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4.1 INTRODUCTION  

 In last chapter, we have studied some more results on modules and 

 rings. In Section, 4.2, we study more results on noetherian and artinian 

 modules and rings. In next section, Weddernburn theorem is studied. Uniform 

 modules, primary modules, noether-laskar theorem and smith normal theorem 

 are studied in next two section. The last section is contained with finitely 

 generated abelian groups.  

4.2 MORE RESULTS ON NOETHERIAN AND ARTINIAN MODULES 
 

AND RINGS 
 

4.2.1  Theorem. Every principal ideal domain is Noetherian. 



Solution. Let D be a principal ideal domain and I1⊆ I2 ⊆ I3⊆…⊆In ⊆…be an 

ascending chain of ideals of D. Let I= U Ii . Then I is an ideal of D. Since D is 
 

i≥1 
 

principal ideal domain, therefore, there exist b∈D such that I=<b>. Since 

b∈D, therefore, b∈In for some n. Consequently, for m ≥ n, I ⊆ In ⊆ Im⊆ I. 

Hence In=Im for m ≥ n implies that the given chain of ideals becomes 

stationary at some point i.e. R is Noetherian. 
 

(2) (Z,+,.) is a Notherian ring. 
 

(3) Every field is Notherian ring. 
 

(4) Every finite ring is Notherian ring. 
 

 

4.2.2 Theorem. (Hilbert basis Theorem). If R is Noetherian ring with identity, then 

R[x] is also Noetherian ring. 

Proof. Let I be an arbitrary ideal of R[x]. To prove the theorem, it is sufficient 

to show that I is finitely generated. For each integer t≥0, define; 
 

It={r∈R : a0+a1x + …+ rx
t
}∪{0} 

 

Then It is an ideal of R such that It⊆It+1 for all t. But then I0 ⊆ I1 ⊆ I2 ⊆… is 

an ascending chain of ideals of R. But R is Noetherian, therefore, there exist an 

integer n such In=Im for all m≥0. Also each ideal Ii of R is finitely generated. 

Suppose that Ii =< ai1, ai2,..., aimi > for i=0, 1, 2, 3, …, n, where aij is the leading 

coefficient of a polynomial fij ∈I of degree i. We will show that 
 

m0+m1+…+mn  polynomials  f01, f02 , …, f0m 
0 

,  f11 , f12 , …, f1m  ,…, fn1, 
         1 

fn2 , …, fnm 
n 

generates I. Let J=< f01 , f02 , …, f0m 
0 

, 
f
11 , f12 , …, f1m  ,…, 

        1 

fn1, fn2 , …, fnmn >. Trivially J ⊆ I. Let f(≠ 0)∈R[x] be such that f∈I and 

of degree t (say): f=b0+b1x+…+bt-1x
t-1

 + bx
t
. We now apply induction on t. 

For t=0, f=b0∈I0 ⊆ J. Further suppose that every polynomial of I whose 

degree less than t also belongs to J. Consider following cases: 
 

Case 1. t > n. As t > n, therefore, leading coefficient b (of f)∈It=In (because 

It=In ∀ t ≥ n). But then b= r1an1 + r2an1 + ... + rmn anmn , ri ∈R. Now g = f-

(r1fn1 + r2fn1 + ... + rmn fnmn ) x
t-n

∈I having degree less than t (because the 



coefficient of x
t
 in g is b − r1an1 + r2an1 + ... + rmn anmn =0, therefore, by 

induction, f∈J. 
 

Case (2). t ≤ n. As b∈It, therefore, b = s1at1 + s2a t2 + ... + smt atmt ; si ∈R. 

Then h=f- (s1fn1 + s2fn1 + ... + smn fnmn ) ∈I, having degree less than t. 

Now by lsinduction hypothesis, h∈J ⇒ f∈J. Consequently, in either case 

I⊆J and hence I=J. Thus I is finitely generated and hence R[x] is Noetherian. 

It prove the theorem. 

 

4.2.3 Definition. A ring R is said to be an Artinian ring iff it satisfies the descending 

chain condition for ideals of R. 

 

4.2.4 Definition. A ring R is said to satisfy the minimum condition (for ideals) iff 

every non empty set of ideals of R, partially ordered by inclusion, has a 

minimal element. 

 

4.2.5 Theorem. Let R be a ring. Then R is Artinian iff R satisfies the minimum 

condition (for ideals). 

Proof. Let R be Artinian and f be a nonempty set of ideal of R. If I1 is not a 

minimal element in f, then we can find another ideal I2 in f such that I1 ⊃ I2. 

If f has no minimal element, the repetition of this process we get a non 

terminating descending chain of ideals of R, contradicting to the fact that R is 

Artinian. Hence f has minimal element. 
 

Conversely suppose that R satisfies the minimal condition. Let 

I1 ⊇ I2 ⊇ I3… be an descending chain of ideals of R. Consider F ={It : t=1, 

2, 3, …}. I1∈F ⇒ F is non empty. Then by hypothesis, F has a minimal 

element In for some positive integer n ⇒ Im⊆ In ∀ m ≥ n. 
 

Now Im ≠ In ⇒ Im∉F (By the minimality of In) , which is not 

possible. Hence Im= In ∀ m ≥ n i.e. R is Artinian. 

 

4.2.6 Theorem. Prove that an homomorphic image of a Noetherian(Artinian) ring is 

also Noetherian(Artinian). 



Proof. Let f be a homomorphic image of a Noetherian ring R onto the ring S. 
 

Consider the ascending chain of ideals of S: 
 

J1 ⊆ J2 ⊆ …⊆... (1) 

Suppose Ir=f
-1

(Jr), for r=1, 2, 3, ….  

