
 
Chapter 1 Introduction and Fundamental Concepts                                                     1 

 

 

 

 

 

 

1.1 Introduction. 

Fluid mechanics is the study of fluids either in motion (fluid dynamics) 

or at rest (fluid statics) and the subsequent effects of the fluid upon the 

boundaries, which may be either solid surfaces or interfaces with other fluids. 

Both gases and liquids are classified as fluids, and the number of fluids 

engineering applications is   enormous : breathing blood flow, swimming, 

pumps, fans, turbines, airplanes, ships, rivers, windmills, pipes, missiles, 

icebergs, engines filters, jets, and sprinklers ,to name a few. When you think 

about it, almost everything on this planet either is a fluid or moves within or 

near a fluid. The essence of the subject of fluid flow is a judicious 

compromise between theory and experiment. Since fluid flow is a branch of 

mechanics, it satisfies a set of well documented basic laws, and thus a great 

deal of theoretical treatment is available. However the theory is often 

frustrating, because it applies mainly to idealized situations which may be 

invalid in practical problems. 

       There are two classes of fluids, liquids and gases. The distinction is a 

technical one concerning the effect of cohesive forces. A liquid, being 

composed of relatively close-packed molecules with strong cohesive forces, 

tends to retain its volume and will form a free surface in a gravitational field. 

Since gas molecules are widely spaced with negligible cohesive forces.    

             

1.2 Definition of Stress. 
The force F acting on the small element A can be solved into two 

perpendicular components as given in Fig.1.1. 

 The force component acting normal to the area is called normal force, is 

denoted by Fn. 
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 The force component acting along the plane of area is called tangential 

force, is denoted by Ft. 

The above component forces can expressed as force per unit area, they 

are called as normal stress and tangential stress respectively. The tangential 

stress called shear stress. 

 The normal stress is denoted by () is defined as  

𝜎 =  lim
𝛿𝐴→0

𝛿𝐹𝑛

𝛿𝐴
                                                                                              (1.1) 

 The shear stress is denoted by () is defined as  

 =  lim
𝛿𝐴→0

𝛿𝐹𝑡

𝛿𝐴
                                                                                               (1.2) 

 

Figure1.1: Normal and tangential forces on a surface 

 

1.3 Definition of Fluid. 

A fluid is a substance that deforms continuously in the face of tangential 

or shear stress, irrespective of the magnitude of shear stress. This continuous 

deformation under the application of shear stress constitutes the flow. Fig.1.2 

shows the shear stress on a fluid body. If a shear stress is applied at any 

location in a fluid, the element 011' which is initially at rest will move to 

022', then to 033'. Further, it moves to 044' and continues to move in a 

similar fashion.  

 

Figure1.2: Shear stress on a fluid body. 
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1.4 Concept of Continuum.  

 The concept of continuum assumes a continuous distribution of mass 

within the matter or system with no empty space.   

 The fluid properties vary continuously from point to another. For 

example density at a point is defined as  

   =  lim
∆∀→0

(
𝑚

∆∀
)                                                                                  (1.3) 

 Where () is the volume of the fluid element and (m) is the mass. 

 An important note for determining the validity of continuum model is a 

molecular density. when () is the distance between the molecules and 

is defined by mean free path. Which finding from statistical average 

distance the molecules travel between two successive collisions.  

 If   ()  is very small compared with L (L characteristic length in the 

flow), i.e. the molecular density is very high, then the gas can be treated 

as continuous medium. If () is large compared with L, then the gas 

cannot be considered continuous.  

  Kn = /L is the Knudsen Number, is the dimensionless number. 

 If Kn 0.01, the concept of continuum does not hold good. 

From the range of Knudsen number, the flow is known as. 

 Slip flow ( 0.01  Kn 0.1 ) 

 Transition flow ( 0.1 Kn 10 ) 

 Free molecule flow ( Kn  10) 

       However, for the flow regimes considered in this book, Kn is always less 

than 0.01 and its usual to say the fluid is continuum. In continuum approach, 

the fluid properties as ,,k,T, etc can be expressed as continuous function of 

space and time. 

 

1.5 Fluid Properties. 

a) Density ():-  

The density  (rho) may be defined as the mass per unit volume 

(m/) at a standard temperature and pressure. If a fluid element 

enclosing a point P has a volume Δ and mass Δm Fig. 1.3, then density 

ρ at point P is written as  

𝜌 = lim
∆∀→∆∀𝑐

(
𝑚

∆∀
) 

However, in a medium where continuum model is valid one can write  

(
𝑚

∆∀
) = [

𝑑𝑚

𝑑∀
]

∀
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Figure 1.3: A fluid element enclosing point P  

b) Specific weight ():- 

The specific weight  (gamma) is defined as the weight of fluid 

per unit volume at the standard temperature and pressure, and is given 

by   

𝛾 = 𝜌𝑔     [
𝑁

𝑚3
]                                                                                  (1.4) 

   Where g is the gravitational acceleration. 

c) Specific volume (v):- 

The specific volume v is the volume occupied by unit mass of fluid, 

thus 

 =1/     (m3/kg)                                                                           (1.5) 

d) Specific gravity (S.G.):- 

The specific gravity is the ratio of density of a liquid at actual 

conditions to the density of pure water at (101kN/m2) and at 4C. 

S.G.liquid = liquid/water = liquid/1000                                               (1.6) 

S.G.gas = gas/air =   gas/1.205                                                       (1.7) 

e) Temperature (T):- 

The temperature is a measure of the internal energy level of a fluid. 

f) Pressure (p):- 

The pressure is the stress at a point in a static fluid, and is the 

differences or gradients in pressure after drive a fluid flow especially 

in ducts. 

1.6 Viscosity (). 

A fluid is defined as a material which will continue to deform with the 

application of a shear force. However, different fluids deform at different 

rates when the same shear stress (force/area) is applied. If the force F acts 

over an area of contact A, then the shear stress  is defined as  

                        = F /A                                                                   (1.8) 
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The shear strain angle  as in Fig. 1.4.a will continuously grow with 

time as long as the shear stress  is maintained. The upper surface moving at 

speed u larger than the lower. For any fluid water, oil and air show a linear 

relation between applied shear and resulting strain rate 

                              /t                                                                (1.9) 

From the geometry of Fig. 1.4.a we see that  

                       tan  = u t / y                                                              (1.10) 

In the limit of infinitesimal changes, this becomes a relation between shear 

strain rate and velocity gradient. 

                               
d

𝑑𝑡
=

𝑑𝑢

𝑑𝑦
                                                            (1.11) 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Compare Eq. 1.9 with Eq. 1.11, for the common linear fluids the shear is 

also proportional to the velocity gradient, by using the constant of 

proportionality is the viscosity coefficient (). 

                      =  d / dt =  du / dy  

                      =  du / dy                                                                        (1.12) 

       () is positive in the direction of the coordinate parallel to them. This 

result indicates that for common fluids such as water, oil, gasoline and air the 

shearing stress and rate of shearing strain (velocity gradient) can be related 

with Eq. 1.12. The constant of proportionality is designated by the Greek 

 

Figure1.4: (a) A fluid element straining at rate /t. 

                   (b) Newtonian shear distribution in a shear layer. 
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symbol  (mu) and is called the absolute viscosity, dynamic viscosity, or 

viscosity of the fluid. Eq. 1.12 is known as Newton's law of viscosity. All 

fluids (water, air, oil and mercury), obey Newton's law of viscosity are 

known as Newtonian fluids. Other classes of fluids are known as non-

Newtonian fluid as (paints, polymer solution and blood). 

        From above the viscosity of fluid may be defined as the property of a 

real fluid by virtue of which is offers resistance to shear force. Newton's law 

of viscosity states that the shear force to be applied for a deformation rate of 

(du/dy) over an area (A) is given by  

F =  A(du/dy)          

Or      (F/A) =  =  (du/dy) =  (u/y)                                                      (1.13) 

 

1.7 Causes of Viscosity. 

The causes of viscosity in a fluid are possibly attributed to two factors  

 Intermolecular force of cohesion. 

 Molecular momentum transfer. 

In the flow of liquids and gases molecules are free to move from one 

layer to another. When the velocity in the layers are different as in viscous 

flow, the molecules moving from the layer at lower speed to the layer at 

higher speed have to be accelerated. Similarly the molecules moving from the 

layer at higher velocity to a layer at a lower velocity carry with them a higher 

value of momentum and these are to be slowed down. Thus the molecules 

diffusing across layers transport a net momentum introducing a shear stress 

between the layers. The force will be zero if both layers move at the same 

speed or if the fluid is at rest.  

When cohesive forces exist between atoms or molecules these forces 

have to be overcome for relative motion between layers. A shear force is to 

be exerted to cause fluids to flow. 

 Viscous forces can be considered as the sum of these two, namely, the 

force due to momentum transfer and the force for overcoming cohesion. In 

the case of liquids, the viscous forces are due more to the breaking of 

cohesive forces than due to momentum transfer (as molecular velocities are 

low). In the case of gases viscous forces are more due to momentum transfer 

as distance between molecules is larger and velocities are higher.      

For Newtonian fluids the coefficient of viscosity depends strongly on 

temperature but varies very little with pressure 

 For liquids, molecular motion is less significant than the forces of 

cohesion, thus viscosity of liquids decrease with increase in temperature. 

 For gases, molecular motion is more significant than the cohesive forces, 

thus viscosity of gases increase with increase in temperature. 
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       From above discussions about the fluid circumstances we can conclude 

that;  

 Ideal Fluid:- Such a fluid having zero viscosity (=0) is called an ideal 

fluid and the resulting motion is called ideal fluid or inviscid flow. From 

this definition there is no existence of shear force. 

 Real Fluid:- All fluids in reality having viscosity ( > 0.0) are termed 

real fluid and their motion is known as viscous flow. 

 Kinematic Viscosity ():- the kinematic viscosity  (nu) is the ratio of 

viscosity to mass density 

                  =  /                                                                             (1.14) 

The kinematic viscosity gives the rate of momentum flux or momentum 

diffusivity.  

 

1.8 Application of Viscosity Concept. 

1.8.1 Viscous Torque and Power-Rotating Shafts. 

Ex.1 
        Determine the power required to run a 250 mm diameter shaft at 450 

rpm in journals with uniform oil thickness of 1.5 mm. Two bearings of 300 

mm width are used to support the shaft. The dynamic viscosity of oil is 0.03 

Pa.s. 

Sol.  

       Shear stress on the shaft surface =  =  (du/dy) = (u/y) 

                                 u = *R = DN/60 =*0.25*450/60 = 5.9 m/s 

since  is the angular velocity = 2N/60 

                                  = 0.03 *{( 5.9- 0 ) / 0.0015} = 118 N/m2 

Surface area of the two bearings, A = 2**D*L 

Force on shaft surface (F) =  * A = 118 * (2 *  * 0.25 * 0.3) = 55.58 N 

Figure 1.5: Change of water and air viscosity with temperature under 1 atm. 
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Torque (T)                        = F*D/2 = 55.58*0.25/2 =6.95 N.m  

Power required (P)      =   * T=2**N*T/60=2**450*6.95/60= 327.5 W 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.8.2  Viscous Torque – Disk Rotating over a Parallel Plate. 

 From Fig. 1.7, consider an annular strip of radius r and width dr. the 

force on the strip is given by 

F=A(du/dy) = A(u/y) 

As ( y ) is small, linear velocity variation can be assumed 

u= r= 2rN/60, y=h, A=2rdr 

Torque = Force * radius 

The difrential torque (dT) on the strip after substituting the above values is,     

dT= 2rdr(2rN/60h)r 

dT = [2N/15h]r3dr 

Integrating the difrential torque (dT) from the center of disc to the outer edge, 

i.e, from r=0 to r=R will gives 

T = 2NR4/ 60h 

If the diameter is used, R4= D4/16 then, 

T=2ND4/ 960h 

The power required,  P = *T= 2NT/60= 3N2R4/1800h  

       For an annular area like a collar the integration limits are Ro and Ri and 

the torque is given by 

T=2N(Ro
4 – Ri

4) /60 h 

             Power is given by    P= 3N2 (Ro
4 – Ri

4) /1800h 

 

 

 

 

Figure 1.6: Rotating shaft in bearing 
 



 
Chapter 1 Introduction and Fundamental Concepts                                                     9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ex.2 

       Determine the oil film thickness between the plates of a collar bearing of 

0.2 m ID and 0.3 m OD transmitting power as in below figure, if 50 W was 

required to overcome viscous friction while running at 700 rpm. The oil used 

has a viscosity of 0.003 Pa.s. 

Sol. 

      P=2NT/60, substituting the given values, 

50 = 2*700*T/60, solving for torque, 

T= 0.682 Nm 

In case of an annular surface rotates over a flat surface the torque equation is 

T=2N(Ro
4 – Ri

4) /60 h, substituting the given values and solving for h 

0.682 = 0.003*2*700*(0.154 - 0.14)/60*h 

h = 0.000206 m = 0.206 mm 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Rotating disk 
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1.9 Compressibility.  

The compressibility is the measure of its change in volume under the 

action of external forces. The degree of compressibility of a substance is 

characterized by the bulk modulus of elasticity E, defined as 

E = lim
∆→𝟎

(
−∆𝒑

∆/
)                                                                                (1.15) 

Where  

   the change in volume. 

p   the change in pressure. 

    the initial volume. 

The negative sign is to make (E) positive. For a given mass of a substance, 

the change in its volume and density satisfies the relation 

m =0.0,  () =0.0  

 +  = 0.0 

            



= −




                                                                                    (1.16)        

Using the limit of (E) in Eq.(1.15), substituted in Eq.(1.16) we get  

E = lim
→0

(
𝑝

/
) =  

𝑑𝑝

𝑑
                                                                             (1.17) 

 𝐸 = −
𝑑𝑝

∆∀/∀
 

The values of (E) for liquids are very high as compared with those of 

gases. Therefore the liquids are usually termed as incompressible fluids.  

For example Ewater = 2*106 kN/m2  

                      Eair = 101 kN/m2 

Indicates that the air is about (20000) times more compressible than 

water. Hence water can be treated as incompressible. For gases another 

characteristic parameter known as compressibility K, it’s the reciprocal of E 

𝐾 =
1

𝐸
=

1

𝜌
(

𝑑𝜌

𝑑𝑝
) =  −

1


(

𝑑

𝑑𝑝
)                                                                  (1.18) 

For any gaseous substance, a change in pressure is generally associated 

with a change in volume and a change in temperature simultaneously. A 

functional relationship between the pressure, volume and temperature at any 

equilibrium state is known as thermodynamic equation of state for the gas. 

For an ideal gas, the thermodynamic equation of state is given by  

                     p = RT                                                                               (1.19) 

R is known as the characteristic gas constant =287  J/kg.k 

Distinction between an incompressible and a compressible flow from 

Bernoulli's equation p+(1/2) V2 = constant, change in pressure, p, in flow 

field is of the order (1/2 V2) 

   E =  dp/d        gives         /  (1/2 V2) / E                                 (1.20) 

So, if   / is very small, the flow of gases can be treated as incompressible, 

from Laplace equation in gas flow, the velocity of sound is given by  
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𝑖 =  √
𝐸

𝜌
 

/  (1/2)V2/i2  (1/2) (Ma)2 

Where Ma is the Mach number 

 If   / is maximum relative change in density of about (5%) as the 

criterion of Ma becomes approximately (0.33) at standard condition ( i= 

335.28 m/s, Vair=110 m/s). 

Ex.3 
 A liquid compressed in a cylinder has a volume of 1000 cm3 at  

1MN/m2 and a volume of 995 cm3 at 2 MN/m2. What is its bulk modulus of 

elasticity (E)  

Sol. 

𝐸 =  −
∆𝑝

∆∀/∀
=  − 

(2 − 1) ∗ 106

(995 − 1000) ∗ 10−6/(1000 ∗ 10−6)
= 200𝑀𝑃𝑎 

Ex.4 

         If E=2.2 GPa is the bulk modulus of elasticity for water, what pressure 

is required to reduce a volume by 0.6 percent 

Sol. 

𝐸 =  −
∆𝑝

∆∀/∀
2.2 ∗ 109 = −

𝑝2−0

−0.006
        p2 = 13.2 MPa 

 

1.10 Surface Tension of Liquids. 
1.10.1 Surface Tension Phenomenon. 

The phenomenon of surface tension arises due to the two kinds 

intermolecular forces. 

I. Cohesion Force:- the force of attraction between the molecules of a 

liquid due to, they are bound to each other to remain as one assemblage 

of particles is known as the force of cohesion. 

II. Adhesion Force:- The force of attraction between unlike molecules, i.e, 

between the molecules of different liquids or between the molecules of a 

liquid and those of solid body when they are in contact with each other. 

A thin layer of few atomic thicknesses at the surface formed by the 

cohesive bond between atoms slows down and sends back the molecules 

reaching the surface. This cohesive bond exhibits a tensile strength for the 

surface layer and this is known as surface tension. Force is found necessary 

to stretch the surface. Surface tension may also be defined as the work per 

unit area (N.m / m2) or (N/m) required creating unit surface of the liquid. The 

work is actually required for pulling up the molecules with lower energy 

from below, to form the surface. In liquids cohesion forces between 

molecules and the effect on solid-liquid interface are lead to surface tension. 

