapping $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ to $g_{1} g_{2} \ldots g_{n}$
(ii) G_{i} is normal in G^{*} and every element x belonging to G^{*} can be uniquely expressed as $\mathrm{x}=\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{\mathrm{n}}, \mathrm{g}_{\mathrm{i}} \mathrm{G}_{\mathrm{i}}$.
(iii) G_{i} is normal in G^{*} and if $\mathrm{e}=\mathrm{g}_{1} \mathrm{~g}_{2} \ldots \mathrm{~g}_{\mathrm{n}}$, then each $\mathrm{x}_{\mathrm{i}}=\mathrm{e}$.
(iv) G_{i} is normal in G^{*} and $G_{i} \cap G_{1} \ldots G_{i-1} G_{i+1} \ldots G_{n}=\{e\}, 1 \leq i \leq n$.
4.6.2 Theorem.(Fundamental theorem of finitely generated abelian groups). Let G be a finitely generated abelian group. Then G can be decomposed as a direct sum of a finite number of cyclic groups C_{i} i.e. $G=C_{1}{ }^{\oplus} C_{2}{ }^{\oplus} \ldots C_{t}$ where either all C_{i} 's are infinite or for some j less then $\mathrm{k}, \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots \mathrm{C}_{\mathrm{j}}$ are of order $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots \mathrm{~m}_{\mathrm{j}}$ respectively, with $\mathrm{m}_{1}\left|\mathrm{~m}_{2}\right| \ldots \mid \mathrm{m}_{\mathrm{j}}$ and rest of C_{i} 's are infinite.
Proof. Let $\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$ be the smallest generating set for G. If $t=1$, then G is itself a cyclic group and the theorem is trivially true. Let $\mathrm{t}>1$ and suppose that the result holds for all finitely generated abelian groups having order less then t. Let us consider a generating set $\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$ of element of G with the property that, for all integers $x_{1}, x_{2}, \ldots, x_{t}$, the equation

$$
x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{t} a_{t}=0
$$

implies that

$$
x_{1}=0, x_{2}=0, \ldots, x_{t}=0
$$

But this condition implies that every element in G has unique representation of the form

$$
\mathrm{g}=\mathrm{x}_{1} \mathrm{a}_{1}+\mathrm{x}_{2} \mathrm{a}_{2}+\ldots+\mathrm{x}_{\mathrm{t}} \mathrm{a}_{\mathrm{t}}, \mathrm{x}_{\mathrm{i}} \in \mathrm{Z}
$$

Thus by Note 4.6.1,

$$
\mathrm{G}=\mathrm{C}_{1} \oplus \mathrm{C}_{2}{ }^{\oplus} \ldots{ }^{\oplus} \mathrm{C}_{\mathrm{t}}
$$

where $\mathrm{C}_{\mathrm{i}}=\left\langle\mathrm{a}_{\mathrm{i}}\right\rangle$ is cyclic group generated by $\mathrm{a}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{t}$. By our choice on element of generated set each C_{i} is infinite set (because if C_{i} is of finite order say r_{i}, then $\left.r_{i} a_{i}=0\right)$. Hence in this case G is direct sum of finite number of infinite cyclic group.

Now suppose that that G has no generating set of t elements with the property that $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{t} a_{t}=0 \Rightarrow x_{1}=0, x_{2}=0, \ldots, x_{t}=0$. Then, given any generating set $\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}$ of G, there exist integers $x_{1}, x_{2}, \ldots, x_{t}$ not all zero such that