I1 ⊆ I2 ⊆ …⊆… (2) 
 

Relation shown in (2) is an ascending chain of ideals of R. Since R is 

Noehterian, therefore, there exist positive integer n such that Im=In ∀ m≥n. 

This shows that Jm=Jn ∀ m≥n. But then S becomes Noetherian and the result 

follows. 

 

4.2.7 Corollary. If I is an ideal of a Noetherian(Artinian) ring, then factor module 

R
I is also Noetherian(Artinian). 

 

Proof. Since 
R

I  is homomorphic image of R, therefore, by Theorem 4.2.10, 
 

R
I is Noehterian.     
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4.2.8 Theorem. Let I be an ideal of a ring R. If R and 
R

I are both Noehterian rings, 
 

then R is also Noetherian. 
 

Proof. Let I1 ⊆ I2 ⊆ …⊆… be an ascending chain of ideals of R. Let f: R→ 

R
I . It is an natural homomorphism. But then f(I1) ⊆ f(I2) ⊆ …⊆ is an 

ascending chain of ideals in 
R

I . Since 
R

I is Noetherian, therefore, there exist 
 

a positive integer n such that f(In) = f(In+i) ∀ i ≥ 0. Also (I1 ∩ I) ⊆ (I2 ∩ I)⊆ 

…⊆… is an ascending chain of ideals of I. As I is Noehterian, therefore, there 

exsit a positive integer m such that (Im ∩ I) = (Im+i ∩ I). Let r=max{m, n}. Then 

f(Ir) = f(Ir+i) and (Ir ∩ I) = (Ir+i ∩ I) ∀ i ≥ 0. Let a∈Ir+i, then there exist x∈Ir 

such that f(a)=f(x) i.e. a+I=x+I. Then a-x∈I and also a-x∈Ir+i. This shows that 

a-x ∈(Ir+i ∩ I)= (Ir ∩ I). Hence a-x∈Ir ⇒ a∈Ir i.e. Ir+i ⊆ Ir. But then Ir+i = Ir 



for all i≥0. Now we have shown that every ascending chain of ideals of R 

terminates after a finite number of steps. It shows that R is Noetherian. 



4.2.9 Definition. An Artinian domain R is an integral domain which is also an 

Artinian ring. 

 

4.2.10 Theorem. Any left Artinian domain is a division ring. 
 

Proof. Let a is a non zero element of R. Consider the ascending chain of ideals of 

R as: <a>⊇ <a
2
> ⊇ <a

3
> ⊇……Since R is an Artinian ring, therefore, < a

n
> 

 

= <a
n+i

> ∀ i ≥ 0. Now <a
n
> =<a

n+1
> ⇒ a

n
 =ra

n+1
 ⇒ ar =1 i.e. a is invertible 

⇒ R is a division ring. 

 

4.2.11 Theorem. Let M be a finitely generated free module over a commutative ring 

R. Then all the basis of M are finite. 
 

Proof. let {ei}i∈Λ be a basis and {x1, x2, …,xn} be a generator of M. Then 

each xj can be written as xj = ∑βijei where all except a finite number of βij’s 
 

i  

are zero. Thus the set of all ei’s that occurs in the expression of xj’s, 

j=1,2,…,n. 

 

4.2.12 Theorem. Let M be finitely generated free module over a commutative ring R. 
 

Then all the basis of M has same number of element. 
 

Proof. Let M has two bases X and Y containing m and n elements 

respectively. But then M≅ R
n
 and M≅R

m
. But then R

m
≅R

n
. Now we will show 

that m=n. Let m< n, f is an isomorphism from R
m

 to R
n
 and g=f

-1
. Let {x1, 

x2, …, xm} and {y1, y2, …, yn} are basis element of R
m

 and R
n
 respectively. 

Define 
 

f(xi)= a1i y1 + a2i y2 +…+ ani yn and g(yj)= b1j x1 + b2j x2 +… +bmj xm. Let 

A(aji)  and B=(bkj) be n×m and m×n matrices  over  R. Then  g 

n   n     m n  
1≤ i ≤m.  Since 

  
f(xi)=g( ∑ a jiy j ) = ∑ a jig(y j)  = ∑ ∑ bkja jixk . gf=I  , 

j=1   j=1     k=1 j=1       

therefore, xi = 
m n  

x 
  

i.e. 
n 

x 
n 

(b a −1)x 
 

∑ ∑ b  a   ∑ b a + ... + ∑  

  k=1 j=1 kj  ji  k   j=1 1j  ji  1 j=1 ij  ji  i 
n 

+ ... + ∑ bmja jixm = 0 . As xi’s are linearly independent, therefore, 
j=1 



 
n 
∑

 
b

kj
a

 ji
x

k  
j=1 

B 

= δki . Thus BA=Im and AB=In. Let A*=[A 0] and B*= , then 0 
A*B*= In  and B*A*= Im 0 . But then det(A*B*)=In  and det(B*A*)=0. 

 

0 

 

  0  

Since A* and B* are matrices over commutative ring R, so det(A*B*) 

det(B*A*), which yield a contradiction. Hence M ≥ N. By symmetry N ≥ M 

i.e. M=N. 

 

4.3 RESULT ON HR(M, M) AND WEDDENBURN ARTIN THEOREM 
 

   k                      

4.3.1  Theorem 4. Let M=   ∑ Mi  be a direct sum of R-modules Mi. Then    

   i=1                      

 Hom (M , M ) Hom 
R 

(M 
2 
, M ) ...  Hom 

R 
(M 

k 
, M )  

   R    1   1       1       1   

HomR(M, M) HomR (M1, M2 ) HomR (M2 , M2 ) L HomR (Mk , M2 ) as a 
   M      M      M   M       

 Hom  (M , M 

k 

) Hom 

R 

(M 

2 

, M 

k 

) Hom 

R 

(M 

k 

, M 

k 

)  
  R    1           

ring (Here right hand side is a ring T(say) of K×K matrices f=(fij) under the 

usual matrix addition and multiplication, where fij is an element of HomR(Mj, 

Mi)).  