The formation of droplets is a direct effect of this phenomenon. At the 
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interface between solid and liquid, the liquid surface being moved up or 

down forming a curved surface. When the adhesive forces are higher the 

contact surface is lifted up forming a concave surface. Oils, water etc. exhibit 

such behavior. These are said to be surface wetting. When the adhesive 

forces are lower, the contact surface lowered at the interface and convex 

surface results as in the case of mercury. Such liquids are called non-wetting. 

These are shown in Fig.1.8.  

 

Figure 1.8: Surface tension effect at solid-liquid interface 

1.10.2 Capillarity.  

When a liquid is in contact with a    solid, if the forces of adhesion 

between the molecules of the liquid and the solid are greater than the forces 

of cohesion among the liquid molecules themselves, the liquid molecules 

crowd towards the solid surface. The area of contact between the liquid and 

solid increases and the liquid thus wets the solid surface 

 

     Figure 1.9: Phenomenon of Capillarity  

The reverse phenomenon takes place when the force of cohesion is 

greater than the force of adhesion. These adhesion and cohesion properties 
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result in the phenomenon of capillarity by which a liquid either rises or falls 

in a tube dipped into the liquid depending upon whether the force of adhesion 

is more than that of cohesion or not. Fig.1.9 shows the phenomenon of 

capillarity. 

 

Ex.5  

(a) Derive an expression for the change in high (h) in a circular tube of a 

liquid with surface tension () and contact angle (). As in below figure.  

(b) Suppose that, the fluid is water having  = 0.073 N/m,  = 0.0, =1000 

kg/m3 and R=1mm, then find the capillary rise for the water-air-glass 

interface. 

Sol. (a) The vertical component of the ring surface tension force at the 

interface in the tube must balance the weight of column of fluid of height (h). 

2R cos = gR2h 

Solving for h, we have the desired result 

ℎ =
2𝜎𝑐𝑜𝑠𝜃

𝛾𝑅
=

4𝜎𝑐𝑜𝑠𝜃

𝛾𝑑
 . 

 

 
 (b) 

ℎ =
2𝜎𝑐𝑜𝑠𝜃

𝛾𝑅
=

2(0.073)𝑐𝑜𝑠0

1000 ∗ 9.81 ∗ 0.001
= 0.015 𝑚 = 1.5 𝑐𝑚 

 

1.11 Dimensions and Units. 

Dimensions:- is the measure by which a physical variable is expressed 

quantitatively. 

Unit:- is a particular way of attaching a number to the quantitive 

dimension. 

 There are three widely used systems of units in the word. These are  

I. British or English system (it's not in official use now in Briton) 

II. Metric system. 
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III. SI system (System International of Unites or International System of 

Units). 

 

 

 

Length: is a dimension   

 

 

 

 Centimeter 

 Meter                  Numerical values are the units             

 Inch  

 

 To standardize the metric system, a general conference of weights and 

measures attended in 1960 by 40 countries proposed the International system 

of units (SI). The British gravitational (BG) unit and SI units will be use. 

In fluid mechanics there are only four primary dimensions from which 

all other dimensions can be derived: mass, length, time, temperature. These 

dimensions and their units in both systems are given in Table 1.1 

 

Table 1.1: Primary dimensions in SI and BG system 

 

Primary 

Dimension 

SI Unit BG Unit Conversion 

Factor 

Mass (M) Kilogram(kg) Slug 1 slug = 14.5939 

kg 

Length (L) Meter (m) Foot (ft) 1 ft = 0.3048 m 

Time (T) Second (s) Second (s) 1 s = 1 s 

Temperature () Kelvin (K) Rankin (R) 1K = 1.8 R 

 

The secondary dimensions, which is directly related to mass, length, 

time and temperature. As the force from Newton's second law 

F = m*a 

We define the Newton and pound is the dimension of force 

1 Newton of force = 1N = 1 kg.m/s2 

1 pound of force = 1 lbf = 1 slug. ft/s2 = 4.4482 N  

A list of some important secondary variables in fluid mechanics with 

dimensions derived as combinations of the four primary dimensions is given 

in Table 1.2. A more complete list of conversion factors are given in Tables 

1.3&1.4. 

 

Distance 

Displacement 

Width 

Deflection 
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Table 1.2 Primary dimension and conversion factor. 

 
       

Table 1.3 Conversion Factors-1. 
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Table 1.4 Conversion Factors-2. 

 
Problems. 

P1.1 Calculate the specific weight, specific volume, mass density and 

specific gravity of liquid having a volume of 6m3 and weight of 44kN.  

         [γ=7.33*103 N/m3, υ=1.337*10-3 m3/kg, ρ=747.5 kg/m3, S.G=0.747] 

 

P1.2 A small village draws 8630 ft3 per day from its reservoir. Convert this 

water usage in to 

a)  Gallons per minute.                                        [44.83 gallon/min] 

b)  Liter per seconds.                                                       [ 2.82 lit/s] 

 

P1.3  A block of weight W slides down an inclined plane on a thin film of oil 

as in figure. The film contact area is A and its thickness h. Assuming 

a linear velocity distribution in the film  

a) Drive an analytic expression for the terminal velocity V of the block. 

b) Find the terminal velocity if   m=8kg, A=80cm2, =17 and the film 

is h=1mm thick SAE 30 oil at 20C. Since µ=0.29 kg.s/m2.         

                                                                                          [V=9.89m/s] 
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P1.4 The velocity distribution over a plate is given by u= 
𝟑

𝟐
 y- 

𝟏

𝟐
 y2 where u is 

velocity m/s and y is distance from the plate boundary )m(. If the 

viscosity of fluid is 8 poise find the shear stress at the plate boundary 

and at y = 0.15 m from the plan )Note 1 poise = 0.1N.s/m2 (. 

                                                                          [τ0=1.2 N/m2, τ0.15=1.08 N/m2] 

 

P1.5 A square metal plate 1.5m side and 1.2mm thick weighting 50N is to be 

lifted through a vertical gap at 25mm of infinite extent. The oil in air 

gap has a specific gravity of 95 percent and viscosity of 2.5N.s/m2. If 

the metal plate is to be lifted at a constant speed of 0.1 m/s find the 

force and power required.                         [F=144.53 N, P=14.453 W] 

 

P1.6 Two large fixed parallel plane are 240mm apart. The space between the 

surfaces is filled with oil of viscosity 0.81N.s/m2. A flat thin plate 

0.5m2 area moves through the oil at a velocity of 0.6m/s. Calculate the 

drag force. 

i. When the plate is equal distance from both planes.            [F=4.05 N] 

ii. When the thin plate is at a distance of 80mm from one the plate 

surface.                                                                                [ F=4.54 N] 

 

P1.7 A circular disc of radius R is slowly rotated in a liquid of large viscosity 

)µ( at a small distance (h) from a fixed surface. Drive an expression 

of torque (T) necessary to maintain an angular velocity ))  as in 

figure.                                                                         [T=πμR4/(2h)] 
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P1.8 Determine the bulk modulus of elasticity of liquid if the pressure of the 

liquid is increased from 7MN/m2 to 13MN/m2. The volume of liquid 

decreases by 0.15%.                                                         [E= 4 GN/m2] 

 

P1.9 Determine the minimum size of glass tubing that can be used to measure 

water level. If the capillary rise in the tube is not to exceed 0.25mm. 

Take surface tension of water in contact with air as 0.0735N/m and 

(θ=0º)                                                                                 [d=120 mm] 

 

P1.10  A mercury column is used to measure the atmospheric pressure. The 

height of column above the mercury well surface is 762 mm. The tube 

is 3 mm in diameter. The contact angle is 140°. Determine the true 

pressure in mm of mercury if surface tension is 0.51 N/m. The space 

above the column may be considered as vacuum.          [p=765.92 mm] 

 

P2.11 Consider a concentric shaft fixed axially and rotated inside a 

cylinder.𝑟𝑠ℎ,𝑟𝑐𝑦 are the radius of shaft and inside radius of cylinder 

respectively, with total length L. Let the rotational rate  rad/s and 

applied torque be M .Using these parameters,  

a)  Derive a theoretical relation for the viscosity µ of the fluid between   

the shaft and cylinder.                   [𝝁 = 𝑴(𝒓𝒄𝒚 − 𝒓𝒔𝒉)/(𝟐𝝅𝝎𝒓𝒔𝒉
𝟑 𝑳)]  

b)  For a shaft of 8cm long, rotating at 1200 rev./min, with 𝒓𝒔𝒉 = 2.00 

cm and the measured torque is M = 0.293 N.m. What is the fluid 

viscosity?                                                                    [μ=0.29 kg/m.s] 
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2.1 Introduction. 

  Many fluid problems do not involve motion. They concern the pressure 

distribution in a static fluid and its effect on solid surfaces and on floating 

and sub- merged bodies. When the fluid velocity is zero, denoted as the 

hydrostatic condition, the pressure variation is due only to the weight of the 

fluid. Assuming a known fluid in a given gravity field, the pressure may 

easily be calculated by integration. Important applications in this chapter are  

I. Pressure distribution in the atmosphere and the oceans  

II. The design of manometer pressure instruments. 

III. Forces on submerged flat and curved surfaces. 

IV. Buoyancy on a submerged body. 

V. The behavior of floating bodies and its stability with the result of 

Archimedes principles. 

VI. If the fluid is moving in rigid-body motion, such as a tank of liquid 

which has been spinning for a long time, the pressure also can be 

easily calculated, because the fluid is free of shear stress. We apple 

this idea here to simple rigid –body accelerations. 

 

2.2 Forces on a Fluid Elements. 
Fluid Element:- is the infinitesimal region of the fluid continuum in isolation 

from its surroundings. 

Types of forces on fluid elements:- 

a) Body Force: it’s the force which distributed over the entire mass or 

volume of the element, as the gravitational force, Electromagnetic 

force fields.     

b) Surface Force: is the forces exerted on the fluid element by its 

surroundings through direct contact at the surface. 

   Surface force has two components 

I. Normal Force: along the normal to the area. 

PPrreessssuurree  DDiissttrriibbuuttiioonn  iinn  
FFlluuiiddss  

 

CHAPTER 2 
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II. Shear Force: along the plane of the area. 

 

When the 














0

lim

A
A

F





 normal & shear stresses  

Shear stress 0 for any fluid at rest, and hence the only surface force on a 

fluid element is the normal component. 

 

2.3 Pressure on a Stationary Fluid.  
Pressure is a measure of force distribution over any surface associated 

with the force. Pressure may be defined as the force acting along the normal 

direction on unit area of the surface.  

Consider a small wedge fluid element at rest of size  (∆x , ∆z  by ∆S) 

and depth  (b) into the paper by definition  there is no shear stress , but we 

postulate that the pressures  px,  pz and pn as shown in Fig.  2.1. 

 

 
 

Figure 2.1: Equilibrium of a small wedge of fluid at rest. 

    

      Summation of forces must equal zero (no acceleration) in both x &z 

directions    

   ∑ Fx=0 =px b  ∆z - pn b ∆s sin                                      

  ∑Fz =0 =pz b ∆x - pn b∆S cos  - 
2

1
  b∆x ∆z                                      (2.1) 

But the geometry of the wedge is such that   

 ∆s sin  = ∆z  , ∆s cos  = ∆x                                                               (2..2) 

Substitution into Eq. (2.1) and rearrangement give 
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px = pn     ,  pz= pn+
2

1
∆z                                                                        (2.3) 

From relation 2.3 illustrate two important principles of hydrostatic 

a) There is no pressure change in the horizontal direction. 

b) There is a vertical change in pressure proportional to the density, 

gravity and depth change. 

In the limit as the fluid wedge shrinks to a (point) ∆z  0.Then, Eq. 2.3 

become  

px = pz = pn = p                                                                                        (2.4) 

Since   is arbitrary 

We conclude that the pressure p at a point in a static fluid is independent of 

orientation. If ( p) is the hydrostatic pressure using (+ve) sign for tensile,  

then Eq. 2.4 can be written as 

p= -
3

1
( x + y  + z)                                                                               (2.5) 

       The minus sign accurse because a compression stress is considered to be 

negative whereas (p) is positive. The pressure is defined as the average of the 

three normal stresses (ij) on the element. 

In fluid under static conditions pressure is found to be independent of 

the orientation of the area. This concept is explained by Pascal's law which 

states that the pressure at a point in a fluid at rest is equal in magnitude in all 

directions.  

 

2.4 Pressure Force on a Fluid Element. 
 Let the pressure vary arbitrarily p = p(x,y,z,t) consider the pressure 

acting on the two x-faces as in Fig. 2.2. The net force in the x-direction on 

the element is given by  

dFx = pdy dz – (p+
x

p




dx)dy dz = -

x

p




 dx dy dz                             (2.6) 

In like manner the net force dFy involves - 
y

p




 , and the net force dFz 

concerns −
𝜕𝑝

𝜕𝑧
   the total net –force vector on the element due to pressure is  

dF press =(-i
x

p




 - j

y

p




 -k

z

p




) dx dy dz                                                  (2.7) 

 Rewrite Eq. 2.7 as the net force per unit element volume and is denoted by 

( f ) 

fpress=  - p                                                                                               (2.8) 

This is the pressure gradient causing a net force which must be 

balanced by gravity or acceleration. 
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The pressure gradient is a surface force which acts on the sides of the 

element. Also, may be a body force, due to electromagnetic or gravitational 

potentials acting on the entire mass of the element. Consider only the gravity 

force or weight of element  

Or

         



















gf

gdxdydzdF

grav

grav



                                                        (2.9) 

        For an incompressible fluid with constant viscosity the net viscous force 

is or (viscous stress) 

V)
z

V

y

V

x

V
(f 2

2

2

2

2

2

2

vs


















                                                        (2.10) 

  

        Where the subscript ( vs ) stands for viscous force, note that the term ( g) 

in Eq. 2.9 denotes the acceleration of gravity, a vector acting toward the 

center of the earth. On earth the average magnitude of  ( g) is 32.174 ft/s2 = 

9.807 m/s2 in our book we use the approximate numerical value of   g = 32.2 

ft/s2 = 9.81m/s2 

       The total vector resultant of these three forces which are pressure, gravity, 

and viscous stress must either keep the element in equilibrium or cause it to 

move with acceleration (a). Form Newton’s law of motion per unit volume  

∑ f  =   a  = f press + fgrav +f vs = - Vgp 2                           (2.11) 

 

Rewrite Eq. 2.11 as follows 

∇𝑝 = 𝜌(𝑔 − 𝑎) + 𝜇∇2𝑉                                                                          (2.12) 

Examining Eq. 2.12, we can single out at least four special cases:  

1- Flow at rest or at constant velocity: The acceleration and viscous terms 

vanishes identically, and p depends only upon gravity and density. This 

is the hydrostatic condition. 

dy 

dz 

y 

Z 

Figure 2.2: Net x force on an element due to pressure variation. 
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2- Rigid – body translation and rotation: The viscous term vanishes 

identically, and p depends only upon the term (g-a). 

3- Irrotational motion 0 V


: The viscous term vanishes identically and 

exact integral Bernoulli’s equation. 

4- Arbitrary viscous motion, no general rules apply, but still the integration 

is quite straight forward. 

When the fluid at rest or at constant velocity, a = 0 and 02  V , Eq. 

2.12 for the pressure distribution reduces to  

gp                                                                                                    (2.13) 

       This is a hydrostatic distribution formula and is correct for all fluid at 

rest. Where (g) is the magnitude of local gravity, Eq. 2.13 has the pressure 

components are 

 
𝜕𝑝

𝜕𝑥
= 0,   

𝜕𝑝

𝜕𝑦
= 0,    

𝜕𝑝

𝜕𝑧
= −𝜌𝑔 = −𝛾                                                      (2.14) 

Where the coordinate system z is up i.e (p) is independent of x&y. Hence 
𝜕𝑝

𝜕𝑧
 can be replaced by the total derivative 

𝑑𝑝

𝑑𝑧
 and the hydrostatic condition 

reduce to
 𝑑𝑝

𝑑𝑧
= −𝛾                                                                                               (2.15) 

Equation 2.15 is the fundamental equation for fluids at rest and can be 

used to determine how pressure change with elevation. This equation 

indicates that the pressure gradient in the vertical direction is negative; that is, 

the pressure decrease as we move upward in a fluid at rest.    

 This leads to the statement, 

I. The pressure will be the same at the same level in any connected static 

fluid and at all points on a given horizontal plane whose density is 

constant or a function of pressure only. 

II. The pressure increases with depth of fluid. 

III. The pressure is independent of the shape of the container and the free 

surface of a liquid will seek a common level in any container, where 

the free surface is everywhere exposed to the same pressure.  

       Equation 2.15 is the solution to the hydrostatic problem. The integration 

requires an assumption about the density and gravity distribution. 

 

2.4.1 Incompressible Fluid. 

For liquids the variation in density is usually negligible, even over 

large vertical distances, so that the assumption of constant specific weight 

when dealing with liquids is a good one. For this instant, Eq. 2.15    can be 

directly integrated 

 ∫ 𝑑𝑝 =  −∫ 𝛾 𝑑𝑧
𝑧2

𝑧1

𝑝2

𝑝1
     To yields   𝑝2 − 𝑝1 = − 𝛾(𝑧2 − 𝑧1) 
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Or              𝑝1 − 𝑝2 =  𝛾(𝑧2 − 𝑧1)                                                (2.16) 

Where p1 and p2 are pressures at the vertical elevation z1 and z2 as is 

illustrated in Fig. 2.3. Eq. 2.16 can be written in compact form               

      𝑝1 − 𝑝2 =  𝛾 ∗ ℎ 

𝑜𝑟           𝑝1 = 𝑝2 + 𝛾 ∗ ℎ                                                              (2.17) 

 

 
Figure 2.3: Notation for pressure variation in a fluid at rest. 