$$
x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{t} a_{t}=0
$$

As $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{t} a_{t}=0$ implies that $-x_{1} a_{1}-x_{2} a_{2}-\ldots-x_{t} a_{t}=0$, therefore, with out loss of generality we can assume that $\mathrm{x}_{\mathrm{i}}>0$ for at least one i. Consider all possible generating sets of G containing t elements with the
property that $x_{1} a_{1}+x_{2} a_{2}+\ldots+x_{t} a_{t}=0$ implies that at least one of $x_{i}>0$. Let X is the set of all such $\left(x_{1}, x_{2}, \ldots x_{t}\right) t$-tuples. Further let m_{1} be the least positive integers that occurring in the set t -tuples of set X . With out loss of generality we can take m_{1} to be at first component of that t-tuple $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$
i.e. $m_{1} a_{1}+x_{2} a_{2}+\ldots+x_{t} a_{t}=0$ (1) By division
algorithm, we can write, $\mathrm{x}_{\mathrm{i}}=\mathrm{q}_{\mathrm{i}} \mathrm{m}_{1}+\mathrm{si}_{\mathrm{i}}$, where $0 \leq \mathrm{si}^{(1)}$ becomes, $<\mathrm{m}_{1}$. Hence
$\mathrm{m}_{1} \mathrm{~b}_{1}+\mathrm{s}_{2} \mathrm{a}_{2}+\ldots+\mathrm{s}_{\mathrm{t}} \mathrm{a}_{\mathrm{t}}=0$, where $\mathrm{b}_{1}=\mathrm{a}_{1}+\mathrm{q}_{2} \mathrm{a}_{2}+\ldots+\mathrm{q}_{\mathrm{t}} \mathrm{a}_{\mathrm{t}}$.
Now if $b_{1}=0$, then $a_{1}=-q_{2} a_{2}-\ldots-q_{t} a_{t}$. But then G has a generator set containing less then t elements, a contradiction to the assumption that the smallest generator set of G contains t elements. Hence $b_{1} \neq 0$. Since $a_{1}=-b_{1}-$ $q_{2} a_{2}-\ldots-q_{t} a_{t}$, therefore, $\left\{b_{1}, a_{2}, \ldots, a_{n}\right\}$ is also a generator of G. But then by the minimality of $m_{1}, m_{1} b_{1}+s_{2} a_{2}+\ldots+s_{t} a_{t}=0 \Rightarrow s_{i}=0$ for all i. $2 \leq i \leq$ t. Hence $m_{1} b_{1}=0$. Let $C_{1}=\left\langle b_{1}\right\rangle$. Since m_{1} is the least positive integer such that $m_{1} b_{1}=0$, therefore, order of $C_{1}=m_{1}$.

Let G_{1} be the subgroup generated by $\left\{a_{2}, a_{3}, \ldots, a_{t}\right\}$. We claim that $G=C_{1} \oplus G_{1}$. For it, it is sufficient to show that $C_{1} \cap G_{1}=\{0\}$. Let $\mathrm{d} \in \mathrm{C}_{1} \cap \mathrm{G}_{1}$. Then $\mathrm{d}=\mathrm{x}_{1} \mathrm{~b}_{1}, 0 \leq \mathrm{x}_{1}<\mathrm{m}_{1}$ and $\mathrm{d}=\mathrm{x}_{2} \mathrm{a}_{2}+\ldots+\mathrm{x}_{\mathrm{t}} \mathrm{a}_{\mathrm{t}}$. Equivalently, $\mathrm{x}_{1} \mathrm{~b}_{1}+\left(-\mathrm{x}_{2}\right) \mathrm{a}_{2}+\ldots+\left(-\mathrm{x}_{\mathrm{t}}\right) \mathrm{a}_{\mathrm{t}}=0$. Again by the minimal property of $\mathrm{m}_{1}, \mathrm{x}_{1}=0$. Hence $\mathrm{C}_{1} \cap \mathrm{G}_{1}=\{0\}$.

Now G_{1} is generated by set $\left\{a_{2}, a_{2}, \ldots, a_{t}\right\}$ of $t-1$ elements. It is the smallest order set which generates G_{1} (because if G_{1} is generated by less then $\mathrm{t}-1$ elements then G can be generated by a set containing $\mathrm{t}-1$ elements, a contradiction to the assumption that the smallest generator of G contains t elements). Hence by induction hypothesis,

$$
\mathrm{G}_{1}=\mathrm{C}_{2} \oplus \ldots \oplus \mathrm{C}_{\mathrm{t}}
$$

where $\mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{k}}$ are cyclic subgroup of G that are either all are infinite or, for some $\mathrm{j} \leq \mathrm{t}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{j}}$ are finite cyclic group of order $\mathrm{m}_{2}, \ldots, \mathrm{~m}_{\mathrm{j}}$ respectively such that $\mathrm{m}_{2}\left|\mathrm{~m}_{3}\right| \ldots \mid \mathrm{m}_{\mathrm{j}}$, and C_{i} are infinite for $\mathrm{i}>\mathrm{j}$.