Proof. We know that for are submodules X and Y, HomR(X, Y) (=set of all 

homomorphisms from X to Y) becomes a ring under the operations (f +g) 

x=f(x) +g(x) and fg(x)=f(g(x)), f , g HomR(X, Y) and x X. Further λj: Mj 
 

→ M  and πi: M→Mi are two mappings defined as: 
 

λj(xj)=(0, …, xj,…,0) and πi(x1, …, xi, …,xk) = xi. (These are called 

inclusion and projection mappings). Both are homomorphisms. Clearly, πi φ 

λj: Mj → Mi is an homomorphism, therefore, πi φ λj HomR(Mj , Mi). Define 

a mapping σ : HomR(M, M)→T by σ(φ)= (πi φ λj), φ HomR(M , M) and (πi 
 

φ λj ) is k×k matrix whose (i, j)
th

 enrty is πi φ λj . We will show that σ is an 

isomorphism. Let φ1, φ2 HomR(M , M). Then 
 

σ (φ1 + φ2) = (πi (φ1+ φ2)λj )= (πi φ1λj + πi φ2λj ) = (πi φ1λj) + (πi 

φ2λj ) 
 

k 

=σ (φ1) + σ (φ2) and σ (φ1) σ (φ2) = (πi φ1 λj ) (πi φ2 λj ) = ∑ πi φ1λl πlφ2λ j 
l =1 



= πi φ1λ1π1φ2λ j + πi φ1λ2π2φ2λ j + ... + πi φ1λk πk φ2λ j 

 

= πi φ1(λ1π1 + ... + λk πk )φ2λ j . Since for (x1,…, 

 

λi(xi)= (0,…, xi, …,0), therefore, 

 

xi, …,xk) = x ∈M, λiπi  (x) = 

 

(λ1π1 + λ2π2 + ... + λk πk ) (x)= 
 

(λ1π1(x) + λ2π2 (x) + ... + λk πk (x) = (x1, …,0)+ (0, x2, …,0)+…+ (0,…, xk)= 

(x1, x2, …,xk) = x. Hence (λ1π1 + λ2π2 + ... + λk πk ) =I on M. Thus 

σ(φ1)σ(φ2)= πi φ1φ2λ j = σ (φ1φ2). Hence σ is an homomorphism. Now we 

will show that σ is one-one. For it let σ(φ)= (πi φ λj)=0. Then πi φ λj=0 for each 

i, j ; 1 ≤ i, j ≤ k. But then π1 φ λj + π2 φ λj +…+ πk φ λj =0. Since 
k   

∑ πi is an 
  i=1   

identity mapping on M, therefore, 
k 

⇒ φλ j = 0. But then φ 
k 

λ j = ( ∑ πi )φλ j ∑ 

 i=1   j =1  
 

0 and hence φ =0. Therefore, the mapping is one-one.  Let f = (fij)∈T, where 
 

fij : Mj →Mi is an R-homomorphism. Set ψ = ∑ λi fijπ j . Since for each i and 
i, j 

 

j, λi fij π j 
 

is an homomorphism from M to M, therefore, 
 

∑ λi fijπ 

j i, j 

 

is also an 

 

element of Hom(M, M). Since σ(φ) is a square matrix of order k, whose (s, t)  

entry is fst, therefore, σ(ψ)=(πs( ∑ λi fijπ j )λt). As πp λq = δpq, therefore, πs( i, 
j  

∑ λi fijπ j )λt = fst. Hence σ(ψ)=(fij)=f i.e. mapping is onto also. Thus σ is an 
i, j 

 

isomorphism. It proves the result.    
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4.3.2 Definition. Nil Ideal. A left ideal A of R is called nil ideal if each element of it 

nilpotent. 

Example. Every Nilpotent ideal is nil ideal. 
 

 

4.3.3 Theorem. If J is nil left ideal in an Artinian ring R, then J is nilpotent. 
 

Proof. Suppose J
k
≠(0). For some positive integer k. Consider a family {J, J

2
, 

… }. Because R is Artinian ring, this family has minimal element say B=J
m

. 

Then B
2
=J

2m
=J

m
=B implies that B

2
=B. Now consider another family f={A| A 



is left ideal contained in B with BA≠(0). As BB=B≠(0), therefore, f is non 

empty. Since it is a family of left ideals of an Artinian ring R, therefore, it 



has minimal element. Let A be that minimal element in f. Then BA ≠(0) i.e. there 

exist a in A such that Ba≠(0) Because A is an ideal, therefore, Ba ⊆ A and 

B(Ba)=B
2
a=Ba ≠(0). Hence Ba∈ f. Now the minimality of A implies that Ba=A. 

Thus ba=a for some b∈B. But then b
i
a = a ∀ i ≥1. Since b is nilpotent element, 

therefore, a=0, a contradiction. Hence for some integer k, J
k
=(0). 

 

Theorem. Let R be Noetherian ring. Then the sum of nilpotent ideals in R is a 

nilpotent ideal. 

Proof. Let B = ∑ Ai be the sum of nilpotent ideals in R. Since R is  
i∈Λ 

 

noetherian, therefore, every ideal of R is finitely generated. Hence B is also 

finitely generated. Let B=<x1, x2, …, xt> . Then each xi lies in some finite 

number of Ai’s say A1, A2, …, An. Thus B=A1+A2+…+An. But we know that 

finite sum of nilpotent ideals is nilpotent. Hence B is nilpotent. 