 

       Where h is the distance, z2-z1. This type of pressure distribution is 

commonly called a hydrostatic distribution. Eq. 2.17 shows that in an 

incompressible fluid at rest the pressure varies linearly with depth. It can also 

be observed from Eq. 2.17 that the pressure difference between two points 

can be specified by the distance h since 

                            ℎ =  
𝑝1−𝑝2

𝛾
                                                                  (2.18) 

       Where h is called the pressure head and is interpreted as the height of a 

column of fluid of specific weight  to give a pressure difference (p1 – p2). If 

p0 is the reference pressure would be the pressure acting on the free surface, 

then from Eq.  2.17 the pressure at any depth h below the free surface is 

given by the following: 

                                p = p0+ h                                                                 (2.19) 

 

2.4.2 Compressible Fluid. 
 For compressible fluids such as air, oxygen and other gases where the 

density can be change significantly with changes in pressure and temperature. 

Now, Eq. 2.17 can be applying at a point in a gas, it's necessary to consider 

the possible variation in the specific weights   before the equation can be 

integrated. Due to the specific weights of common gases are small when 

compared with liquids, it follows from Eq. 2.15 that the pressure gradient in 
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the vertical direction is correspondingly small, and even over distances of 

several hundred meter the pressure will remain essentially constant for a gas. 

This means we can neglect the effect of elevation changes on the pressure in 

gases in tanks and pipes. As is described in Chapter 1, the equation of state 

for an ideal gas is 

p = RT 
This relationship can be combined with Eq.2.15 to give 

𝑑𝑝

𝑑𝑧
=  −

𝑔𝑝

𝑅𝑇
 

By separating variables 

                     ∫
𝑑𝑝

𝑝
= ln

𝑝2

𝑝1
= −

𝑔

𝑅
 ∫

𝑑𝑧

𝑇

𝑧2

𝑧1
 

𝑝2

𝑝1
                                                 (2.20) 

Where g and R are assumed to be constant over the elevation change from z1 

to z2.  Before completing the integration, one must specify the nature of the 

variation of temperature with elevation involved. If we assumed that the 

temperature has a constant value To over the range z1 to z2 (isothermal 

conditions), it then follows from Eq. 2.20 that 

                    𝑝2 = 𝑝1 𝑒𝑥𝑝 [− 
𝑔(𝑧2− 𝑧1)

𝑅𝑇𝑜
]                                                     (2.21) 

        Eq. 2.21 provides the desired pressure-elevation relationship for an 

isothermal layer. For non-isothermal condition a similar procedure can be 

followed if the temperature-elevation relationship is known. An important 

application of Eq.2.20 relates to the variation in pressure in the earth's 

atmosphere. The standard atmosphere conditions has been determined that 

can be used in the design of aircraft, missiles and spacecraft, and in 

comparing their performance under standard conditions. Several important 

properties for standard atmospheric conditions at sea level are listed in Table 

2.1 and Fig 2.4 shows the temperature decreases with altitude in the region 

nearest the earth's surface (troposphere), and then becomes essentially 

constant in the next layer (stratosphere), and subsequently starts to increase 

in the next layer. 

        The quantities of the specific weight of fluid  with dimensions of 

weight per unit volume are tabulated in Table 2.2. 

 

Table 2.1: Properties of U.S. standard atmosphere at sea levela[1] 
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   Figure 2.4: Variation of temperature with altitude in the U.S. standard                   

                        atmosphere [1]. 

 

Table 2.2: Specific weight of some common fluids  
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  Ex.1  
        The deepest point in the ocean is (11034m) in the pacific. At this depth 

=10520 N/m3. Estimate the absolute pressure at this depth. 

Sol. 

p= patm.+*h = 101350 + 10520*11034 = 116179030 N/m2 

p= 116.18 MPa                          Ans. 

 

Ex.2  
       A closed tank contains 1.5 m of   SAE 30 oil, 1m of water, 20 cm of 

mercury and an air space on top all at 20C. If pbottom= 60000 Pa, what is the 

pressure in the air space. Using the value of   from Table 2.1  

Sol. 

Apply the hydrostatic formula down through the three layers of fluid. 

p bottom = pair + oil*h oil + water*h water + mercury*h mercury  

60000= pair+(8720 N/m3) * (1.5 m) + (9720 N/m3)*(1.0 m) +(133100 

N/m3)*(0.2m) 

Solve for the pressure in the air space  

pair= 10580 Pa                           Ans.
 

 

2.5 Pressure Measurements. 
 Since pressure is a very important characteristic of a fluid field, it is 

defined as the force acting along the normal direction on unit area. A more 

precise mathematical definition of pressure as 

 𝑝 =  lim
𝐴→𝑎

(
∆𝐹

∆𝐴
) =  

𝑑𝐹

𝑑𝐴
                                                                                   (2.22) 

This explicitly means that the pressure is the ratio of the element force to the 

elemental area (a) normal to it. 

 The unit of pressure in the SI system is (N/m2) also called Pascal (Pa). 

The atmospheric pressure is approximately (105 N/m2) is and designated as 

"bar". From above definition the pressure at a point within a fluid mass will 

be designated as either an absolute pressure or a gage pressure. 

  Absolute pressure is measured relative to a perfect vacuum (absolute 

zero pressure), where as gage pressure is measured relative to the local 

atmospheric pressure. Thus, a gage pressure of zero corresponds to a 

pressure that is equal to the local atmospheric pressure. Absolute pressures 

are always positive, but gage pressure can be either positive or negative 

depending on whether the pressure is above or below atmospheric pressure. 

A negative gage pressure is also referred to as a suction or vacuum pressure. 

The concept of gage and absolute pressure is illustrated graphically in Fig. 

2.5 for two typical pressures located at points 1 and 2. Gage pressure is the 

difference between the value of the pressure and the local atmospheric 

pressure (patm.) 
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pgage= p – patm.  

At sea – level, the international standard atmosphere has been chosen as 

patm.=101.32 (kN/m2) 

 

 
 

Figure 2.5: Graphical representation of gage and absolute pressure. 

  

       The measurement of atmospheric pressure is usually accomplished with 

a mercury barometer, which in its simplest form consists of a glass tube 

closed at one end with the open end immersed in a container of mercury as 

shown in Fig. 2.6. The tube is initially filled with mercury (inverted with its 

open end up) and then turned upside down (open end down) with the open 

end in the container of mercury. The column of mercury will come to an 

equilibrium position where its weight plus the force due to the vapor pressure 

(which develops in the space above the column) balances the force due to the 

atmospheric pressure. Thus,  

                                         patm. = h + pvapor                                              (2.23)                

       The vapor pressure pvapor can be neglected in most practical cases in 

comparison to patm., since its very small for mercury, pvapor= 0.16*patm.. So 

that, 

 patm.= h 

 

  ℎ =  
𝑝𝑎𝑡𝑚.

𝜌∗𝑔
= 

1.0132∗105(𝑁
𝑚2⁄ )

13560 (
𝑘𝑔

𝑚3⁄ )∗9.81 (𝑁 𝑘𝑔⁄ )
= 0.761 𝑚 𝑜𝑓 (𝐻𝑔) 

If water was used the value of h will be equal to 10.32 m 
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Ex.3  
         What will be the (a) the gauge pressure  , (b) the absolute pressure of 

water at depth 12m below the surface ?  w=1000kg/m3, patm=101 kN/m2. 

Sol.    

(a) 𝑝𝑔𝑎𝑔𝑒 = 𝜌𝑔ℎ = 1000 ∗ 9.81 ∗ 12 = 117720
𝑁

𝑚2 , (𝑷𝒂) 

(b) pabs. = pgage + patm. = (117720 + 101 ∗ 103) = 218720
N

m2 =

                218.72
kN

m2 , (kPa)                                               

 

 
Figure 2.6: Mercury barometer. 

2.6  Manometers. 
The manometers are the standard technique for measuring 

pressure involves the use of liquid columns in vertical or inclined tubes. 

Pressure measuring devices based on this technique are called manometers. 

Three common types of manometers include the piezometer tube, the U-tube 

manometer, and the inclined-tube manometer. 

 

2.6.1 Piezometer Tube. 

The simplest type of manometer consists of a vertical tube, open at the 

top, and attached to the container in which the pressure is desired, as 

illustrated in Fig.2.7. Since manometers involve columns of fluids at rest, the 

fundamental equation describing their use is Eq. 2.19     

                                p = p0+ h  
This gives the pressure at any elevation within a homogeneous fluid in 

terms of a reference pressure p0 and the vertical distance h between p and p0. 

Remember that in a fluid at rest pressure will increase as we move downward 

and will decrease as we move upward. Application of this equation to the 

piezometer tube of Fig. 2.7 indicates that the pressure pA can be determined 

by a measurement of h through the relationship     

pA = 1 h1 
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The tube is open at the top, the pressure p0 can be set equal to zero as 

using a gage pressure, with the height h1 measured from the meniscus at the 

upper surface to point (1) then 

                                    𝒉𝟏 = 
𝒑𝑨

𝝆𝒈
                                                     (2.24)              

 is the working fluid density.  

 

 
 

Figure 2.7: Piezometer tube. 

2.6.2  U-Tube Manometer. 

       Manometers are devices in which columns of a suitable liquid are used to 

measure the difference in pressure between two points or between a certain 

point and the atmosphere. Manometer is needed for measuring large gauge 

pressures. It is basically the modified form of the piezometric tube. A 

common type manometer is like a transparent "U-tube" as shown in Fig. 2.8.  

 

 
Figure 2.8: A simple manometer to measure gauge pressure [2]. 
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        One of the ends is connected to a pipe or a container having a fluid (A) 

whose pressure is to be measured while the other end is open to atmosphere. 

The lower part of the U-tube contains a liquid immiscible with the fluid A 

and is of greater density than that of A. This fluid is called the manometric 

fluid. The pressures at two points P and Q in a horizontal plane as shown in 

Fig. 2.8 within the continuous expanse of same fluid (the liquid B in this 

case) must be equal. Then equating the pressures at P and Q in terms of the 

heights of the fluids above those points, with the aid of the fundamental 

equation of hydrostatics Eq 2.19, we have  

𝑝1 + 𝜌𝐴𝑔(𝑦 + 𝑥) = 𝑝𝑎𝑡𝑚 + 𝜌𝐵𝑔𝑥  

Hence                𝑝1 − 𝑝𝑎𝑡𝑚 = (𝜌𝐵 − 𝜌𝐴)𝑔𝑥 − 𝜌𝐴𝑔𝑦                           (2.25) 

                                   

 Where p1 is the absolute pressure of the fluid A in the pipe or 

container at its centre line, and patm is the local atmospheric pressure.  

 

2.6.3 Manometers for Measuring Gauge and Vacuum Pressure. 

        When the pressure of the fluid in the container is lower than the 

atmospheric pressure, the liquid levels in the manometer would be adjusted 

as shown in Fig. 2.9. Hence it becomes,    

𝑝1 + 𝜌𝐴𝑔𝑦 + 𝜌𝐵𝑔𝑥 = 𝑝𝑎𝑡𝑚  

𝑝𝑎𝑡𝑚 − 𝑝1 = (𝜌𝐴𝑦 + 𝜌𝐵𝑥) ∗ 𝑔                                                                (2.26)                                               

 

 

Figure 2.9: A simple manometer to measure vacuum pressure.     
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2.6.4 Manometers to Measure Pressure Difference.  

        Another type of manometer is also frequently used to measure the 

pressure difference, in course of flow, across a restriction in a horizontal pipe 

as shown in Fig. 2.10. The axis of each connecting tube at A and B should be 

perpendicular to the direction of flow and also for the edges of the 

connections to be smooth. Applying the principle of hydrostatics at P and Q 

we have, 

 

𝑝1 + (𝑦 + 𝑥)𝜌𝑤𝑔 = 𝑝2 + 𝑦𝜌𝑤𝑔 + 𝜌𝑚𝑔𝑥  

𝑝1 − 𝑝2 = (𝜌𝑚 − 𝜌𝑤)𝑔𝑥                                                                        (2.27) 

 

Figure 2.10: Manometer measuring pressure difference [2]. 

 

Where, ρ m is the density of manometric fluid and ρw is the density of 

the working fluid flowing through the pipe. 

 We can express the difference of pressure in terms of the difference of 

heads (height of the working fluid at equilibrium). 

ℎ1 − ℎ2 =
𝑝1−𝑝2

𝜌𝑤𝑔
= (

𝜌𝑚

𝜌𝑤
− 1) 𝑥                                                                 (2.28)                         

Ex.4  
        A closed tank contains oil and compressed air (S.G.oil = 0.9) as is shown 

in the following figure, a U-tube manometer using mercury (S.G.Hg = 13.6) is 

connected to a tank as shown. For column heights h1=914.5 mm, h2=152.4 

mm and h3= 228.6 mm. Determine the pressure reading in Pa of the gage. 
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Sol.   
       The pressure at level (1) is equal to the pressure at level (2), since these 

two points are at the same elevation in a homogeneous fluid at rest. The 

pressure at level (1) is 

𝑝1 = 𝑝𝑎𝑖𝑟 + 𝛾𝑜𝑖𝑙(ℎ1 + ℎ2) 
The pressure at level (2) is   

𝑝2 = 𝛾𝐻𝑔 ℎ3 

Thus, the manometer equation can be expressed as 

∴    𝑝𝑎𝑖𝑟 + 𝛾𝑜𝑖𝑙(ℎ1 + ℎ2) − 𝛾𝐻𝑔 ℎ3 = 0 

Or 

   𝑝𝑎𝑖𝑟 + 𝑆. 𝐺𝑜𝑖𝑙 𝛾𝐻2𝑜(ℎ1 + ℎ2) − 𝑆. 𝐺𝐻𝑔𝛾𝐻2𝑜 ℎ3 = 0 

𝑝𝑎𝑖𝑟 = −0.9 ∗ 1000 ∗ 9.81 ∗ (0.9145 + 0.1524) +  13.6 ∗ 1000 ∗ 9.81
∗ 0.2286 

                    = 21079.23 𝑁/𝑚2(𝑃𝑎)                                 Ans. 
This is the pressure read by the gage, since the specific weight of the air 

above the oil is much smaller than the specific weight of the oil. 

 

 
  

Ex.5  
(a)At what depth below the surface of oil, specific gravity is 0.8 will produce 

a pressure of 120 kN/m2. 

(b) What depth of water is this equivalent to?. 

Sol.  

S. G. =  
𝜌𝑜𝑖𝑙

𝜌𝑤𝑎𝑡𝑒𝑟
,    𝜌𝑜𝑖𝑙 = 𝑆. 𝐺.∗  𝜌𝑤𝑎𝑡𝑒𝑟 = 0.8 ∗ 1000 = 800 𝑘𝑔/𝑚3 
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(a) ℎ =  
𝑝

𝜌∗𝑔
= 

120∗103

800∗9.81
= 15.29 𝑚 𝑜𝑓 𝑜𝑖𝑙                Ans. 

(b) ℎ =  
𝑝

𝜌∗𝑔
= 

120∗103

1000∗9.81
= 12.23 𝑚 𝑜𝑓 𝑤𝑎𝑡𝑒𝑟        Ans. 

Ex.6  
       A manometer connected to a pipe indicates a negative gauge pressure of 

50mm of mercury. What is the absolute pressure in the pipe in Newtons per 

square meter? The atmospheric pressure is 1 bar. 

Sol.  
patm. = 1 bar = 1*105 N/m2 

pabs. = pgage + patm. 

pabs. =*g*h + patm. 

pabs. = - 13.6 * 103 * 9.81 *0.05 + 105 = 93329 (Pa)= 93.329 (kPa) 

 

2.6.5 Inverted Tube Manometer. 

        For the measurement of small pressure differences in liquids, an 

inverted U-tube manometer is used.  

 

Figure 2.11: An Inverted Tube Manometer 

 

Here m < w  ,    p at (P & Q) are equal, 

𝑝1
∗ − 𝑝2

∗ = (𝜌𝑤 − 𝜌𝑚)𝑔𝑥   Where 𝑝∗ = 𝑝 + 𝜌𝑔𝑧 

Air is used as the manometric fluid, therefore  m is negligible compared with 

w. 

𝑝1
∗ − 𝑝2

∗ ≈ 𝜌𝑤𝑔𝑥                                                                                       (2.29)           

Air may be pumped through a valve V at the top to reduce the vertical height 

(x) as possible. 
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2.7 Hydrostatic Forces on Submerged Plane Surface. 
Any hydro structure design required a computation of the hydrostatic 

forces on various solid surfaces contact with fluid. We wish to determine the 

direction, location and magnitude of the resultant force acting on one side of 

the surface area due to the liquid in contact. The force acting on dA 

(differential area) is 𝑑𝐹 = 𝛾ℎ 𝑑𝐴   which is perpendicular to the surface as 

shown in Fig. 2.12. The magnitude of the resultant force can be found by 

summing or integrating this differential force over the entire surface  

𝐹𝑅 = ∫ 𝛾 ℎ 𝑑𝐴 =  ∫ 𝛾 𝑦 sin 𝜃 𝑑𝐴
𝐴𝐴

 

Where h =y*sin, for constant  and   

  𝐹𝑅 =  𝛾 𝑠𝑖𝑛𝜃 ∫ 𝑦 𝑑𝐴
𝐴

                                                                           (2.30) 

The integral appearing in above equation is the first moment of the area with 

respect to the x-axis, so we can write 

∫ 𝑦𝑑𝐴 = 𝑦𝑐𝑔𝐴𝐴
   

ycg is the y- coordinate of the centroid was  measured from the x-axis passes 

through  cg (the center of gravity) 

𝐹𝑅 = 𝛾 𝐴 𝑦𝑐𝑔 𝑠𝑖𝑛𝜃  

Or more simply as 

 𝐹𝑅 =  𝛾 ℎ𝑐𝑔 𝐴                                                                                          (2.31) 

Note, the magnitude of the force is independent of () and depends only on 

the specific weight, the total area, and the centroid of the area.  