Let $\mathrm{C}_{\mathrm{i}}=\left[\mathrm{b}_{\mathrm{i}}\right], \mathrm{i}=2,3, \ldots, \mathrm{k}$ and suppose that C_{2} is of order m_{2}. Then $\left\{b_{1}, b_{2}, \ldots, b_{t}\right\}$ is the generating set of G and $m_{1} b_{1}+m_{2} b_{2}+0 . b_{3}+\ldots+$ $0 . \mathrm{b}_{\mathrm{k}}=0$. By repeating the argument given for (1), we conclude that $\mathrm{m}_{1} \mid \mathrm{m}_{2}$. This completes the proof of the theorem.
4.6.3 Theorem. Let G be a finite abelian group. Then there exist a unique list of integers $m_{1}, m_{2}, \ldots, m_{t}\left(\right.$ all $\left.m_{i}>1\right)$ such that order of G is $m_{1} m_{2} \ldots m_{t}$ and G $=\mathrm{C}_{1}{ }^{\oplus} \mathrm{C}_{2} \oplus \ldots \mathrm{C}_{\mathrm{t}}$ where $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{t}}$ are cyclic groups of order $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots$, m_{k} respectively. Consequently, $\mathrm{G} \cong \mathrm{Z}_{\mathrm{m} 1} \oplus \mathrm{Z}_{\mathrm{m} 1}{ }^{\oplus} \ldots \oplus \mathrm{Z}_{\mathrm{mt}}$.

Proof. By theorem 4.6.2, $\mathrm{G}=\mathrm{C}_{1} \oplus \mathrm{C}_{2} \oplus \ldots \oplus \mathrm{C}_{\mathrm{t}}$ where $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{t}}$ are cyclic groups of order $m_{1}, m_{2}, \ldots, m_{t}$ respectively, such that $m_{1}\left|m_{2}\right| \ldots \mid m_{t}$. As order of $S \times T=$ order of $S \times$ order of T, therefore, order of $G=m_{1} m_{2} \ldots m_{t}$. Since a cyclic group of order m is isomorphic to Z_{m} group of integers under the operation addition $\bmod \mathrm{m}$, therefore,

$$
\mathrm{G} \cong \mathrm{Z}_{\mathrm{m} 1} \oplus \mathrm{Z}_{\mathrm{m} 1}{ }^{\oplus} \ldots \oplus \mathrm{Z}_{\mathrm{mt}} .
$$

We claim that $m_{1}, m_{2}, \ldots, m_{t}$ are unique. For it, let there exists $n_{1}, n_{2}, \ldots, n_{r}$ such that $n_{1}\left|n_{2}\right| \ldots \mid n_{r}$ and $G=D_{1} \oplus D_{2} \oplus \ldots \oplus D_{r}$ where D_{j} are cyclic groups of order n_{j}. Since D_{r} has an element of order n_{r} and largest order of element of G is m_{t}, therefore, $n_{r} \leq m_{t}$. By the same argument, $m_{t} \leq n_{r}$. Hence $m_{t}=n_{r}$.

Now consider $\mathrm{m}_{\mathrm{t}-1} \mathrm{G}=\left\{\mathrm{m}_{\mathrm{t}-1} \mathrm{~g} \mid \mathrm{g} \in \mathrm{G}\right\}$. Then by two decomposition of G
we get

$$
\begin{aligned}
\mathrm{m}_{\mathrm{t}-1} \mathrm{G} & =\left(\mathrm{m}_{\mathrm{t}-1} \mathrm{C}_{1}\right)^{\oplus(}\left(\mathrm{m}_{\mathrm{t}-1} \mathrm{C}_{2}\right) \oplus \ldots \oplus\left(\mathrm{m}_{\mathrm{t}-1} \mathrm{C}_{\mathrm{t}}\right) \\
& =\left(\mathrm{m}_{\mathrm{t}-1} \mathrm{D}_{1}\right) \oplus\left(\mathrm{m}_{\mathrm{t}-1} \mathrm{D}_{2}\right) \oplus \ldots \oplus\left(\mathrm{m}_{\mathrm{t}-1} \mathrm{D}_{\mathrm{r}-1}\right) .
\end{aligned}
$$