 

4.3.4 Lemma. Let A be a minimal left ideal in R. Then either A
2
=(0) or A=Re. 

Proof. Suppose that A
2
≠(0). Then there exist a∈A sucht that Aa≠(0). But 

Aa ⊆A and the minimality of A shows that Aa =A. From this it follows that 

there exist e in A such that ea=a. As a is non zero, therefore, ea≠0 and hence 

e≠0. Let B={c∈A | ca=0}, then B is a left ideal of A. Since ea ≠ 0 , 

therefore, e∉ B. Hence B is proper ideal of A. Again minimality of A implies 

that B=(0). Since e
2
a=eea=ea ⇒ (e

2
-e)a=0, therefore, (e

2
-e) ∈B=(0). Hence 

e
2
=e. i.e e is an idempotent in R. As 0≠ e=e

2
= e.e∈Re, therefore, Re is a non 

zero subset of A. But then Re=A. It proves the result. 

 

4.3.5 Theorem. (Wedderburn-Artin). Let R be a left (or right) artinian ring with 

unity and no nonzero nilpotent ideals. Then R is isomorphic to a finite direct 

sum of matrix rings over the division ring. 

Proof. First we will show that each non zero left ideal in R is of the form Re 

for some idempotent. Let A be a non-zero left ideal in R. Since R is artinian, 

therefore, A is also artinian and hence every family of left ideal of A contains 

a minimal element i.e. A has a minimal ideal M say. But then M
2
=(0) or 

M=Re for some idempotent e of R. If M
2
=(0), then 



(MR)
2
=(MR)(MR)=M(RM)R=MMR=M

2
R= (0). But then MR is nilpotent. Thus 

by given hypothesis MR=(0). Now MR = (0) implies that M = (0), a 

contradiction. Hence M=Re. This yields that each non zero left ideal contains a 

nonzero idempotent. Let f ={R(1-e)∩A | e is a non-zero idempotent in A}. Then f 

is non empty. Because M is artinian, f has a minimal member say R(1-e)∩A. We 

will show that R(1-e)∩A=(0). If R(1-e)∩A≠(0) then it has a non zero idempotent 

e1. Since e1 = r(1-e) , therefore, e1e=r(1-e)e= r(e-e
2
)=0. Take e

*
 = e + e1 - ee1. 

Then (e
*
)
2
 =(e + e1 - ee1)( e + e1 - ee1)= ee + e1e - ee1e + ee1 + e1e1 - ee1e1 -

eee1- e1ee1 + ee1ee1= e + 0 – e0 + ee1 + e1 - ee1 -ee1- 0e1 + e0e1= e + e1 - ee1 = 

e
*
 i.e. we have shown that e

*
 is an idempotent. But e1e

*
=e1e + e1e1 

 

- e1ee1= e1≠0 implies that e1 ∉ R(1-e
*
) ∩ A. (Because if e1∈ R(1-e

*
) ∩ A, then 

e1 = r(1-e
*
) for some r∈R and then e1e

*
= r(1-e

*
) e

*
= r(e

*
- e

*
e

*
)=0). More 

 

over for r(1-e
*
)∈ R(1-e

*
), r(1-e

*
)= r(1- e - e1 + ee1)= r(1- e - e1(1- e))= r(1-

e1)(1- e)= s(1-e) for s = r(1-e1)∈ R , therefore, Hence R(1-e
*
)∩A is proper 

subset of R(1-e)∩A. But it is a contradiction to the minimality of R(1-e)∩A in 

f. Hence R(1-e)∩A=(0). Since for a∈A, a(1-e)∈ R(1-e)∩A, therefore, a(1-

e)=(0) i.e. a=ae. Then A ⊇ Re ⊇ Ae ⊇ A ⇒ A=Re. 
 

For an idempotent e of R, Re∩ R(1-e)=(0). Because if x∈Re∩R(1-e), then 

x=re and x=s(1-e) for some r and s belonging to R. But then re=s(1-e)⇒ 

ree=s(1-e)e ⇒ re= s(e-e
2
)=0 i.e. x=0. Hence Re ∩ R(1-e)=(0). Now let S be 

the sum of all minimal left ideals in R. Then S=Re for some idempotent e in R. 

If R(1-e)≠(0), then there exist a minimal left ideal A in R(1-e). But then A ⊆ 

Re ∩ R(1-e)=(0), a contradiction. Hence , R(1-e)=(0) i.e 

R=Re=S= ∑ Ai where (Ai)i∈Λ is the family of minimal left ideals in R.  But  
i∈Λ 

 

then  there  exist  a subfamily  (Ai)i∈Λ* of  the family  (Ai)i∈Λ  such  that 

R = ⊕ ∑ Ai . Let 1 = ei + ei 
2 

+ ... + ei 
n 

. Then R= Rei  ⊕...⊕ Rei 
n 

(because 
i∈Λ*   1       1   

                 

for r∈R, 1 = ei + ei 
2 

+ ... + ei 
n 

⇒ r = rei  + rei 
2 

+ ... + rei 
n 

). After reindexing if 
1      1       

necessary, we may write R = Re1⊕ Re2 ⊕ ... ⊕ Ren , a direct sum of minimal 

left ideals. In this family of minimal left ideals Re1, Re2, ..., Ren , choose a 

largest subfamily consisting of all minimal left ideals that are not isomorphic 

to each other as left R-modules. After renumbering if necessary, let this 



subfamily be Re1, Re2, ...,Rek . Suppose the number of left ideal in the family 

(Rei), 1≤ i ≤n, that are isomorphic to Rei is ni. Then 

n1 summands n2 summands nk summands 
64748 64748 64748 

R = [Re1⊕ ...] ⊕ [Re2 ⊕ ...] ⊕ ... ⊕ [Rek ⊕ ...]  where each set of brackets 

contains pair wise isomorphic minimal left ideals, and no minimal left ideal in 

any pair of bracket is isomorphic to minimal left ideal in another pair. Since 

HomR(Rei , Rej)=(0) for i≠j , 1≤ i , j≤ k and HomR(Rei , Rei) =Di is a 

division ring(by shcur’s lemma). Thus by Theorem 4, we get HomR(R,R)≅ 
 

D1 L D1 
       

  