Where (hcg) is the vertical distance from the fluid surface to the centroid of 

the area, but the resultant force is not actually pass through the centroid area. 

Its line of action passes through the center of pressure (cp). 

       The y-coordinate, ( ycp), of the resultant force can be determined by 

summation of moments around the x-axis, that is, the moment of the resultant 

force must equal the moment of the distributed pressure force or  

 𝐹𝑅 𝑦𝑐𝑝 = ∫ 𝑦 𝑑𝐹 = ∫ 𝛾 𝑠𝑖𝑛𝜃 𝑦2𝑑𝐴
𝐴𝐴

 

And therefore, since 𝐹𝑅 =  𝛾 𝐴 𝑦𝑐𝑔 𝑠𝑖𝑛𝜃 

𝑦𝑐𝑝 =
∫ 𝑦2 𝑑𝐴𝐴

𝑦𝑐𝑔 𝐴
  

 

 The integral in the numerator is the second moment of the area 

(moment of inertia), Ix, thus, we can write 

𝑦𝑐𝑝 =
𝐼𝑥

𝑦𝑐𝑔𝐴
= 

𝐼𝑥 𝑠𝑖𝑛𝜃

ℎ𝑐𝑔 𝐴
                                                                                (2.32)    
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From the parallel axis theorem can express Ix, as 𝐼𝑥 = 𝐼𝑥𝑐𝑔 + 𝐴𝑦𝑐𝑔
2  , where 

Ixcg is the second moment of the area with respect to an axis passing through 

its centroid and parallel to the x-axis. Thus, from Eq. 2.32 

 

𝑦𝑐𝑝 =
𝐼𝑥𝑐𝑔

𝑦𝑐𝑔𝐴
+ 𝑦𝑐𝑔 =

𝐼𝑥𝑐𝑔𝑠𝑖𝑛𝜃

ℎ𝑐𝑔𝐴
+ 𝑦𝑐𝑔                                                           (2.33)      

 
 

Figure 2.12: Notation for hydro static force on an inclined plane 

surface of arbitrary shape. 

            

Since 𝑠𝑖𝑛 𝜃 =  
ℎ𝑐𝑔

𝑦𝑐𝑔 
 . From Eq. 2.33    

𝐼𝑥𝑐𝑔

𝑦𝑐𝑔𝐴
 > 0 , then the resultant force does 

not pass through the centroid but is always below it. 

       From Fig. 2.12   ℎ𝑐𝑝 = 𝑦𝑐𝑝𝑠𝑖𝑛𝜃 . Know, from Eq. 2.33 

ℎ𝑐𝑝 =
𝐼𝑥𝑐𝑔𝑠𝑖𝑛𝜃2

ℎ𝑐𝑔𝐴
+ ℎ𝑐𝑔                                                                                (2.34)  

If =90, then sin 2=1. i.e. the surface is vertical. The center of pressure for 

immersed vertical surface becomes as follows, 

    ℎ𝑐𝑝 =
𝐼𝑥𝑐𝑔

ℎ𝑐𝑔𝐴
+ ℎ𝑐𝑔                                                                                  (2.35) 

      The x-coordinate, xcp, for the resultant force can be determined as follows  

𝑦𝑐𝑔 =
ℎ

𝑠𝑖𝑛𝜃
 

hcp 
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FRxcp = ∫ x dF = ∫γ sin θ xy dA
A

 

Since          dF = sin y dA,     FR = Aycgsin 

Therefore       𝑥𝑐𝑝 = 
∫ 𝑥𝑦 𝑑𝐴 
𝐴

𝑦𝑐𝑔𝐴
= 

𝐼𝑥𝑦

𝑦𝑐𝑔𝐴
                                                     (2.36) 

Where Ixy = Ixycg+A xcgycg   is the product of inertia with respect to the x&y 

axes. From parallel-theorem    

                                             𝑥𝑐𝑝 =
𝐼𝑥𝑦𝑐

𝑦𝑐𝑔𝐴
+  𝑥𝑐𝑔                                        (2.37) 

Summary:- 

 To find net hydrostatic force on a plane surface: 

1- Find area in contact with fluid  

2- Locate controid (cg) of that area. 

3- Find hydrostatic pressure pcg at controid =  hcg  

4- Find force F = pcg.A 

5- Location will not be at (c.g.) but at a distance ycp below centroid. 

Ex.7  
        The 4m-diameter circular gate is located in the inclined wall of a large 

reservoir containing water ( = 9.81 kN/m3). The gate is mounted on a shaft 

along its horizontal diameter. For water depth of (10 m) above the shaft 

determine: 

a) The magnitude and location of the resultant force exerted on the 

gate by the water. 

b) The moment that would have to be applied to the shaft to open the 

gate.  

Sol. 

The resultant force  

𝐹𝑅 = 𝛾ℎ𝑐𝑔𝐴  

𝐹𝑅 = (9.81 ∗ 103) (10)(4𝜋) = 1230 ∗ 103 𝑁 = 1.23 𝑀𝑁  
The location of  FR is at the center of pressure 

𝑥𝑐𝑝 =
𝐼𝑥𝑦𝑐

𝑦𝑐𝐴
+ 𝑥𝑐    

xcp = 0 since the area is symmetrical and the (c.p.) must lie along the (A-A) to 

obtain ycp  

𝑦𝑐𝑝 =
𝐼𝑥𝑐

𝑦𝑐𝑔𝐴
+ 𝑦𝑐𝑔   

𝐼𝑥𝑐 =
𝜋 𝑅4

4
    ,       𝑦𝑐𝑔 =

ℎ𝑐𝑔

𝑠𝑖𝑛60
 ,     𝑦𝑐𝑔 =

10

𝑠𝑖𝑛60
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𝑦𝑐𝑝 =
(
𝜋

4
)(2𝑚)4

(
10

𝑠𝑖𝑛60
)(4𝜋)

+
10

𝑠𝑖𝑛60
= 0.0866 + 11.547 = 11.63𝑚   

 

The distance below the shaft (along the gate) to the (cp) 

𝑦𝑐𝑝 − 𝑦𝑐𝑔 = 0.0866 𝑚     𝐴𝑛𝑠(𝑎)    
 

Ox & Oy are the horizontal and vertical reactions of the shaft on the gate, 

from the sum moments about the shaft 

∑𝑀𝑐 = 0    
𝑀 = 𝐹𝑅(𝑦𝑐𝑝 − 𝑦𝑐𝑔)   

 

=(1230*103)(0.0866) = 1.07 * 105 N.m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.8 Hydrostatic Forces on Curved Surface. 
 Consider the curved section ab of the open tank as in Fig. 2.13. We wish 

to find the resultant force acting on this section with unit length perpendicular 

to the plane of the paper. The horizontal plane surface bc and the vertical 
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F
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4 

m 

10 m 

A 

A 

cp 

ycp 
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ox 

Reaction

s 

θ=60º 
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plane surface ac are the projection areas of the curved surface ab. Fh & Fv 

are the forces components that the tank exerts on the fluid.  is the specific 

weight of the fluid times the enclosed volume acts through (cg), then, 

i) Vertical forces Fv: the vertical force on a curved surface is given by the 

weight of the liquid enclosed by the surface and the vertical force acts 

on horizontal free surface of the liquid. The force acts along the center 

of gravity of the volume. 

ii) Horizontal forces Fh: the horizontal force equals the force on the 

projected area of the curved surface and acts at the center of pressure of 

the projected area. 

Fh=F2 

Fv=F1+W   

The magnitude of the resultant is obtained from the following equation 

𝐹𝑅 = √(𝐹ℎ)2 + (𝐹𝑣)2                                                                             (2.38) 

The direction of FR is obtained from the following relation 

𝜃 = tan−1 (
𝐹ℎ

𝐹𝑣
)                                                                                        (2.39) 

 

 

   

              

 

 

      

 

 

 

 

Figure 2.13: Hydrostatic forces on a curved surface 

Ex.8  

         Determine the resultant force exerted by sea water S.G.=1.025 on the 

curved AB of an oil tanker as shown in figure. Also determine the direction 

of action of the force. Consider 1m width perpendicular to paper. 

Sol. 

𝐹ℎ = 𝛾 ∗ 𝐴 ∗ ℎ𝑐𝑔 = (1025 ∗ 9.81) ∗ (4 ∗ 1)(15 + 4 2⁄ ) = 683757 𝑁  

From Eq. 2.35, Line of action of horizontal force   

ℎ𝑐𝑝 = 
𝐼𝑥𝑐𝑠𝑖𝑛𝜃

ℎ𝑐𝑔𝐴
+ ℎ𝑐𝑔 = [

1×43

12
] [

1

(17×4×1)
] + 17 = 17.0784𝑚  from top 

towards left, The vertical force is due to the volume of sea water displaced  

𝐹𝑣 = [∀𝐵𝐶𝐷𝐸 + ∀𝐴𝐵𝐸]𝛾 = [(15 × 4 × 1) + (42 × 𝜋 × 1 4⁄ )][1025 ×
9.81] = 729673𝑁    acts upwards. 

                                  W 

                                           F1 

                             c                   b 

  

                                         cg 

              F2                                                    FH 

 

                           

                              a           

                                           FV    
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        To find the location of vertical force which acts at xcg in x-direction; 

xcg1 of column area BCDE is in the vertical plane (2 m) from edge. 

xcg2  of the area ABE =(4-4R/3) = 2.302 m from edge. Taking moments of 

the area about the edge, the line of action of vertical force is 

Xcg =[(xcg1*A1)+(xcg2*A2)]/[A1+A2]=[2*(15*4) + (2.302*42*/4)] 

/[(15*4)+(42/4)]  = 2.0523 m from the edge. 

The resultant force is 

𝐹𝑅 = √  (𝐹ℎ)2 + (𝐹𝑣)2   = √  (683757)2 + (729673)2 = 999973 𝑁   

The direction of action to the vertical is,  

tan 𝜃 =
𝐹ℎ

𝐹𝑣
= 

683757

729673
= 0.937         ∴  𝜃 = 43.14°    

 

2.9 Buoyancy and Stability of Floating Body. 
2.9.1 Buoyancy Force. 

        The princible of Archimedes is states that, any floating or immersed 

body in a fluid experiences a vertical bouyant force equal to the weight of the 

fluid it displaces. The derivation of above princible as follows, 

 

  

 

 

 

 

 

 

 

 

 

 

 

        From Fig. 2.14 the body lies between an upper curved surface (1) and 

lower surface (2), 

FV(2) 

FV(1) 

Surface 2 

Surface 1 

Figure 2.14: Forces on upper and lower curved surface 

Water Line (W.L.) 
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 FV(1)= The vertical force of the fluid weight above the surface(1). 

 FV(2)= The vertical force of the fluid weight above the surface(2). 

 FB = buoyant force. 

 FB = FV(2) - FV(1) = weight of fluid equivalent to body volume. 

Now, how to find the vertical force on body, from Fig 2.15, the sum of 

vertical forces on elemental vertical slices of immersed body, that can be 

derived as follows, 

𝐹𝐵 = ∫ (𝑝2 − 𝑝1)𝑑𝐴𝐻𝑏𝑜𝑑𝑦
  

𝐹𝐵 = 𝛾 ∫ (𝑧2 − 𝑧1)𝑑𝐴𝐻𝑏𝑜𝑑𝑦
= 𝛾∀𝑏𝑜𝑑𝑦                                                     (2.40) 

FB acts at the point is called the center of buoyancy.   

Since,     p1 and p2 are the pressure due to weight of fluid on upper and lower    

               horizontal surface of elemental area 

              ∀𝒃𝒐𝒅𝒚   is the body volume. 

               p= z. 

               z1 and z2 are the distances from water line to upper and lower                     

 horizontal surface of elemental area. 

               

        

 

 

 

 

 

 

 

 

 

 

 

 

 

Ex.9 
 A body is weight 400N in air and its weight 222N in water. Calculate its 

volume. 

Sol. 
       The summation of forces is  

  𝐹𝐵 + 𝑇 − 𝑊 = 0; where T is the tension in cable. 

∴ 𝐹𝐵 = 𝑊 − 𝑇 = 400 − 222 = 𝟏𝟕𝟖𝑵   weight of displaced fluid. 

𝐹𝐵 = 𝛾 × ∀= 9810 × ∀= 178 N     

      ∴ ∀= 𝟎. 𝟎𝟏𝟖 𝒎𝟑  

p2 

p1 

z2 - z1 

Upper horizontal area 

of element 

Lower horizontal area 

of element 

Figure 2.15: Pressures on upper and lower horizontal surface of     

                      elemental area 
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Ex.10 
        A spar buoy is a rod weighted to float vertically as in figure. Let the 

buoy be maple wood (S.G.=0.6), its dimension are (2 in  2 in  10 ft), 

floating in seawater (S.G.=1.025) how many pounds of steel (S.G.=7.85) 

should be added at the bottom so that (h=18 in).  

Sol. 

    Let ∀𝑠𝑝.= 𝑤𝑜𝑜𝑑 𝑠𝑝𝑎𝑟 𝑣𝑜𝑙𝑢𝑚𝑒; ∀𝐼𝑚𝑚.𝑠𝑝.= 𝐼𝑚𝑚𝑒𝑟𝑠𝑒𝑑 𝑠𝑝𝑎𝑟 𝑣𝑜𝑙𝑢𝑚𝑒; 

 𝑊𝑠𝑡. = 𝑠𝑡𝑒𝑒𝑙 𝑤𝑒𝑖𝑔ℎ𝑡; ∀𝑠𝑡.= 𝑠𝑡𝑒𝑒𝑙 𝑣𝑜𝑙𝑢𝑚𝑒; 𝑊𝑠𝑝 = 𝑊𝑜𝑜𝑑 𝑠𝑝𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡  

   ∀𝑠𝑝.= (
2

12
) (

2

12
) (10) = 0.273𝑓𝑡3  

𝑊𝑠𝑡. = 𝑚𝑠𝑡. × 𝑔 = 𝜌𝑠𝑡. × ∀𝑠𝑡. × 𝑔  

𝑆𝐺𝑠𝑡. =
𝜌𝑠𝑡

𝜌𝑤
         →  𝜌𝑠𝑡. = 𝑆𝐺𝑠𝑡. × 𝜌𝑤   𝑤ℎ𝑒𝑟𝑒 𝜌𝑤 = 𝑤𝑎𝑡𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦  

 ∴ ∀𝑠𝑡.=
𝑊𝑠𝑡.

(𝑆𝐺𝑠𝑡.)(𝛾𝑤)
=

𝑊𝑠𝑡

(7.85)(62.4)
                                                                  (a)      

∀𝐼𝑚𝑚.𝑆𝑝.= (
2

12
) (

2

12
) (8.5) = 0.236𝑓𝑡3  

From the below figure the buoyant vertical force FB balances the weights of 

wood and steel as follows: 

𝐹𝐵 = 𝑊𝑠𝑝. + 𝑊𝑠𝑡. = (𝜌∀𝑔)𝑠𝑝 + 𝑊𝑠𝑡. = (𝑆𝐺𝛾𝑤∀𝑠𝑝.) + (𝑊𝑠𝑡.)                  (b) 

Also, FB equal to the weight of water displaced by immersed volume  

𝐹𝐵 = 𝑊𝐼𝑚𝑚.𝑠𝑝. + 𝑊𝑠𝑡. = (𝑆𝐺 × 𝛾𝑤 × ∀𝐼𝑚𝑚.𝑆𝑝.) + (𝑆𝐺 × 𝛾𝑤 × ∀𝑠𝑡.)      (c) 

Equating relation (b and c) and substituting Eq. a will be given us the 

following, 

𝑆𝐺 × 𝛾𝑤(∀𝐼𝑚𝑚.𝑆𝑝. + ∀𝑠𝑡.) = (𝑆𝐺𝛾𝑤∀𝑠𝑝.) + (𝑊𝑠𝑡.)  

( 1.025)(62.4) [0.236 +
𝑊𝑠𝑡

(7.85)(62.4)
] = 0.6 × 62.4 × 0.278 + (𝑊𝑠𝑡.)  

15.09 + 0.1306𝑊𝑠𝑡. = 10.4 + 𝑊𝑠𝑡. Solving for Wst. 

∴ 𝑊𝑠𝑡. = 5.4 𝑙𝑏𝑓   

 

 

 

 

 

 

 

 

 

 

 

 

 

 Wst. 

FB 

Wsp. 

W.L. 

h=10ft 

h=18 in 
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2.9.2 Stability. 
        Engineer must design to avoid floating instability; there are three 

possible situations for a body when immersed in a fluid. 

I. If the weight of the body is greater than the weight of the liquid of equal 

volume then the body will sink into the liquid (to keep it floating 

additional upward force is required). 

II. If the weight of the body equals the weight of equal volume of liquid, 

then the body will submerge and may stay at any location below the 

surface. 