As $m_{i} \mid m_{t-1}$ (it means m_{i} divides m_{t-1})for all $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{t}-1$, therefore, for all such $\mathrm{i}, \mathrm{m}_{\mathrm{t}-1} \mathrm{C}_{\mathrm{i}}=\{0\}$. Hence order of $\left(\mathrm{m}_{\mathrm{t}-1} \mathrm{G}\right)$ i.e. $\left|\mathrm{m}_{\mathrm{t}-1} \mathrm{G}\right|=\left|\left(\mathrm{m}_{\mathrm{t}-1} \mathrm{C}_{\mathrm{t}}\right)\right|=\left|\left(\mathrm{m}_{\mathrm{t}-1} \mathrm{D}_{\mathrm{r}}\right)\right|$. Thus $\left|\left(m_{t-1} D_{j}\right)\right|=1$ for $j=1,2, \ldots, r-1$. Hence $n_{r-1} \mid m_{t-1}$. Repeating the process by taking $\mathrm{m}_{\mathrm{r}-1} \mathrm{G}$, we get that $\mathrm{m}_{\mathrm{t}-1} \mid \mathrm{n}_{\mathrm{r}-1}$. Hence $\mathrm{m}_{\mathrm{t}-1}=\mathrm{n}_{\mathrm{r}-1}$. Continuing this process we get that $\mathrm{m}_{\mathrm{i}}=\mathrm{n}_{\mathrm{i}}$ for $\mathrm{i}=\mathrm{t}, \mathrm{t}-1, \mathrm{t}-2, \ldots$. But $\mathrm{m}_{1} \mathrm{~m}_{2} \ldots \mathrm{~m}_{\mathrm{t}}=|\mathrm{G}|=\mathrm{n}_{1} \mathrm{n}_{2} \ldots \mathrm{n}_{\mathrm{r}}$, therefore, $\mathrm{r}=\mathrm{t}$ and $\mathrm{m}_{\mathrm{i}}=\mathrm{n}_{\mathrm{i}}$ for all $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{k}$.
4.6.3 Corollary. Let A be a finitely generated abelian group. Then A $\cong Z^{S} \oplus \xrightarrow{\oplus} \ldots{ }^{(} \quad$, where s is a nonnegative integer and a_{i} are nonzero non-unit in Z, such that $a_{1}\left|a_{2}\right| \ldots \mid a_{r}$. Further decomposition of A shown above is unique in the sense that a_{i} are unique.

Sixth lecture

The abelian group generated by x_{1} and x_{2} subjected to the condition $2 \mathrm{x}_{1}=0,3 \mathrm{x}_{2}=0$ is isomorphic to $\mathrm{Z} /\langle 6\rangle$ because the matrix of these equation
is $\begin{array}{rr}2 & 0 \\ 0 & \text { has the smith normal form } \\ \\ 0\end{array}$
3 6

4.7 KEY WORDS

Uniform modules, Noether Lashkar, wedderburn artin, finitely generated.

4.8 SUMMARY

In this chapter, we study about Weddernburn theorem, uniform modules, primary modules, noether-laskar theorem, smith normal theorem and finitely generated abelian groups. Some more results on noetherian and artinian modules and rings are also studied.

4.9 SELF ASSESMENT QUESTIONS

(1) Let R be an artinain rings. Then show that the following sets are ideals and are equal:
(i) $\mathrm{N}=$ sum of nil ideals, (ii) $\mathrm{U}=$ some of nilpotent ideals, (iii) Sum of all nilpotent right ideals.
(2) Show that every uniform module is a primary module but converse may not be true

$$
\text { (3) Obtain the normal smith form of the matrix } \begin{array}{rrrr}
-x & 4 & -2 & \\
-3 & 8-x & 3 & \text { over the }
\end{array}
$$

$$
\begin{array}{lll}
4 & -8 & -2-x
\end{array}
$$

ring $\mathrm{Q}[\mathrm{x}]$.
(4) Find the abelian group generated by $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right\}$ subjected to the conditions
$5 x_{1}+9 x_{2}+5 x_{3}=0,2 x_{1}+4 x_{2}+2 x_{3}=0, x_{1}+x_{2}-3 x_{3}=0$

4.10 SUGGESTED READINGS

(1) Modern Algebra; SURJEET SINGH and QAZI ZAMEERUDDIN, Vikas

Publications.
(2) Basic Abstract Algebra; P.B. BHATTARAYA, S.K.JAIN, S.R.

NAGPAUL, Cambridge University Press, Second Edition.