     

            
 

M M 
  

0 
   

0 
       

             

D1 L D1               
    

D2  L  D2 
       

(D1)n 
  

 
           

1 

 

 

 

0 
 

M M 
     

  

 

O 
 

          
             

 

  

 

 

          

 

   

   D2  L D2 
 O     

 
  (D

k 
)
nk 

 

    

Dk L Dk 

 

 

   

             

               

  
0 

     

M M 
       

              

 
       

Dk L Dk 
 
 

     
             

≅ (D1)n1    ...  (Dk )nk . But since HomR(M, M) ≅R
op

  ( under the mapping f: 
 

R
op

→HomR(M, M) given by f(a)=a* where a*(x)=aox=xa) as rings and the 

opposite ring of a division ring is a division ring. Since R
op

 ≅ R, therefore, R 

is finite direct sum of matrix rings over division rings. 

 

4.4 UNIFORM MODULES, PRIMARY MODULES AND NOETHER-

LASKAR THOEREM 
 

4.4.1 Definition. Uniform module. A non zero module M is called uniform if any 

two nonzero submodules of M have non zero intersection. 

Example. Z as Z-module is uniform as: Since Z is principal ideal domain, 

therefore, the two sub-modules of it are <a> and <b> say, then <ab> is another 

submodule which is contained in both <a> and <b> . Hence intersection of any 

two nonzero sub-modules of M is non zero. Thus Z is a uniform module over 

Z. 

 

4.4.2 Definition. If U and V are uniform modules, we say U is sub-isomorphic to V 

provided that U and V contains non zero isomorphic sub-modules. 



 

4.4.3 Definition. A module M is called primary if each non zero sub-module of M 

has uniform sub-module and any two uniform sub-modules of M are sub-

isomorphic. 

Example. Z is a primary module over Z.    
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4.4.4 Theorem. Let M be a Noetherian module or any module over a Noetherian 

ring. Then each non zero submodule contains a uniform module. 
 

Proof. Let N be a non zero submodule of M. Then there exist x(≠ 0) ∈N. 

Consider the submodule xR of N. Then it is enough to prove that xR contains a 

uniform module. If M is Noetherian, then the every submodule of M is 

noetherian and hence xR is also noetherian and if R is Noethrian then, being a 

homomorphic image of Noetherian ring R, xR is also Noetherian. Thus, for 

both cases, xR is Noetherian. 
 

Consider a family f of submodules of xR as: f ={N| N has a zero 

intersection with at least one submodule of xR}. Then {0}∈ f. Since xR is 

noetherian, therefore, f has maximal element K(say). Then there exist an 

submodule U of xR such that K∩U={0}. We claim U is uniform. Otherwise, 

there exist submodules A, B of U such that A∩B={0}. Since K∩U={0}, 

therefore, we can talk about K⊕A as a submodule of xR such that K⊕A 

∩B={0}. But then K⊕A∈ f, a contradiction to the maximality of K. This 

contradiction show that U is uniform. Hence U ⊆xR⊆N. Thus every 

submodule N contains a uniform submodule. 

 

4.4.5 Definition. If R is a commutative noetherian ring and P is a prime ideal of R, 

then P is said to be associated with module M if R/P imbeds in M or 

equivalently, P=r(x) for some x∈M, where r(x)={a∈R | xa =0}. 

 



4.4.6 Definition. A module M is called P- primary for some prime ideal P if P is the 

only prime associated with M. 



4.4.7 Theorem. Let U be a uniform module over a commutative noetherain ring R. 

Then U contains a submodule isomorphic to R/P for precisely one prime ideal 

P. In other words U subisomorphic to R/P for precisely one ideal P. 
 

Proof. Consider the family f of annihilators of ideals r(x) for non zero x ∈U. 

Being a family of ideals of noetherian ring R, f has a maximal element r(x) 

say. We will show that P=r(x) is prime ideal of R. For it let ab∈r(x), a∉r(x). 

As ab∈r(x) ⇒ (ab)x = 0. Since xa ≠ 0, therefore, b(xa) = 0 ⇒ b∈r(xa). 

More over for t∈r(xa) ⇒ t(xa)=0 ⇒ (ta)x=0 ⇒ r(xa) ∈ f. Clearly r(x) ⊆ 

r(xa). Thus the maximality of r(x) in f implies that r(xa)=r(x) i.e. b∈r(x). 

Hence r(x) is prime ideal of R. Define a mapping from R to xR by θ(r)=xr. 

Then it is an homomorphism from R to xR. Kernal θ ={ r∈R | xr=0}. Then 

Kernal θ = r(x). Hence by fundamental theorem on homomorphism, R/ r(x) ≅ 

xR = R/P. Therefore R/P is embeddable in U. Hence [R/P]=[R/Q]. this implies 

that there exist cyclic submodules xR and yR of R/P and R/Q respectively 

such that xR≅yR. But then R/P≅R/Q, which yields P=Q. It prove the theorem. 

 

4.4.8 Note. The ideal in the above theorem is called the prime ideal associated with 

the uniform module U. 