III.  If the weight of the body is less than the weight of equal volume of 

liquid, then the body will be partly submerged and will float in the 

liquid. 

 A ship or a boat should not overturn due to small disturbances but 

should be stable and return to its original position. Equilibrium of a body 

exists when there is no resultant force or moment on the body. A body can 

stay in three states of equilibrium. 

i) Stable equilibrium: Small disturbances will create a correcting couple and 

the body will go back to its original position prior to the disturbance. 

ii) Neutral equilibrium: Small disturbances do not create any additional 

force and so the body remains in the disturbed position. No further change 

in position occurs in this case. 

iii) Unstable equilibrium: A small disturbance creates a couple which acts 

to increase the disturbance and the body may tilt over completely. 

 Under equilibrium conditions, two forces of equal magnitude acting 

along the same line of action, but in the opposite directions exist on a 

floating/submerged body. These are the gravitational force on the body 

(weight) acting downward along the centroid of the body and buoyant force 

acting upward along the centroid of the displaced liquid. Whether floating or 

submerged, under equilibrium conditions these two forces are equal and 

opposite and act along the same line. 

      Fig. 2.16 illustrates the computation for the usual case of a symmetric 

floating body. The steps are as follows;  

1- The basic floating position is calculated from 

𝐹𝐵 = 𝛾∀𝑏𝑜𝑑𝑦= floating body weight 

The body's center of mass at point G and center of buoyancy B are 

computed. 

2- After tilted the body at, new position B' of the center of buoyancy, a 

vertical line drawn upward from B' intersects the line of symmetry at 

point M, called the metacenter. The point about which the body starts 

oscillating, is called metacenter. 

3- If M is above center of mass where point G as in figure, the metacentric 

height 𝑀𝐺̅̅̅̅̅  is positive, a restoring moment is present and the original is 
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stable as in Fig. 2.16.b. If M is below G, the height 𝑀𝐺̅̅̅̅̅ is negative, the 

body is unstable and the body will overturn as in Fig. 2.16.c. Stable 

increase with increasing𝑀𝐺̅̅̅̅̅. 

 
 

 

Fig. 2.17 below shows the body for completely submerged, which has a 

center of gravity below the center of buoyancy as in Fig. 2.17.a. For this 

configuration the body is stable with respect to small rotation. If the center of 

gravity is above the center of buoyancy as in Fig. 2.17.b, the resulting couple 

formed by the weight and the buoyant force will cause the body to overturn 

and to move to a new equilibrium position. Thus, a completely submerged 

body with its center of gravity above its center of buoyancy is in an unstable 

equilibrium position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.9.3 Stability Related to Water Line. 

Figure 2.16: The metacenter M of the floating body [1]. 

(a)                                                                       (b) 

Figure 2.17: Stability of a completely immersed body (a) CG below B, (b) CG above B 
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2.9.3 Stability Related to Waterline Area.  

       From Fig.2.18 the y-axis of the body is assumed to be a line of symmetry. 

After tilting with small, then submerges small wedge (obd) and uncover and 

equal wedge (coa) as in Fig.2.18. New position B' of the center of buoyancy 

is calculated as the centroid of the submerged position (aobde). 𝑥̅  is the 

movement of the center of buoyancy B, which is related to the waterline area 

moment of inertia. The moment of inertia of the waterline area calculated as 

follows: 

𝑥̅∀𝑎𝑜𝑏𝑑𝑒= ∫ 𝑥𝑑∀
𝑐𝑜𝑑𝑒𝑎

+ ∫ 𝑥𝑑∀ − ∫ 𝑥𝑑∀
𝑐𝑜𝑎𝑜𝑏𝑑

 

 

𝑥̅∀𝑎𝑜𝑏𝑑𝑒= 0(𝑑𝑢𝑒 𝑡𝑜 𝑠𝑦𝑚𝑒𝑡𝑟𝑦) + ∫ 𝑥(𝐿𝑑𝐴) − ∫ 𝑥(𝐿𝑑𝐴)
𝑐𝑜𝑎𝑜𝑏𝑑

 

 

𝑥̅∀𝐼𝑚𝑚.= ∫ 𝑥𝐿(𝑥𝑡𝑎𝑛𝜃𝑑𝑥) − ∫ 𝑥𝐿(−𝑥𝑡𝑎𝑛𝜃𝑑𝑥)
𝑐𝑜𝑎𝑜𝑏𝑑

 

𝑥̅∀𝐼𝑚𝑚.= 𝑡𝑎𝑛𝜃 ∫ 𝑥2𝑑𝐴𝑊.𝐿 = 𝐼𝑜𝑡𝑎𝑛𝜃
𝑊.𝐿

 

Element of waterline area = Ldx 
𝑥̅

𝑡𝑎𝑛𝜃
= 𝑀𝐵̅̅ ̅̅̅ =

𝐼𝑜

∀𝐼𝑚𝑚.
= 𝑀𝐺̅̅̅̅̅ + 𝐺𝐵̅̅ ̅̅                                                           (2.41)  

Figure 2.18: A floating body tilted through a small angle. 
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Or  𝑀𝐺̅̅̅̅̅ =
𝐼𝑜

∀𝐼𝑚𝑚.
± 𝐺𝐵̅̅ ̅̅   ; (-) is used if G above B; (+) is used if G below B 

Where Io is the area moment of inertia of the waterline footprint of the body 

about its tilt O. The computation procedure as follows,  

 Firstly determine the distance from G to B. 

 Then make the calculation of Io, and the submerged volume∀𝐼𝑚𝑚.. 

 If metacentric height MG is positive, the body is stable for small 

disturbances. 

 If 𝑀𝐺̅̅̅̅̅ negative then the body is unstable. 

Ex.11 

        Consider a wooden cylinder S.G.=0.6, 1m in diameter and 0.8m long. 

Would this cylinder be stable if placed to float with its axis vertical in oil 

S.G.=0.85. 

Sol. 
      A vertical force balance gives 

𝐹𝐵 = 𝑊𝑤𝑜𝑜𝑑  

𝛾𝑜𝑖𝑙∀𝐼𝑚𝑚.= 𝛾𝑤𝑜𝑜𝑑∀𝑤𝑜𝑜𝑑  

0.85 × 1000 × 9.81 × 𝜋𝑅2ℎ = 0.6 × 1000 × 9.81 × 𝜋𝑅2 × 0.8  

0.85 × 𝜋𝑅2ℎ = 0.6 × 𝜋𝑅2 × 0.8                    𝑅 = 0.5 𝑚  

∴ ℎ = 0.565 𝑚  
The point B is at h/2 = 0.282 m above the bottom, to predict the metacenter 

location  

𝑀𝐵 =
𝐼𝑜

∀𝐼𝑚𝑚.
⁄ = [𝜋

(0.5)4

4
⁄ ] [𝜋 × 0.52 × 0.565]⁄ = 0.111𝑚 

𝑀𝐵 = 𝑀𝐺 + 𝐺𝐵  
Now, GB=0.4-0.282=0.118m  from figure. 

Hence, MG = 0.111-0.118 = - 0.007m  

This float position is thus slightly unstable. The cylinder would turn over. 
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2.10 Fluid in Rigid-Body Motion. 
2.10.1   Acceleration on a Straight Path. 

 The general equation of motion for fluid that acts as a rigid body (no 

shear stresses) is determined to be Rigid-Body motion of fluids. 

∇⃗⃗ 𝑝 + 𝜌𝑔𝑘⃗ = −𝜌𝑎   From Eq. 2.12 where the viscous term vanishes 

identically, and p depends only upon the terms g &a. 

Resolving the vectors into their components, 
𝜕𝑝

𝜕𝑥
𝑖 +

𝜕𝑝

𝜕𝑦
𝑗 +

𝜕𝑝

𝜕𝑧
𝑘⃗ + 𝜌𝑔𝑘⃗ = −𝜌(𝑎𝑥𝑖 + 𝑎𝑦𝑗 + 𝑎𝑧𝑘⃗ ) 

Accelerating fluids 
𝜕𝑝

𝜕𝑥
= −𝜌𝑎𝑥;   

𝜕𝑝

𝜕𝑦
= −𝜌𝑎𝑦;  

𝜕𝑝

𝜕𝑧
= −𝜌(𝑔 + 𝑎𝑧)                                         (2.42) 

When the fluid is at rest 

 
𝜕𝑝

𝜕𝑥
= 0;  

𝜕𝑝

𝜕𝑦
=  0; 

𝜕𝑝

𝜕𝑧
= −𝜌𝑔 

Considering the container is moving on a straight path with constant 

acceleration as shown in Fig. 2.19, the x&z components of acceleration are 

ax&az, there is no movement in the y-direction and ay=0. Then the equation 

of motion for accelerating fluids Eq. 2.42 reduce to  
𝜕𝑝

𝜕𝑥
= −𝜌𝑎𝑥 ,

𝜕𝑝

𝜕𝑦
= 0, 𝑎𝑛𝑑 

𝜕𝑝

𝜕𝑧
= −𝜌(𝑔 + 𝑎𝑧)  

Then p=p(x,z), which is 

𝑑𝑝 = (
𝜕𝑝

𝜕𝑥
) 𝑑𝑥 + (

𝜕𝑝

𝜕𝑧
)𝑑𝑧  

𝑑𝑝 = −𝜌𝑎𝑥𝑑𝑥 − 𝜌(𝑔 + 𝑎𝑧)𝑑𝑧                                                             (2.43) 

 

 

Figure 2.19: Liquid in rigid –body acceleration  

                     with constant pressure surface. 
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By integration Eq. 2.43 along a line of constant pressure between 

pressure point 1 and 2 when  is constant as in Fig. 2.20  

𝑝2 − 𝑝1 = −𝜌𝑎𝑥(𝑥2 − 𝑥1) − 𝜌(𝑔 + 𝑎𝑧)(𝑧2 − 𝑧2)                                   (2.44) 

Taking point 1 to be origin where x=0 and z=0, since the pressure is 

atmosphere pressure po. The vertical rise or drop of the free surface at point 2 

relative to point 1 can be determine by choosing both (1&2) on the free 

surface (so that p1=p2). Solving Eq. 2.44 for (z2-z1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

∆𝑧 = 𝑧2 − 𝑧1 = −
𝑎𝑥

𝑔+𝑎𝑧
(𝑥2 − 𝑥1)                                                            (2.45) 

 Eq. 2.45 is the equation of constant pressure line, called (isobars) 

obtained from Eq. 2.43. From Fig. 2.20, the line of constant pressure 
𝑑𝑧

𝑑𝑥
= −

𝑎𝑥

𝑔+𝑎𝑧
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

Slop of isobars is 𝑠𝑙𝑜𝑝 =
𝑑𝑧

𝑑𝑥
= −

𝑎𝑥

𝑔+𝑎𝑧
= −𝑡𝑎𝑛𝜃 

𝑡𝑎𝑛𝜃 =
𝑎𝑥

𝑔+𝑎𝑧
                                                                                             (2.46)  

If az=0 then                 tan 𝜃 =
𝑎𝑥

𝑔
  

Ex.12 

 An 80 cm high fish tank of cross section (2m*0.6m) which is initially 

filled with water is to be transported on the back of a track. The track 

accelerates from 0 to 90 km/hr in 10 s. If it's desired that no water spills 

during acceleration, determine the allowable initial water height in the tank. 

Would you recommend the tank to be aligned with the long or short side 

parallel to the direction of motion?  

Sol.  

 The road is horizontal during acceleration ∴ 𝑎𝑧 = 0 

𝑎𝑥 =
∆𝑉

∆𝑡
= (

90−0

10
) (

1

3.6
) = 2.5 𝑚/𝑠2  

Figure 2.20: Linear acceleration of a liquid with a free surface. 

2 

1 

x 

z 

z=z2-z1 

x 

Constant pressure line 

 
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tan 𝜃 =
𝑎𝑥

𝑔 + 𝑎𝑧
=

2.5

9.81 + 0
= 0.255       ∴ 𝜃 = 14.3° 

Then the vertical rise at the back of the tank relative to the mid-plane 

for two possible orientations as in figure becomes 

Case-1: The long side is parallel to the direction of motion 

∆𝑧1 = (
𝑏1

2
) tan 𝜃 =(

2

2
) × 0.255 = 0.255𝑚 = 25.5𝑐𝑚  

Case-2: The short side is parallel to the direction of motion 

∆𝑧2 = (
𝑏2

2
) tan 𝜃 = (

0.6

2
) × 0.255 = 0.076𝑚 = 7.6𝑐𝑚    

The tank should definitely be oriented such that its short side is parallel to the 

direction of motion, the tank such that its free surface level drop just 7.6 cm, 

then the initial high becomes = 80-7.6=72.4cm. 

 

 

 

 

 

 

 

 

 

2.10.2 Rotation in a Cylindrical Container. 

 This problem is best analyzed in cylindrical coordinates (r,,z).the 

centripetal acceleration of a fluid particle rotating with a constant  at a 

distance r from the axis of rotation is 

𝑎𝑟 = −𝑟𝜔2  (Directed radially toward the axis of rotation) symmetry about     

z-axis (axis of rotation) and thus there is no  dependence as shown in Fig. 

2.21. 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

Water Tank 

z 
 

80 cm 

b 

R 

hc Z

s 

z 

r 

ho 

Figure 2.21: Rigid-body rotation of a liquid in a tank. 
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p=p(r,z); a=0 and az=0 (no motion in z-direction). Equation of motion for 

rotating fluids reduce to 
𝜕𝑝

𝜕𝑟
= −𝜌𝑎𝑟 = 𝜌𝑟𝜔2,

𝜕𝑝

𝜕𝜃
= 0  𝑎𝑛𝑑   

𝜕𝑝

𝜕𝑧
= −𝜌𝑔                                    (2.47) 

Then the total differential of p=p(r,z), which is 

𝑑𝑝 = (
𝜕𝑝

𝜕𝑟
)𝑑𝑟 + (

𝜕𝑝

𝜕𝑧
)𝑑𝑧 , becomes 

𝑑𝑝 = 𝜌𝑟𝜔2𝑑𝑟 − 𝜌𝑔𝑑𝑧                                                                             (2.48) 

The equation for surfaces of constant pressure is obtained by setting dp=0 

and replace z by zisobar, which is the value of the surface as function of r, it 

gives 

𝑑𝑧𝑖𝑠𝑜𝑏𝑎𝑟

𝑑𝑟
=

𝑟𝜔2

𝑔
 

 By integration the equation for the surface of constant pressure is 

determined to be 

𝑧𝑖𝑠𝑜𝑏𝑎𝑟 =
𝜔2

2𝑔
𝑟2 + 𝐶1                                                                                (2.49) 

 Eq. 2.49 is the equation of parabola. For each isobar surface there is C1 

different. For free surface setting r=0 gives zisobar(0)=C1=hc. Then Eq. 2.49 

for free surface becomes  

𝑧𝑠 =
𝜔2

2𝑔
𝑟2 + ℎ𝑐                                                                                       (2.50) 

Where zs is the distance of the free surface. The volume of a cylindrical shell 

element of radius r, height zs and thickness dr is 

𝑑∀= 2𝜋𝑟zsdr  
Then the volume of the parabola formed by the free surface is 

∀= ∫ 2𝜋𝑟zsdr
𝑅

𝑟=0
= 2𝜋 ∫ (

𝜔2

2𝑔
𝑟2 + ℎ𝑐)

𝑅

𝑟=0
𝑟𝑑𝑟  

∀= 𝜋𝑅2 (
𝜔2

4𝑔
𝑅2 + ℎ𝑐)                                                                             (2.51) 

Original volume in the container is 

∀𝑜= 𝜋𝑅2ℎ𝑜 
Where ho is the original height, setting these two volumes equal to each other, 

𝜋𝑅2ℎ𝑜 = 𝜋𝑅2 (
𝜔2𝑅2

4𝑔
+ ℎ𝑐)   

ℎ𝑐 = ℎ𝑜 −
𝜔2𝑅2

4𝑔
  

Then Eq. 2.50 for free surface becomes 

𝑧𝑠 = ℎ𝑜 −
𝜔2

4𝑔
(𝑅2 − 2𝑟2)                                                                      (2.52)        

The maximum height difference is zs max. is at r=R & r=0 

∆𝑧𝑠,𝑚𝑎𝑥 = 𝑧𝑠(𝑅) − 𝑧𝑠(0) = (ℎ𝑜 −
𝜔2

4𝑔
(−𝑅2)) − (ℎ𝑜 −

𝜔2

4𝑔
𝑅2) 
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∆𝑧𝑠,𝑚𝑎𝑥 =
𝜔2

4𝑔
𝑅2 +

𝜔2

4𝑔
𝑅2 =

𝜔2

2𝑔
𝑅2                                                          (2.53) 

For  is constant, the pressure difference is determined by integration Eq. 

2.48 between two point (1&2) as follows 

𝑝2 − 𝑝1 =
𝜌𝜔2

2
(𝑟2

2 − 𝑟1
2) − 𝜌𝑔(𝑧2 − 𝑧1)       

Taking point 1 to be the origin (r=0, z=0) where the pressure is po and point 2 

to be any point in the fluid, the pressure variation is given by 

𝑝 = 𝑝𝑜 +
𝜌𝜔2

2
𝑟2 − 𝜌𝑔𝑧                                                                           (2.54) 

The pressure is linear in z and parabolic in r. 

Ex.2  
 A 20 cm diameter, 60 cm high vertical cylinder container shown in 

figure, is partially filled with 50 cm high liquid whose density is 850 kg/m3. 

Now the cylinder is rotated at a constant speed. Determine the rotational 

speed at which the liquid will start spilling from the edges of the container. 

Sol.      

From Eq. 2.52         

𝑧𝑠 = ℎ𝑜 −
𝜔2

4𝑔
(𝑅2 − 2𝑟2) 

Taking    z = 0 at r = 0, then the vertical height of the liquid at the edge of 

container at r = R becomes 

𝑧𝑠(𝑅) = ℎ𝑜 +
𝜔2

4𝑔
𝑅2 ;  ℎ𝑜 = 0.5𝑚 

The height of the liquid at edge of the container equals the height of the 

container, and thus 𝑧𝑠(𝑅) = 0.6𝑚 solving for  

𝜔 = √
4𝑔[𝑧𝑠(𝑅) − ℎ𝑜]

𝑅2
= √

4 × 9.81 × (0.6 − 0.5)

0.12
= 19.8 𝑟𝑎𝑑/𝑠 

𝜔 =
2𝜋𝑛

60
   → 𝑛 =

𝜔×60

2𝜋
= 189 𝑟𝑝𝑚.  

The liquid height at the center is 

𝑧𝑠(0) = ℎ𝑜 −
𝜔2

4𝑔
𝑅2 = 0.4 𝑚  
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Problems. 

P2.1 If a mercury barometer read 700 mm and a bourdon gauge at a point in a 

flow system reads 500 kN /m2 what is the absolute pressure at the point.  

          [ pabs.=593.395 kN/m2] 

P2.2 As in figure the water &  gasoline at 20C are in the tank open to 

atmosphere and are at the same elevation what is the height )  h( in third 

liquid? Take water=9790 N/m3 gasoline=6670 N/m3.                 [h=1.52 m] 

 

 
 

P2.3 The closed tank as in figure is at 20C. If the pressure at ِ)A( is 95 kPa 

absolute, determine ) p ( at B )absolute(. What percent error do you 

make by neglecting the specific weight of the air?       [pB=75380 N/m2 

abs. , error%=0.0355] 

 
P2.4 Water flows upward in a pipe slanted at 30, as in figure the mercury 

manometer reads h=12cm. What is the pressure difference between 

points  )1&2( in the pipe ? water=9790 N/m3  merc.=133100 N/m3. 

          [(p1-p2)=26100 pa] 
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P2.5 A vertical lock gate is 4m wide and separates 20C water levels 2m & 

3m   respectively. Find the moment about the bottom required to keep 

the gate stationary as in below figure.                           [MB=124 kN.m] 

 

 

 

 

 

 

 

 

 

P2.6 The tank as in figure is 2m wide into the paper, neglecting atmospheric 

pressure, fined the resultant hydrostatic force on panel BC,   

a) From a single formula.                                                     [F=264 kN]  

b) By computing horizontal & vertical force separately, in the spirit of 

curved surfaces. water = 9790 N/m3 .                               [FR=441 kN] 

 

 

 

 

 

  

         

 

 

 

P2.7 Gate AB as in figure is a homogenous mass of 180 kg 1.2 m wide into 

the paper, hinged at A, and resting on a smooth bottom at B. All fluids 

are at 20C. For what water depth h will the force at point B be zero? 

Take,    water = 9790 N/m3, gly.= 12360 N/m3                       [h=2.52 m] 

 

 

B 
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P2.8 Container having 6.00m length, 1.8m height and 2.1m width, filled with 

water at height 0.9m. If the container moves with linear acceleration in 

length direction of container at 2.45 m/s2,  

a) Calculate the water force effect on the two ends of container.  

b) Explain the difference between these forces equal to unequilibrium 

force required to accelerate the liquid mass.  

c) If the container filled completely by water to 1.8m height and 

accelerated to 1.52 m/s2. Calculate the volume of water is escaping 

from container in litter.  

            [a-Ffront=231N, Frear=28043 N, b-Freq.=27812 N, c- ∀𝒐𝒖𝒕= 𝟓𝟖𝟔𝟎 𝒍] 
 

P2.9 The homogeneous wooden block A as in 

the figure with dimensions 

(0.7m*0.7m*1.3m) and its weight 2.4 kN. 

The concrete block B (specific weight = 

23.6 kN/m3) is suspended from A by cable 

causing A to float in the position indicated. 

Determine the volume of B.   

         [∀= 𝟎. 𝟎𝟓𝟐𝟐 𝒎𝟑]    
 

P2.10 Cylindrical reservoir open from top its height 2m and diameter 1m 

contain 1.5m of water, if the cylindrical shape rotate about its 

geometrical center  

a)  What is the constant angular velocity can be reaches without 

escaping the waters from reservoir?                              [ω=8.86 rad/s]        

b) What is the pressure at the base of container at C & D as in figure if 

=6.0rad/s?                                   [pC=12500 N/m2, pD=17000 N/m2] 
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3.1 Definitions. 
A. Kinematics of Fluid. Is the geometry of motion, which is describes the 

fluid motion and its consequences without consideration of the nature of 

forces causing the motion. 

       The subject has three main aspects 

                                              

 

 

 

 

                      

 

  

              

 

 

 

B. Ideal Fluid.  Is a frictionless and incompressible fluid, the flow processes 

are reversible and nonviscous. 

C. Laminar Flow. When the fluid particles move along smooth paths in 

laminas, or layers with one layer gliding smoothly over an adjacent layer 

this flow is called laminar. 

D. Turbulent Flow. The fluid particles are moving in very irregular paths 

causing an exchange of momentum from one portion of the fluid to 

another.  

E. Scalar & vector fields. 

Scalar: - scalar is a quantity which can be expressed by a single number 

representing its magnitude, as mass, density, and temperature. 

[Development of methods & techniques  

 for describing and specifying the motion 

of  fluid] 
 
[Determination of the conditions for the  

kinematic  possibility of fluid motion] 
 

[Characterization of different types of                                                     

motion and associated deformation rates 

of any fluid element]  
 

Kinematic of Fluid 

Fluid Flow-Basic Concept 

3 CHAPTER 
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Scalar field: - If at every point in a region, a scalar function has a defined 

value, the region is called a scalar field, as temperature distribution in a rod. 

Vector:- Vector is a quantity which is specified by magnitude and direction, 

as force, velocity and displacement. 

Vector field: - If at every point in a region, a vector function has a defined 

value, the region is called a vector field, as, velocity field of a flowing fluid. 

F. Flow field: - The region in which the flow parameters, as velocity, 

pressure etc, are defined at each and every point at any instant of time is 

called a flow field. 

 

3.2 Description of Fluid Motion. 
a. Lagrangian Method (L.M.).  

The fluid motion is described by tracing the kinematic behavior of each 

particle constituting the flow. This method depends on the identities of the 

particles are made by specifying their initial position (spatial location) at a 

given time. The position of a particle at any other instant of time then 

becomes a function of its identity and time. 

Analyticaly can be expressed as 

S⃗ = 𝑆(𝑆 0, 𝑡)                                                                                                          

S⃗  is the position vector of a particle with respect to a fixed point of reference 

at a time (t). 

S0
⃗⃗  ⃗  Its initial position at a given time t=t0 

The above equation can be written into scalar components with respect to a 

rectangular cartesian frame of coordinates as: 

X=X(x0,y0,z0,t)                                                                                        (3.1.a)   

Y=Y(x0,y0,z0,t)                                                                                        (3.1.b)  

 Z=Z(x0,y0,z0,t)                                                                                        (3.1.c) 

Where, x0, y0, z0 are the initial coordinates and x, y, z are the coordinates at 

time t of the particles 

Hence, S⃗  can be expressed as 

𝑆 = 𝑖 x + 𝑗 y + 𝑘⃗ z where i , j  and k⃗  are the unit vectors along x ,y and z axes 

respectively . 

The velocity V⃗⃗  and acceleration a⃗  of the fluid particle can be obtained from 

the material derivatives of the position of the particle with respect to time. 

Therefore, 

 𝑉⃗ = [
𝑑𝑠

𝑑𝑡
]
𝑠0

                                                                                                          (3.2) 

In terms of scalar components 

𝑢 = (
𝑑𝑥

𝑑𝑡
)
𝑥0,𝑦0,𝑧0

                                                                                              (3.2.a)                
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𝑣 = (
𝑑𝑦

𝑑𝑡
)
𝑥0,𝑦0,𝑧0

                                                                                              (3.2.b)       

𝑤 = (
𝑑𝑧

𝑑𝑡
)  𝑥0,𝑦0,𝑧0                                                                                           (3.2.c) 

Where u , v , w are the components of velocity in x , y, z direction 

respectively. 

Similarly, for the acceleration 

𝑎 =  [
𝑑2𝑆 

𝑑𝑡2]                                                                                                           (3.3)  

Hence , 

𝑎𝑥 = [
𝑑2𝑥

𝑑𝑡2 ]
𝑥0,𝑦0,𝑧0

                                                                                       (3.3.a) 

𝑎𝑦 = [
𝑑2𝑦

𝑑𝑡2
]
𝑥0,𝑦0,𝑧0

                                                                                      (3.3.b)                

𝑎𝑧 = [
𝑑2𝑧

𝑑𝑡2]
𝑥0,𝑦0,𝑧0

                                                                                           (3.3.c) 

Where ax , ay, az are the acceleration  in x , y and z direction respectively.  

Advantage of L.M 

1- The motion & trajectory of each fluid particle is known.  

2- The particles are identified at the start and traced throughout their motion.  

Disadvantage: the solution of the equations presents appreciable 

mathematical difficulties.  

b.  Eulerian Method. 
It avoids the determination of the movement of each individual fluid 

particle in all details. It seeks the velocity 𝑉⃗  and its variation with time t at 

each and every location 𝑠  in the flow field. Mathematical representation of 

the flow field in Eulerian method  

𝑉⃗ = 𝑉(𝑆 , 𝑡)                                                                                                       (3.4) 

where 

𝑉⃗ = 𝑖 𝑢 + 𝑗 𝑣 + 𝑘⃗ 𝑤    𝑎𝑛𝑑    𝑆⃗⃗ = 𝑖 𝑥 + 𝑗 𝑦 + 𝑘⃗ 𝑧    
Therefor 

u=u(x ,y ,z ,t) 

v=v(x ,y ,z ,t) 

w=w(x ,y ,z ,t) 

 

3.3 Variation of Flow Parameters in Time & Space.  
 Hydrodynamic parameters like pressure and density along with flow 

velocity may vary from one point to another and also from one instant to 

another at a fixed point. According to type of variation  

A- Steady flow. A steady flow is defined as a flow in which the various 

hydrodynamic parameters and fluid properties at any point do not 

change with time.  
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𝜕𝜌
𝜕𝑡 

⁄ = 0,     
𝜕𝑝

𝜕𝑡
⁄ = 0, 𝜕𝑇

𝜕𝑡⁄ = 0  

In Eulerian approach a steady flow is described as 

        𝑉⃗ = 𝑉(𝑆 )And  𝑎 = 𝑎(𝑆 ) 

The hydrodynamic parameters may vary with location, but the spatial 

distributions of these parameters remain invariant with time. In 

Lagrangian approach, the velocities of all points passing through any 

fixed point at different times will be same. Therefore, the Eulerian and 

Lagrangian approach of describing fluid motion become identical under 

this situation. 

B- Unsteady flow. Is defined as a flow in which the hydrodynamic 

parameters and fluid properties changes with time. 
𝜕𝜌

𝜕𝑡 
⁄ ≠ 0,     

𝜕𝑝
𝜕𝑡

⁄ ≠ 0, 𝜕𝑇
𝜕𝑡⁄ ≠ 0  

C- Uniform flow. the flow is defined as uniform flow when in the flow 

field the velocity and other hydrodynamic parameters do not change 

from point to point at any instant of time can be expressed as : v=v(t) 

Any hydrodynamic parameter will have one value in the entire field  

If changes with time    unsteady uniform flow  

OR 

Does not change with time  steady uniform flow 

D. Non–uniform flow.  When the velocity other hydrodynamic parameters 

changes from one point to another the flow is defined as non- uniform. 

Non- uniform may be found either in the direction of flow or in 

direction perpendicular it. 

 

3.4  Material Derivative and Acceleration. 
         The velocity components u,v,w of the particle along x, y and z direction 

in space , can be written in Eulerian form as  

u=u (x , y, z) 

v=v(x , y, z) 

z=z(x , y, z) 

After an infinitesimal time interval t, let the particle move to a new position 

given by the coordinates (x+∆x,y+∆y,z+∆z)  

Its velocity components at this new position be (u+∆u ,v+∆v, w+∆w). 

Expression of velocity components in the Taylor's series form  

𝑢 + ∆𝑢 = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) +
𝜕𝑢

𝜕𝑥
∆𝑥 +

𝜕𝑢

𝜕𝑦
 ∆𝑦 +

𝜕𝑢

𝜕𝑧
 ∆𝑧 +

𝜕𝑢

𝜕𝑡
 ∆𝑡 +

ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠  𝑖𝑛 ∆𝑥, ∆𝑦, ∆𝑧&∆𝑡.   
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𝑣 + ∆𝑣

= 𝑣(𝑥, 𝑦, 𝑧, 𝑡) +
𝜕𝑣

𝜕𝑥
∆𝑥 +

𝜕𝑣

𝜕𝑦
 ∆𝑦 +

𝑑𝑣

𝑑𝑧
 ∆𝑧 +

𝜕𝑣

𝜕𝑡
 ∆𝑡

+  ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠𝑖𝑛 ∆𝑥, ∆𝑦, ∆𝑧&∆𝑡. 

𝑤 + ∆𝑤 = 𝑤(𝑥, 𝑦, 𝑧, 𝑡) +
𝜕𝑤

𝜕𝑥
 ∆𝑥 +

𝜕𝑤

𝜕𝑦
 ∆𝑦 +

𝜕𝑤

𝜕𝑧
∆𝑧 +

𝜕𝑤

𝜕𝑡
 ∆𝑡 +

ℎ𝑖𝑔ℎ𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠  𝑖𝑛 ∆𝑥, ∆𝑦, ∆𝑧&∆𝑡.    
The increment in space coordinates can be written as:- 

∆𝑥 = 𝑢∆𝑡, ∆𝑦 = 𝑣∆𝑡, 𝑎𝑛𝑑 ∆𝑧 = 𝑤∆𝑡   
Substituting the value of ∆x, ∆y, ∆z in above eqn. , we have  
∆𝑢

∆𝑡
= 𝑢

𝜕𝑢

𝜕𝑥
+  𝑣

𝜕𝑢

𝜕𝑦
+  𝑤

𝜕𝑢

𝜕𝑧
+

𝜕𝑢

𝜕𝑡
 , 𝑒𝑡𝑐    

In the limit ∆t 0 , the equation becomes  

 
𝐷𝑢

𝐷𝑡
=

𝜕𝑢

𝜕𝑡
+  𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
   

𝐷𝑣

𝐷𝑡
=

𝜕𝑣

𝜕𝑡
+  𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+  𝑤

𝜕𝑣

𝜕𝑧
                                                                   (3.5) 

𝐷𝑤

𝐷𝑡
=

𝜕𝑤

𝜕𝑡
+  𝑢

𝜕𝑤

𝜕𝑥
+  𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
   

 

The above Eq's. tell that the operator for total differential with respect to 

time, D/Dt in a convective field is related to the partial differential as:  
𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+  𝑢

𝜕

𝜕𝑥
+  𝑣

𝜕

𝜕𝑦
+  𝑤

𝜕

𝜕𝑧
                                                                      (3.6)   

  

 

 

 

From Eq. 3.5 

 The terms in the left hand sides in (x,y,z) are the component of 

substantial or material acceleration.  

 The first terms in the R.H.S are the local or temporal accelerations  

 While the other terms are convective accelerations. 

 

Thus we can write, 

𝑎𝑥 =
𝐷𝑢

𝐷𝑡
=

𝜕𝑢

𝜕𝑡
+  𝑢

𝜕𝑢

𝜕𝑥
+  𝑣

𝜕𝑢

𝜕𝑦
+  𝑤

𝜕𝑢

𝜕𝑧
   

𝑎𝑦 =
𝐷𝑣

𝐷𝑡
=

𝜕𝑣

𝜕𝑡
+  𝑢

𝜕𝑣

𝜕𝑥
+  𝑣

𝜕𝑣

𝜕𝑦
+  𝑤

𝜕𝑣

𝜕𝑧
                                                        (3.7) 

𝑎𝑧 =
𝐷𝑤

𝐷𝑡
=

𝜕𝑤

𝜕𝑡
+  𝑢

𝜕𝑤

𝜕𝑥
+  𝑣

𝜕𝑤

𝜕𝑦
+  𝑤

𝜕𝑤

𝜕𝑧
   

Material or substantial acceleration = temporal acceleration + convective 

acceleration, The total acceleration vector is  

a⃗ = axi + ayj + azk⃗                                                                                         (3.8)   

Material or substantial derivative       Temporal or local derivative        convective derivative 
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Ex.1   

 Given the velocity field  

V⃗⃗ = (4 + xy + 2t)i + 6x3j + (3xt2 +  z)k⃗    
Find the acceleration of fluid particles  

a- As function of x ,y , z and t 

b- At (1,1,1) and time t=1sec. 