 

4.4.9 Theorem. Let M be a finitely generated ideal over a commutative noetherian 

ring R. Then there are only a finite number of primes associated with M. 

Proof. Take a family f consisting of the direct sum of cyclic uniform 

submodules of M. Since every submodule M over a noehtrian ring contains a 

uniform submdule, therefore, f is non empty. Define a relation ≤, on the set of 

elements of f  by ⊕ ∑ xiR ≤ ⊕ ∑ x jR iff I ⊆ J and xiR ⊆ yjR for some j∈J.  
i∈I j∈J 

 

This relation is a partial order relation on f . By Zorn’s lemma F has a maximal 

member K = ⊕ ∑ xiR . Since M is noetherian, therefore, K is finitely 

i∈I 
 

t 

generated. Thus K = ⊕ ∑ xiR . By theorem, 4.2.7, there exist xiai ∈ xi R such 
i=1 

 



that r(xiai)=Pi, the ideal associated with xiR. Set xi
*
= xiai and K

*
 = ⊕ ∑

t
 x

*
iR . 

i=1 



Let Q =r(x) be the prime ideal associated with M. We shall show that Q =Pi 

for some i, 1≤ i ≤ t. 
 

Since K is a maximal member of f , therefore, K as well as K
*
 

has the property that each has non zero intersection with each submodule L of 

M. Now let 0≠ y∈xR∩ K
*
. Write y= ⊕ ∑

t
 x

*
ibi =xb. We will show 

that r(xi
*
bi)= i=1 

 

r(xi
*
) whenever xi

*
bi ≠ 0. Clearly, r(xi

*
) ⊆ r(xi

*
bi). Let xi

*
bic =0. Then bic 

r(xi
*
)=Pi and so c∈Pi since bi ∉ Pi. Hence, c∈ r(xi

*
). 

  t 
IPi , omitting those terms Further, we note Q=r(x)=r(y)=  Ir(x

*
ibi ) = 

  i=1 i∈Λ 

from xi
*
bi =0, where Λ ⊂ {1, 2,..., t}. Therefore, Q ⊆ Pi for all i ∈Λ. Also 

∏ Pi ⊂ IPi = Q . Since Q is a prime ideal , at least one Pi appearing in the 

i∈Λ i∈Λ   

product ∏ Pi must be contained in Q. Hence Q = Pi for some i. 

 i∈Λ   
 

     

4.4.10 Theorem.(Noether-Laskar theorem). Let M be a finitely generated ideal over a 

commutative noetherian ring R. Then there exist a finite family N1, N2, …, Nt 

of submodules of M such that 

(a) 
t t 

≤ t. I Ni = (0) and I Ni ≠ (0) for 1≤ i0 

 i=1 i=1  

  i≠i0  

(b) Each quotient module M/Ni is a Pi - primary module for some prime ideal 

Pi.  

(c) The Pi are all distinct, 1≤ i ≤ t. 
 

(d) The primary component Ni is unique iff Pi does not contain Pj for some j≠i. 
 

Proof. Let Ui , 1≤ i ≤ t, be a uniform sub module obtained as in the proof of 

the Theorem 4.4.9. Consider the family { K | K is a subset of M and K 

contains no submodule subisomorphic to Ui }. Let Ni be a maximal member of 

this family, then with this choice of Ni, (a), (b) and (c) follows directly.   
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4.5 SMITH NORMAL FORM 
 

4.5.1 Theorem. Obtain Smith normal form of given matrix. Or if A is m×n matrix 

over a principal ideal domain R. Then A is equivalent to a matrix that has the 



a   
 1 

a2 
 

diagonal form 
 

where ai≠0 and a1 | a2 | a3 |…|ar.  O 
 

 

 
 

ar    

   O 
 

Proof. For non zero a, define the length l(a)=no of prime factors appearing in 

the factorizing of , a=p1p2 …pr (pi need not be distinct primes). We also take 

l(a) if a is unit in R. If A=0, then the result is trivial otherwise, let aij be the 

non zero element with minimum l(aij). Apply elementary row and column 

operation to bring it (1, 1) position. Now a11 entry of the matrix so obtained is 

of smallest l value i.e. the non zero element of this matrix at (1, 1) position. 

Let a11 does not divide a1k. Interchanging second and k
th

 column so that we 

may suppose that a11 does not divide a12. Let d=(a11, a12) be the greatest 

common divisor of a11 and a12, then a11=du, a12=dv and l(d) < l(a11). As 

d=(a11, a12), therefore we can find s and t R such that d=(sa11+ta12)= d(su + 
 

u t   
 

− s 
  

v 

1 
 

vt). Then we get that A  is a matrix whose first row is (d, 0, 

  1  
    

   1 
    

b13, b14, …b1n) where l(d) < l(a11). If a11 | a12, then a12=ka11. On applying, the 

operation C2- kC1 and u
1

 C1 we get the matrix whose first row is again of the 
 

form (d, 0, b13, b14, …b1n). Continuing in this way we get a matrix whose 

first row and first column has all its entries zero except the first entry. This 

 a1  0 L 0  
  

0 
   

matrix is P1AQ1    , where A1 is (m-1)×(n-1) matrix, and P1 and 
  

M A1 
  

    

  0    

Q1 are m×m and n×n invertible matrices respectively. Now applying the same  

     a2   0 L  0  

process of A1, we get that P
' 

A Q
'  

0 
   

=   , where A2 is (m-2)×(n- 
   2 1  2  

M A2 
  

        

      0    

2) matrix, and P' and Q
' 

are (m-1)×(m-1) and (n-1)×(n-1) invertible matrices 
 2 2        



respectively.  Let  P2 
1 0  

and 
Q

2 
1 0  

.  Then  P2P1AQ1Q2= = 
0 P

' 
 

= 
0 Q

' 
 

  2     2   

a1 0 L  0  
 

0 a2 

   

   . Continuing in this way we get matrices P and Q such that 
 

M 
 

A2 
  

    

 0     

PAQ=diag(a1, a2,…, ar, 0, …0). Finally we show that we can reduce PAQ so that 

a1| a2 | a3|…. For it if a1 does not divide a2, then add second row to the first 
 

row and obtain the matrix whose first row is (a1, a2, 0, 0,…,0). Again 

 u t    
  

− s 
   

multiplying PAQ by a matrix of the form 

v 

1 
 

we can obtain a    

   1   
      

    1  
      

matrix such that a1|a2. Hence we can always obtain a matrix of required form. 
 

 

4.5.2  Example. Obtain the normal smith form for a matrix 
1 2 3 

 

5 

. 

      
4 

0 

Solution. 
1 2 3 

R
 2 −4R1     

 

5 

 →     

 
4 

0      
 1   2 3  

C
2 

−2C
1
,C

3 
−3C

1    

  

− 3 

  →    

 0 −12     

 1 0 0 
C

3 −4C2    
  

− 3 

  →    

 
0 

−12     

1 0 0  
C

3 −4C2 1 0 0 −R 2 1 0 0 
 

− 3 

 →  

− 3 

 →  

3 

. 

0 
−12  0 

0 
 0 

0 

 

4.6 FINITELY GENERATED ABELIAN GROUPS  

4.6.1 Note. Let G1, G2,… Gn be a family of subgroup of G and let G
*
= G1…Gn. 

 

Then the following are equivalent. 
 

(i) G1×…×Gn   G
*
 under the mapping (g1, g2, …, gn) to g1g2…gn 

 

(ii) Gi is normal in G
*
 and every element x belonging to G

*
 can be uniquely 

expressed as x=g1g2 … gn , gi Gi. 



(iii) Gi is normal in G
*
 and if e =g1g2 … gn , then each xi=e. 

 

(iv) Gi is normal in G
*
 and Gi∩ G1…Gi-1 Gi+1…Gn ={e}, 1≤ i ≤ n. 

 

 

4.6.2 Theorem.(Fundamental theorem of finitely generated abelian groups). Let 

G be a finitely generated abelian group. Then G can be decomposed as a direct 

sum of a finite number of cyclic groups Ci i.e. G = C1⊕ C2⊕…⊕ Ct where 

either all Ci’s are infinite or for some j less then k, C1, C2, . . . Cj are of order 

m1, m2, . . .mj respectively, with m1| m2 | …| mj and rest of Ci’s are infinite. 
 

Proof. Let {a1, a2, …, at} be the smallest generating set for G. If t=1, then G 

is itself a cyclic group and the theorem is trivially true. Let t > 1 and suppose 

that the result holds for all finitely generated abelian groups having order less 

then t. Let us consider a generating set {a1, a2, …, at} of element of G with the 

property that , for all integers x1, x2, …, xt , the equation 
 

x1 a1 + x2 a2 + … + xt at = 0 
 

implies that  

x1 = 0, x2 = 0, . . ., xt = 0. 
 

But this condition implies that every element in G has unique representation of 

the form 
 

g = x1 a1 + x2 a2 + … + xt at, xi ∈Z. 
 

Thus by Note 4.6.1, 
 

G = C1⊕ C2⊕…⊕ Ct 
 

where Ci = <ai> is cyclic group generated by ai, 1≤ i ≤ t. By our choice on 

element of generated set each Ci is infinite set (because if Ci is of finite order 

say ri , then riai =0). Hence in this case G is direct sum of finite number of 

infinite cyclic group. 
 

Now suppose that that G has no generating set of t elements with the 

property that x1 a1 + x2 a2 + … + xt at = 0 ⇒ x1 = 0, x2 = 0, . . ., xt = 0. Then, 

given any generating set {a1, a2, …, at} of G, there exist integers x1, x2, … , xt 

not all zero such that 
 

x1 a1 + x2 a2 + … + xt at = 0. 
 

As x1 a1 + x2 a2 + … + xt at = 0 implies that -x1 a1 - x2 a2 - … - xt at = 0, 

therefore, with out loss of generality we can assume that xi >0 for at least one 

i. Consider all possible generating sets of G containing t elements with the 



property that x1 a1 + x2 a2 + … + xt at = 0 implies that at least one of xi > 0. Let X 

is the set of all such (x1, x2, … xt ) t -tuples. Further let m1 be the least positive 

integers that occurring in the set t-tuples of set X. With out loss of generality we 

can take m1 to be at first component of that t-tuple (a1, a2, …, at) 
 

i.e. m1 a1 + x2 a2 + … + xt at = 0 (1) By division 

algorithm, we can write, xi=qim1 + si , where 0 ≤ si (1) becomes, 

 

 

< m1. Hence 

 

m1 b1 + s2 a2 + … + st at = 0, where b1= a1 + q2 a2 + … + qt at. 

Now if b1=0, then a1 = -q2 a2 - … - qt at. But then G has a generator set 

containing less then t elements, a contradiction to the assumption that the 

smallest generator set of G contains t elements. Hence b1 ≠ 0. Since a1 = -b1 - 

q2 a2 - … - qt at, therefore, {b1, a2, …, an} is also a generator of G. But then 

by the minimality of m1, m1 b1 + s2 a2 + … + st at = 0 ⇒ si =0 for all i. 2≤ i ≤ 

t. Hence m1b1=0. Let C1 = <b1>. Since m1 is the least positive integer such 

that m1b1=0, therefore, order of C1=m1. 