 

Sol.   
 a-   From the given velocity field  

u = 4 + xy + 2t ,   v = 6x3,   w = 3xt2 + z    
From Eq. 3.7 

ax =
Du

Dt
=

∂u

∂t
+  u

∂u

∂x
+  v

∂u

∂y
+  w

∂u

∂z
   

∂u

∂t
= 2 ;  

∂u

∂x
= y ;  

∂u

∂y
= x ; 

∂u

∂z
= o   

𝑎𝑥 = 2 + (4 + 𝑥𝑦 + 2𝑡)(𝑦) + (6𝑥3)(𝑥) + (3𝑥𝑡2 +  𝑧)(0)  

𝑎𝑥 = 2 + 4𝑦 + 𝑥𝑦2 +  2𝑡𝑦 + 6𝑥4                                                              (𝑎)  

𝑎𝑦 =
𝜕𝑣

𝜕𝑡
+  𝑢

𝜕𝑣

𝜕𝑥
+  𝑣

𝜕𝑣

𝜕𝑦
+  𝑤

𝜕𝑣

𝜕𝑧 
   

𝜕𝑣

𝜕𝑡
= 0 ;

𝜕𝑣

𝜕𝑥
= 18𝑥2;

𝜕𝑣

𝜕𝑦
= 0;

𝜕𝑣

𝜕𝑧
= 0    

𝑎𝑦 = 0 + (4 + 𝑥𝑦 + 2𝑡)(18𝑥2) + (3𝑥𝑡2 +  𝑧)(0)  

𝑎𝑦 = 72𝑥2 +  18𝑦𝑥3 +  36𝑡𝑥2                                                                   (𝑏)  

𝑎𝑧 =
𝜕𝑤

𝜕𝑡
+  𝑢

𝜕𝑤

𝜕𝑥
+  𝑣

𝜕𝑤

𝜕𝑦
+  𝑤

𝜕𝑤

𝜕𝑧
   

𝜕𝑤

𝜕𝑡
= 6𝑥𝑡;   

𝜕𝑤

𝜕𝑥
= 3𝑡2 ;     

𝜕𝑤

𝑤𝑦
= 0;     

𝜕𝑤

𝜕𝑧
= 1   

𝑎𝑧 = 6𝑥𝑡 + ( 4 + 𝑥𝑦 + 2𝑡)(3𝑡2) + (6𝑥3)(0) + (3𝑥𝑡2 + 𝑧)(1)  

𝑎𝑧 = 6𝑥𝑡 + 12𝑡2 +  3𝑥𝑦𝑡2 +  6𝑡3 +  3𝑥𝑡2 + 𝑧                                       (𝑐)  
Combining Eq's (a , b &c) the total acceleration as in Eq. 3.8 

𝑎 = 𝑎𝑥𝑖 + 𝑎𝑦𝑗 + 𝑎𝑧𝑘⃗    

𝑎 = (2 + 4𝑦 + 𝑥𝑦2 +  2𝑡𝑦 + 6𝑥4)𝑖 + (72𝑥2 +  18𝑥3𝑦 + 36𝑡𝑥2)𝑗 +

(16𝑥𝑡 + 12𝑡2 +  3𝑥𝑦𝑡2 + 6𝑡3 +  3𝑥𝑡2 + 𝑧)𝑘⃗    
b- 

  At 1,1,1 and t=1 acceleration vector is 

𝑎 = (2 + 4 + 1 + 2 + 6)𝑖 + (72 + 18 + 36)𝑗 + (6 + 12 + 3 + 6 + 3 + 1)𝑘⃗   

𝑎 = 15𝑖 + 126𝑗 + 31𝑘⃗    
Ex.2  
  In a fluid flow, the velocity field is given by  

𝑉⃗ = (3𝑥 + 2𝑦)𝑖 + (2𝑧 + 3𝑥2)𝑗 + (2𝑡 − 3𝑧)𝑘⃗  
Determine  

a) The velocity components u , v ,w at any point in the flow field  
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b) The speed at point (1 , 1 , 1) 

c) The speed at time t= 2s at point (0,0,2) 

d) Classify the velocity field as steady or unsteady, uniform or non 

uniform and one two or three dimensional.  

Sol. 
  From the given velocity field 

a) Velocity components are : 

𝑢 = 3𝑥 + 2𝑦;    𝑣 = (2𝑧 + 3𝑥2) ;  𝑤 = (2𝑡 − 3𝑧)  

b) Speed at point (1,1,1); 𝑉⃗ (1,1,1)  

Substituting x=1, y=1, z=1 in the expression for u, v & w. 

𝑢 = (3 + 2) = 5 , 𝑣 = (2 + 3) = 5  , 𝑤 = (2𝑡 − 3)  

𝑉2 = 𝑢2 + 𝑣2 + 𝑤2 = 52 + 52 + (2𝑡 − 3)2 = 25 + 25 + 4𝑡2 − 12𝑡 + 9    

𝑉2 = 4𝑡2 − 12𝑡 + 59  →    𝑉 = √4𝑡2 − 12𝑡 + 59     
c) Speed at t= 2s at point (0,0,2):  

      Substituting t=2, x=0, y=0, z=2 in the expression of u, v & w we get,  

𝑢 = 0 ,    𝑣 = (2 ∗ 2) = 4,   𝑤 = (2 ∗ 2 − 3 ∗ 2) = −2 

V2 = u2 + v2 + w2 = 0 + 42 ∗ (−2)2 = 20 

Or V(0,0,2) = √20 = 4.472  𝑢𝑛𝑖𝑡𝑠 

Velocity field types  

i) Since 𝑉⃗  at given (x,y,z) depends on t, it's unsteady flow  

ii) Since at given t velocity changes in x direction it's non-uniform. 

iii)  Since 𝑉⃗ depends on x, y, z; its three dimension flow. 

 
Ex.3  

Velocity for a two dimensional flow field is given by  

𝑉⃗ = (3 + 2𝑥𝑦 + 4𝑡2)𝑖 + (𝑥𝑦2 + 3𝑡)𝑗    
Find the velocity and acceleration at a point (1, 2) after 2s. 

Sol.  

 Velocity 𝑉⃗ (1,2)  

Substituting x=1, y=2 and t=2 in the expression of velocity field, we get  

𝑉⃗ = (3 + 2 ∗ 1 ∗ 2 + 4 ∗ 22)𝑖 + (1 ∗ 22 + 3 ∗ 2)𝑗 = 23𝑖 + 10𝑗 ⃗⃗   

∴ 𝑉⃗ (1,2) = √232 + 102 = 25.08 𝑢𝑛𝑖𝑡𝑠.   

Acceleration at point (1,2),  a(1,2) 

We know that                    𝑎 =
𝑑𝑉⃗⃗ 

𝑑𝑡
=

𝜕𝑉⃗⃗ 

𝜕𝑡
+ (𝑢

𝜕𝑉⃗⃗ 

𝜕𝑥
+  𝑣

𝜕𝑉⃗⃗ 

𝜕𝑦
) 

𝜕𝑉⃗⃗ 

𝜕𝑥
= 2𝑦𝑖 + 𝑦2𝑗    

𝜕𝑉⃗⃗ 

𝜕𝑦
= 2𝑥𝑖 + 2𝑥𝑦𝑗    

𝜕𝑉⃗⃗ 

𝜕𝑡
=  8𝑡𝑖 + 3𝑗    
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𝑎 = (3 + 2𝑥𝑦 + 4𝑡2)(2𝑦𝑖 + 𝑦2𝑗 ) + (𝑥𝑦2 + 3𝑡)(2𝑥𝑖 + 2𝑥𝑦𝑗 ) + (8𝑡𝑖 + 3𝑗 ) 

𝑎 = (3 + 2 ∗ 1 ∗ 2 + 4 ∗ 22)(2 ∗ 2𝑖 + 22𝑗 )
+ (1 ∗ 22 + 3 ∗ 2)(2 ∗ 1𝑖 + 2 ∗ 1 ∗ 2𝑗 ) + (8 ∗ 2𝑖 + 3𝑗 ) 

𝑎 = 23(4𝑖 + 4𝑗 ) + 10(2𝑖 + 4𝑗 ) + (16𝑖 + 3𝑗 ) 

𝑎 = 92𝑖 + 92𝑗 + 20𝑖 + 40𝑗 + 16𝑖 + 3𝑗 = 128𝑖 + 135𝑗    

𝑎1,2 = √1282 + 1352 = 186.03 𝑢𝑛𝑖𝑡𝑠   
 

Ex.4  
 Find the velocity and acceleration at a point (1, 2, 3) after 1s for a 

three-dimensional flow given by  

𝑢 = 𝑦𝑧 + 𝑡, 𝑣 = 𝑥𝑧 − 𝑡, 𝑤 = 𝑥𝑦 
 

Sol.  
    Given; three-dimensional flow field velocity at a point 1,2,3 V(1,2,3) after 

1 sec. is  

u = yz + t = 2 ∗ 3 + 1 = 7
m

s
 

v = xz − t = 1 ∗ 3 − 1 = 2
m

s
 

𝑤 = 𝑥𝑦 = 1 ∗ 2 = 2
𝑚

𝑠
 

𝑉⃗ (1,2,3) = 7𝑖 + 2𝑗 + 2𝑘⃗     

𝑉 =  √72 + 22 + 22 = 7.55
𝑚

𝑠
   

Acceleration 𝑎 (1,2,3)  

Now 𝑉 = (𝑦𝑧 + 𝑡)𝑖 + (𝑥𝑧 − 𝑡)𝑗 + 𝑥𝑦𝑘⃗    
Acceleration  

𝑎 =
𝑑𝑉⃗⃗ 

𝑑𝑡
= (𝑢 ∗

𝜕𝑉⃗⃗ 

𝜕𝑥
+ 𝑣 ∗

𝜕𝑉⃗⃗ 

𝜕𝑦
+ 𝑤 ∗

𝜕𝑉⃗⃗ 

𝜕𝑧
) +

𝜕𝑉⃗⃗ 

𝜕𝑡
   

𝑎 = (𝑦𝑧 + 𝑡) ∗ (𝑧𝑗 + 𝑦𝑘⃗ ) + (𝑥𝑧 − 𝑡)(𝑧𝑖 + 𝑥𝑘⃗ ) + 𝑥𝑦(𝑦𝑖 + 𝑥𝑗 ) + (1𝑖 − 1𝑗 )  

𝑎 (1,2,3) =  7(3𝑗 + 2𝑘⃗ ) + 2(3𝑖 + 1𝑘⃗ ) + 2(2𝑖 + 1𝑗 ) + (1𝑖 − 1𝑗 )  

𝑎 (1,2,3) = (21𝑗 + 14𝑘⃗ + 6𝑖 + 2𝑘⃗ + 4𝑖 + 2𝑗 ) + (1𝑖 − 1𝑗 )  

𝑎 (1,2,3) = (10𝑖 + 23𝑗 + 16𝑘⃗ ) + (1𝑖 − 1𝑗 )  

 

The convective acceleration component are :(10, 23, 16) m/s2  

The local acceleration components are: (1, −1)
𝑚

𝑠2  along x and y directions  

The total acceleration of fluid particles at the point (1, 2, 3) is  

𝑎1,2,3  =  √(10 + 1)2 + [23 + (−1)]2 + 162  =  √112 + 222 + 162 =

 29.34
𝑚

𝑠2
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3.5 Streamlines, Path Lines, Stream Tube, Streak Lines. 
3.5.1 Streamline.  

           At any instant can be defined as an imaginary curve or line in the flow 

field so that the tangent to the curve at any point represents the direction of 

the instantaneous velocity at that point as shown in Fig. 3.1.  

 

 
 

Figure 3.1: Stream line. 

 

 In an unsteady flow where velocity vector change with time the pattern 

of stream lines also changes from instant to instant  

 In a steady flow, the orientation as the pattern of stream line will be 

fixed  

from above definition of stream line it can be written as 

 𝑉⃗  × 𝑑𝑠 ⃗⃗ = 0  

𝑑𝑠 ⃗⃗  The length of an infinitesimal line segment along a stream line at a 

point.  

𝑉⃗   The instantaneous velocity vector.  

𝑑𝑠 = 𝑖 𝑑𝑥 + 𝑗 𝑑𝑦 + 𝑘⃗ 𝑑𝑧      ;         𝑉⃗ = 𝑖 𝑢 + 𝑗 𝑣 + 𝑘⃗ 𝑤   

𝑉⃗  × 𝑑𝑠 ⃗⃗ = 0  
Or 

|
𝑖 𝑗 𝑘
𝑢 𝑣 𝑤
𝑑𝑥 𝑑𝑦 𝑑𝑧

| = 0    − −→ 𝑢𝑑𝑦 = 𝑣𝑑𝑥;   𝑢𝑑𝑧 = 𝑤𝑑𝑥 ;     𝑣𝑑𝑧 = 𝑤𝑑𝑦     

 

Or     
𝑑𝑥

𝑢
=

𝑑𝑦

𝑣
=

𝑑𝑧

𝑤
  

 

Ex.5 

      Determine the stream lines for the two-dimensional steady flow if the 

velocity field is given by  

𝑉⃗ = (
𝑉0

𝑙
) (𝑥𝑖 − 𝑦𝑗 )  

V0 & 𝑙 are constant. 

𝑉⃗  
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Sol. 

   𝑢 = (
𝑉0

𝑙
) 𝑥 ; 𝑣 =  − (

𝑉0

𝑙
) 𝑦   

𝑑𝑦

𝑑𝑥
=

𝑣

𝑢
= −

(
𝑉0
𝑙
)𝑦

(
𝑉0
𝑙
)𝑥

 =  −
𝑦

𝑥
   

Or by integration 

∫
𝑑𝑦

𝑦
= −∫

𝑑𝑥

𝑥
   

Or  𝑙𝑛𝑦 =  −𝑙𝑛𝑥 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.   
Along stream line xy = C   ; C is constant  

Different value of C, we can plot various lines in x-y plane. 

Following points about stream lines are worth noting  

1- A stream line cannot intersect itself nor two stream lines can cross. 

2- There cannot be any movement of the fluid mass across the streamlines  

3- Streamline spacing varies inversely as the velocity; converging of stream 

lines in any particular direction shows accelerated flow in that direction. 

4- Whereas a path lines gives the path of one particular particle at 

successive instant of time a streamline indicates the direction of a 

number of particles at the same instant. 

5- The series of streamlines represent the flow pattern at an instant as in 

Fig. 3.2. 

 
Ex.6 

 Obtain the equation to the streamlines for the velocity field given as: 

V⃗⃗ = 2x3i − 6x2yj  
Sol.  

u = 2x3;   v =  −6x2y 
The stream line in two dimensions are defined by  
dx

u
=

dy

v
 

Figure 3.2: Series of streamlines. 
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dy

dx
=

v

u
=  −

6x2y

2x3
= −

3y

x
 

Separating the variables; we have     
dy

y
= −

3dx

x
     By integration 

loge y = −3 loge x + c1   
Or  
loge y + 3 loge x = c1                     yx3 = c 
Ex.7 

 For a three-dimensional flow the velocity distribution is given by u = 

-x, v= 3-y and w = 3-z, what is the equation of a stream line passing 

through (1,2,2)? 

Sol.  
The streamlines are defined by  
𝑑𝑥

𝑢
=

𝑑𝑦

𝑣
=

𝑑𝑧

𝑤
 

Substituting for u, v & w we get 
𝑑𝑥

−𝑥
=

𝑑𝑦

3 − 𝑦
=

𝑑𝑧

3 − 𝑧
 

Take the first two term; by integration 

∫
𝑑𝑥

−𝑥
= ∫

𝑑𝑦

(3 − 𝑦)
   

− log𝑒 𝑥 =  − log𝑒(3 − 𝑦) +  𝑐1  
Where c1= constant of integration  

Since the streamline passes through x=1, y=2    c1=0 

(𝑥)−1 = (3 − 𝑦)−1 𝑜𝑟 𝑥 = (3 − 𝑦)  

𝑎𝑛𝑑 ∫
𝑑𝑥

−𝑥
=  ∫

𝑑𝑧

3 − 𝑧
    

− log𝑒 𝑥 =  − log𝑒(3 − 𝑧) + 𝑐2  
𝑎𝑡 𝑥 = 1 , 𝑧 = 2     ∴ 𝑐2 = 0 

𝑥−1 = (3 − 𝑧)−1        − −→ 𝑥 = (3 − 𝑧)  
𝑥 = (3 − 𝑦) = (3 − 𝑧) 

 

3.5.2 Path Lines.  
       A path line is the trajectory of fluid particle of fixed identity or a path 

line shows the direction of particular particle as it moves ahead as shown in 

Fig. 3.3.  

 One dimension flow :- the single space coordinate is usually and time 

as flow in pipe  the average values of the flow parameters are 

assumed  

 Two dimension flow:- All the flow parameters are functions of time & 

2-space coordinates say (x& y) 
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 Three dimensional flow:- the parameters  are function of three space 

coordinates and time. 

 

 

 

 

3.5.3 Stream Tube.  
       A fluid mass bounded by a group of stream lines. The contents of a 

stream tube are known as “current filament”. Example, the flow as in pipes 

and nozzles 

1- The stream tube has finite dimensions 

2- As there is no flow perpendicular to stream lines therefore, there is no 

flow across the surface (called stream surface) as shown in Fig. 3.4. 

3- The shape of a stream tube change from one instant to another, 

because of change is the position of streamlines.   

 

 

 

Figure 3.4: Stream tube is formed by closed collection of streamlines. 

 

3.5.4  Streak Lines.  

Streak lines provide an instantaneous picture of the particles, which 

have passed through a given point like the injection point of a dye in a flow.        

Figure 3.3: Series of path lines. 
 