Let G1 be the subgroup generated by {a2, a3, …, at}. We claim 

that G = C1⊕G1. For it, it is sufficient to show that C1∩G1 ={0}. Let 

d∈C1∩G1. Then d=x1b1 , 0 ≤ x1 < m1 and d = x2 a2 + … + xt at . 

Equivalently, x1b1 +(-x2)a2 +… + (-xt)at =0. Again by the minimal property 

of m1, x1=0. Hence C1∩G1 ={0}. 
 

Now G1 is generated by set {a2, a2, …, at} of t-1 elements. It is 

the smallest order set which generates G1(because if G1 is generated by less 

then t-1 elements then G can be generated by a set containing t-1 elements, a 

contradiction to the assumption that the smallest generator of G contains t 

elements). Hence by induction hypothesis, 
 

G1= C2⊕…⊕ Ct  

where C2, …, Ck are cyclic subgroup of G that are either all are infinite or, for 

some j ≤ t, C2, … , Cj are finite cyclic group of order m2, …, mj respectively 

such that m2| m3 | …| mj, and Ci are infinite for i > j. 
 

Let Ci =[bi], i=2, 3, …, k and suppose that C2 is of order m2. 

Then {b1, b2, …, bt} is the generating set of G and m1b1 + m2b2 + 0.b3 +…+ 

0.bk =0. By repeating the argument given for (1), we conclude that m1|m2. 

This completes the proof of the theorem. 



4.6.3  Theorem. Let G be a finite abelian group. Then there exist a unique list of 

integers m1, m2, …, mt (all mi > 1) such that order of G is m1 m2 …mt  and G 
 

= C1⊕ C2⊕…⊕ Ct where C1, C2, …, Ct are cyclic groups of order m1, m2, …, 

mk respectively. Consequently, G ≅ Zm1 ⊕ Zm1 ⊕ ... ⊕ Zmt . 
 

Proof. By theorem 4.6.2, G = C1⊕ C2⊕…⊕ Ct where C1, C2, …, Ct are cyclic 

groups of order m1, m2, …, mt respectively, such that m1|m2 | …|mt. As order 

of S×T = order of S × order of T, therefore, order of G = m1 m2 …mt . Since 

a cyclic group of order m is isomorphic to Zm group of integers under the 

operation addition mod m, therefore, 
 

G ≅ Zm1 ⊕ Zm1 ⊕ ... ⊕ Zmt . 
 

We claim that m1 , m2, …, mt are unique. For it, let there exists n1, n2,…, nr 

such that n1 | n2 | …| nr and G = D1⊕ D2⊕…⊕ Dr where Dj are cyclic groups of 

order nj. Since Dr has an element of order nr and largest order of element of G 

is mt , therefore, nr≤mt. By the same argument, mt ≤ nr. Hence mt = nr. 
 

Now consider mt-1 G={mt-1g | g∈G}. Then by two decomposition of G 
 

we get mt-1 G= (mt-1 C1)⊕ (mt-1 C2 ) ⊕…⊕ (mt-1 Ct) 

  =(mt-1 D1)⊕ (mt-1 D2 ) ⊕…⊕ (mt-1 Dr-1). 

As mi | mt-1 (it means mi divides mt-1)for all i, 1≤ i ≤ t-1, therefore, for all such 

i, mt-1 Ci={0}. Hence order of (mt-1 G) i.e. | mt-1 G | =|(mt-1 Ct) | = |(mt-1 Dr) |. 

Thus |(mt-1 Dj) | = 1 for j=1, 2, …, r-1. Hence nr-1 | mt-1 . Repeating the process 

by taking mr-1 G, we get that mt-1 | nr-1.  Hence mt-1 = nr-1. Continuing this 

process we get that mi =ni for i=t, t-1, t-2, …. But m1m2 …mt= |G|= n1 n2 …nr, 

therefore, r = t and mi=ni for all i, 1≤ i ≤ k. 

4.6.3  Corollary. Let  A be  a  finitely  generated  abelian  group.  Then  A 

≅ Z
s
 ⊕ 

Z
  ⊕ ... ⊕ 

Z
  , where s is a nonnegative integer and ai are nonzero  

a1ZarZ   

non-unit in Z, such that a1| a2|… | ar . Further decomposition of A shown 

above is unique in the sense that ai are unique.   
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4.6.4 Example. 

The abelian group generated by x1 and x2 subjected to the condition 
 

2x1 = 0 , 3x2 = 0 is isomorphic to Z/<6> because the matrix of these equation 
 

is 
2 0 

has the smith normal form 
1 0 

    

 
0 

3  
0 

6 
 

4.7 KEY WORDS 
 

Uniform modules, Noether Lashkar, wedderburn artin, finitely generated. 
 

 

4.8 SUMMARY 
 

In this chapter, we study about Weddernburn theorem, uniform modules, 

primary modules, noether-laskar theorem, smith normal theorem and finitely 

generated abelian groups. Some more results on noetherian and artinian 

modules and rings are also studied. 

 

4.9 SELF ASSESMENT QUESTIONS 
 

(1) Let R be an artinain rings. Then show that the following sets are ideals and 

are equal: 

(i) N= sum of nil ideals , (ii) U = some of nilpotent ideals, (iii) Sum of all 

nilpotent right ideals. 
 

(2) Show that every uniform module is a primary module but converse may 

not be true 

− x 4 − 2  

(3) Obtain the normal smith form of the matrix − 3 8 − x 3 over the 
 

− 8 

  
4 

− 2 − x 

ring Q[x].  

(4) Find the abelian group generated by {x1, x2, x3} subjected to the conditions 
 

5x1 + 9x2 + 5x3=0, 2x1 + 4x2 + 2x3=0, x1 +  x2 - 3x3=0 
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