 
Chapter 3 Fluid Flow-Basic Concept                                                                                 67 

In steady flow these lines will be coincide with stream lines. Fig. 3.5 shows 

the path line and streak line. Particles P1, P2, P3, P4, starting from point P at 

successive times pass along path lines shown. At the instant of time 

considered the positions of the particles are at 1, 2, 3, and 4. A line joining 

these points is the streak line. 

 

 
 

 

 

 

3.6 Movement of Fluid Element.  
        The movement of fluid element has three distinct features in space 

simultaneously.  

 

                           Translation 

                                        Rate of deformation 

                       Rotation 

 

 

3.6.1 Pure Translation. 

        In Fig 3.6, the fluid element in pure translation this occur in the uniform 

flow field.  In absence of deformation and rotation, 

      a)  There will be no change in the length of the sides of the fluid element.  

      b) There will be no change in the included angles made by the sides of         

the fluid element.  

      c) The sides are displaced in parallel direction.  

This is possible when the flow velocities u (the x component velocity) and v 

(the y component velocity) are neither a function of x nor of y, i.e., the flow 

field is totally uniform. 

Figure 3.5: Path lines and streak lines [3]. 
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Figure 3.6: Fluid element in pure translation. 

3.6.2 Linear Deformation. 

        If a component of flow velocity becomes the function of only one space 

coordinate along which that velocity component is defined.  For example, 

 if  u = u(x) and v = v(y), the fluid element ABCD  suffers a change in its 

linear dimensions along with translation  

 there is no change in the included angle by the sides as shown in Fig. 3.7 

 The relative displacement of point B with respect to point A per unit time 

in x direction is    
𝜕𝑢

𝜕𝑥
∆𝑥              

         Similarly, the relative displacement of D with respect to A per unit 

time in y direction is 
𝜕𝑣

𝜕𝑦
∆𝑦           

Hence, the sides move parallel from this initial position and without changing 

the included angle. This situation is referred to as translation with linear 

deformation. 

 

 

Figure 3.7: Fluid element in translation with continuous linear deformation. 
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Observations from Fig. 3.7 gives: 

 Since u is not a function of y and v is not a function of x. 

 All points on the linear element AD move with same velocity in the x 

direction. 

 All points on the linear element AB move with the same velocity in y 

direction. 

 Hence the sides move parallel from their initial position without 

changing the included angle.  

 This situation is referred to as translation with linear deformation. 

Strain rate: - The changes in lengths along the coordinate axes per unit time 

per unit original lengths are defined as the components of linear deformation 

or strain rate in the respective directions. 

∈𝑥𝑥=
𝜕𝑢

𝜕𝑥
      Linear strain rate component in the x direction. 

∈𝑦𝑦=
𝜕𝑣

𝜕𝑦
      Linear strain rate component in y direction. 

 

3.6.3 Rate of Deformation in the Fluid Element. 

        Let us consider both the velocity component u and v are functions of x 

and y, i.e.,  u = u(x,y) & v = v(x,y). Fig. 3.8 represents the above conditions, 

observations from the figure: 

 Point B has a relative displacement in y direction with respect to the 

point A. 

 Point D has a relative displacement in x direction with respect to point A. 

 The included angle between AB and AD changes. 

 The fluid element suffers a continuous angular deformation along with 

the linear deformations in course of its motion.  

 

Figure 3.8: Fluid element in translation with simultaneous linear and angular            

          deformation rates.  
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Rate of Angular deformation: - is defined as the rate of change of angle 

between the linear segments AB & AD which were initially perpendicular to 

each other. 

The rate of angular deformation is 

 ɣ̇
𝑥𝑦

= ( 
𝑑∝

𝑑𝑡
+

𝑑𝛽

𝑑𝑡
 )       From geometry 

Hence        
𝑑∝

𝑑𝑡
+

𝑑𝛽

𝑑𝑡
= (

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 )  

Finally 

 ɣ̇
𝑥𝑦

= (
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 )   

 

3.6.4 Rotation.  
         The transverse displacement of B with respect to A & lateral 

displacement of D with respect to A as in Fig. 3.8 is called the rotation of AB 

& AD about A. The rotation at a point is defined as the arithmetic mean of 

the angular velocity of two perpendicular linear segments meeting at that 

point. The angular velocities of AB & AD about A are 
𝑑∝

𝑑𝑡
 &

𝑑𝛽

𝑑𝑡
      𝑟𝑒𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦   

Considering the anticlockwise direction is positive, the rotation at A can be 

written as,  

𝜔𝑧 =
1

2
 ( 

𝑑∝

𝑑𝑡
−

𝑑𝛽

𝑑𝑡
 )                                                                                      (3.9) 

 

        From Fig. 3.9, d and d are each directly related to velocity derivatives 

in the limit of small dt 

 

𝑑𝛼 = lim
𝑑𝑡→0

[tan−1 (𝜕𝑣 𝜕𝑥⁄ )𝑑𝑥𝑑𝑡

𝑑𝑥+((𝜕𝑢 𝜕𝑥⁄ )𝑑𝑥𝑑𝑡)
] =

𝜕𝑣

𝜕𝑥
𝑑𝑡                                            (3.10)   

 

𝑑𝛽 = lim
𝑑𝑡→0

[tan−1 (𝜕𝑢 𝜕𝑦⁄ )𝑑𝑦𝑑𝑡

𝑑𝑦+((𝜕𝑣 𝜕𝑦⁄ )𝑑𝑦𝑑𝑡)
] =

𝜕𝑢

𝜕𝑦
𝑑𝑡                                            (3.11) 

 

Combining Eq's. (3.10 and 3.11) with Eq.  3.9 obtain the following 

 

𝜔𝑧 =
1

2
 (

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)                                                                                      (3.12)     
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Figure 3.9: Two fluid lines deforming in xy plane. 

 

         The suffix z in  represents the rotation about z-axis in the case of two 

dimensional flow along (x and y).  

       Rotation of 𝑉⃗ , written   
1

2
(∇ × 𝑉⃗ ) is curl 𝑉⃗   or rot 𝑉⃗  is defined by  

𝜔⃗⃗ =
1

2
 (∇ × 𝑉⃗ ) =

1

2
[(

𝜕

𝜕𝑥
 𝑖 +

𝜕

𝜕𝑦
 𝑗 +

𝜕

𝜕𝑧
 𝑘⃗ ) × (𝑢𝑖 + 𝑣𝑗 + 𝑤𝑘⃗ )]   

𝜔⃗⃗ =
1

2
 |

𝑖 𝑗 𝑘⃗ 

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑢 𝑣 𝑤

|  =
1

2
 |

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑣 𝑤
| 𝑖 −

1

2
   |

𝜕

𝜕𝑥

𝜕

𝜕𝑧
𝑢 𝑤

| 𝑗 +
1

2
  |

𝜕

𝜕𝑥

𝜕

𝜕𝑦
 

𝑢 𝑣
| 𝑘⃗    (3.13)     

 

𝜔⃗⃗ =
1

2
 (

𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
) 𝑖 +

1

2
(
𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
) 𝑗 +

1

2
 (

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 ) 𝑘⃗   

 

𝜔⃗⃗ =
1

2
 (𝜔𝑥 𝑖 + 𝜔𝑦𝑗 + 𝜔𝑧𝑘⃗  )                                                                    (3.14) 

 

 For three-dimensional flow the rotation is possible about three-axes. 

The expression for rotation 𝜔𝑥, 𝜔𝑦 and 𝜔𝑧 can be obtained in like manner,  

 

𝜔𝑥 =
1

2
 (

𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
)                                                                                     (3.15) 

𝜔𝑦 =
1

2
 (

𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
 )                                                                                    (3.16)        

𝜔𝑧 =
1

2
 (

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)                                                                                      (3.17) 

In the vector notation, the above equation can be rewritten as 
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𝜔⃗⃗ =
1

2
 (𝜔𝑥 𝑖 + 𝜔𝑦𝑗 + 𝜔𝑧𝑘⃗  ) =

1

2
(∇ × 𝑉⃗ )                                               (3.18)  

The vector (∇ × 𝑉⃗ )  is the curl of velocity vector. The motion is described as 

irrotational when the components of rotation are zero. 

        For irrotational flow, the angle of rotation of the axes towards each other 

or away from each other should be equal i.e., the condition to be satisfied for 

irrotational flow is, 
𝜕𝑣

𝜕𝑥
=

𝜕𝑢

𝜕𝑦
   Or   𝜔𝑧 =

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
= 0   for irrotational flow.                           (3.19)       

 

Ex.8  
Verify whether the following flow fields are rotational. If so, determine the 

components of rotation about the coordinate axes, 

(𝑖)     𝑢 = 𝑥𝑦𝑧,   𝑣 = 𝑥𝑧,   𝑤 =
1

2
𝑦𝑧2 − 𝑥𝑦  

(𝑖𝑖)    𝑢 = 𝑥𝑦,   𝑣 =
1

2
(𝑥2 − 𝑦2) 

Sol.  (i) 
𝜕𝑢

𝜕𝑦
= 𝑥𝑧;    

𝜕𝑣

𝜕𝑥
= 𝑧;     

𝜕𝑤

𝜕𝑥
= −𝑦;   

𝜕𝑤

𝜕𝑦
=

1

2
 𝑧2 − 𝑥   

𝜔𝑧 =
1

2
 (

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) =

1

2
 (𝑧 − 𝑥𝑧) =

𝑧

2
 (1 − 𝑥)  

𝜔𝑥 =
1

2
 (

𝜕𝑤

𝑑𝑦
−

𝜕𝑣

𝜕𝑧
) =

1

2
 [ (

1

2
𝑧2 − 𝑥) − 𝑥] =

1

2
 (

1

2
𝑧2 − 2𝑥)     

𝜔𝑦 =
1

2
 (

𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
 ) =

1

2
 (𝑦𝑥 + 𝑦) =

𝑦

2
(𝑥 + 1)  

(𝑖𝑖) 𝑢 = 𝑥𝑦;   𝑣 =
1

2
 (𝑥2 − 𝑦2);    

𝜕𝑢

𝜕𝑦
= 𝑥 ;  

𝜕𝑣

𝜕𝑥
=

2

2
𝑥 = 𝑥   

𝜔𝑧 =
1

2
 (

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 ) =

1

2
(𝑥 − 𝑥) = 0     Irrotational Flow    

 Ex.9   
Given that  

𝑢 =  −4𝑎𝑥(𝑥2 − 3𝑦2)  

𝑣 = 4𝑎𝑦(3𝑥2 − 𝑦2)  
 Examine whether these velocity components represent a physically 

possible two-dimensional flow, if so whether the flow is rotational or 

irrotational? 

Sol. 
Given u ,v is x, y components 

𝜔𝑧 =
1

2
(
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 )   

𝜕𝑢

𝜕𝑦
=

𝜕

𝜕𝑦
[−4𝑎𝑥 ( 𝑥2 − 3𝑦2)] =

𝜕

𝜕𝑦
 (−4𝑎𝑥3 +  12𝑎𝑥𝑦2) = 24𝑎𝑥𝑦   

𝜕𝑣

𝜕𝑥
=

𝜕

𝜕𝑦
[ 4𝑎𝑦(3𝑥2 − 𝑦2)] =

𝜕

𝜕𝑥
 (12𝑎𝑦𝑥2 − 4𝑎𝑦3] = 24𝑎𝑦𝑥   

𝜔𝑧 =
1

2
( 24𝑎𝑦𝑥 − 24𝑎𝑦𝑥) = 0, ℎ𝑒𝑛𝑐 𝑡ℎ𝑒 𝑓𝑙𝑜𝑤 𝑖𝑠 𝑖𝑟𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙.   
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Ex.10 
Examine whether the flow is rotational or irrotational at the point ( 1,-1,1) for 

the following velocity field 

 ( 𝑉⃗ = 𝑥𝑧3𝑖 −  2𝑥2𝑦𝑧𝑗 +  2𝑦𝑧4𝑘⃗  )  

Sol. 

𝜔⃗⃗ =
1

2
 (𝜔𝑥 𝑖 + 𝜔𝑦𝑗 + 𝜔𝑧𝑘⃗  ) =

1

2
[ (

𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
) 𝑖 + (

𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
) 𝑗 + (

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) 𝑘⃗ ]  

𝜔⃗⃗ =
1

2
 [

𝜕

𝜕𝑦
(2𝑦𝑧4) −

𝜕

𝜕𝑧
 (−2𝑥𝑦2𝑧)] 𝑖 + [

𝜕

𝜕𝑧
(𝑥𝑧3) −

𝜕

𝜕𝑥
(2𝑦𝑧4) ] 𝑗 +

[
𝜕

𝜕𝑥
(−2𝑥2𝑦𝑧) −

𝜕

𝜕𝑦
 (𝑥𝑧3)] 𝑘⃗   

𝜔⃗⃗ = (𝑧4 + (𝑥2𝑦)𝑖 + (
3

2
 𝑥𝑧2 − 0) 𝑗 + (−2𝑥𝑦𝑧 − 0)𝑘⃗   

𝜔⃗⃗ =
3

2
 𝑗 +  2𝑘⃗              𝑎𝑡 (1, −1,1) 

 

3.7 Concepts of Circulation and Vorticity.  

       Consider the closed path in a flow field as shown in Fig. 3.10.a, 

circulation is defined as the line integral of velocity about this closed path. 

The symbol used is Γ . 

Γ = ∮ 𝑉𝑐𝑜𝑠𝛽𝑑𝑠 = ∮ 𝑉𝑐𝑜𝑠𝛽𝑑𝐿
𝐿

 
𝐿

 

Where dL is the length on the closed curve, Vcos is the velocity component 

along the closed curve and   is the angle which streamlines makes with 

curve. The closed path may cut across several stream lines and at each point 

the direction of the velocity is obtained from the stream line, as tangent at 

that point.  

 

 
Figure 3.10: Circulations in flow. 
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        As in Fig. 3.10.b the integration over an element can be performed. The 

circulation for an element dx,dy in the cartesian coordinate can be calculated 

as follows: 

        Consider the fluid element 1234 in Fig. 3.10.b starting at 1 and 

proceeding counter clockwise, 

𝑑Γ = 𝑢𝑑𝑥 + [𝑣 + (𝜕𝑣 𝜕𝑥⁄ )𝑑𝑥]𝑑𝑦 − [𝑢 + (𝜕𝑢 𝜕𝑦⁄ )𝑑𝑦]𝑑𝑥 − 𝑣𝑑𝑦 

𝑑Γ = [𝜕𝑣 𝜕𝑥⁄ − 𝜕𝑢 𝜕𝑦⁄ ]𝑑𝑥𝑑𝑦                                                                  (3.20) 

Vorticity is defined as circulation per unit area. i.e., 

Vorticity(Ω) =
Γ

𝐴
=  

𝑑Γ

𝑑𝑥.𝑑𝑦
=

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
                                                       (3.21) 

         Rotation () is defined as one-half of the vorticity. If a flow possesses 

vorticity, it's rotational. For irrotational flow, vorticity and circulation are 

both zero. 
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Problems. 

P3.1 The velocity of flow field is given by, 

𝑉⃗ = (5𝑧 − 3)𝑖 + (𝑥 + 4)𝑗 + 4𝑦𝑘        ft/s, where x,y and z are in feet.  

Find the fluid speed at the origin (x=y=z=0) and on the x-axis (y=z=0) . 

 

P3.2 In a fluid, the velocity field is given by, 

𝑉⃗ = (20𝑦/(𝑥2 + 𝑦2)0.5)𝑖 − (20𝑥/(𝑥2 + 𝑦2)0.5)𝑗     ft/s 

i- Determine the fluid speed at points along the x-axis, along y-axis. 

ii- What is the angle between the velocity vector and the x-axis at 

point (x,y)=(5,0), (5,5) and (0,5). 

 

P3.3 Given the velocity field, 

𝑉⃗ = (4 + 𝑥𝑦 + 2𝑡)𝑖 + 6𝑥3𝑗 + (3𝑥𝑡2 + 𝑧)𝑘  

Find the acceleration of fluid particles,  

a) As a function of (x,y,z,t). 

b) At point (1,1,1) and (t=1s). 

 

P3.4 Determine the stream lines for the (2-D) steady flow, if the velocity 

field is given by𝑉⃗ =
𝑉0

𝐿
(𝑥𝑖 − 𝑦𝑗).   

 

P3.5 Obtain the stream line equation for the velocity field, 

𝑉⃗ = 2𝑥3
𝑖 − 6𝑥2𝑦𝑗 .   

 

P3.6 For a three – dimensional flow, the velocity distribution is given by, 

(𝑢 = −𝑥), (𝑣 = 3 − 𝑦) 𝑎𝑛𝑑 (𝑤 = 3 − 𝑧).  

What is the stream line equation passing through (1,2,2)? 

 

P3.7 Find the velocity and acceleration at point (1,2,3) after (1s) for the (3-D) 

flow field 

(𝑢 = 𝑦𝑧 + 𝑡), (𝑣 = 𝑥𝑧 − 𝑡)𝑎𝑛𝑑 (𝑤 = 𝑥𝑦).  

 

P3.8 Verify whether the flow fields are rotational. If so, determine the 

component of rotation about the co-ordinate axes. 

(i) 𝑢 = 𝑥𝑦𝑧, 𝑣 = 𝑥𝑧, 𝑎𝑛𝑑 𝑤 =
1

2
𝑦𝑧2 − 𝑥𝑦  

(ii) 𝑢 = 𝑥𝑦, 𝑣 =
1

2
(𝑥2 − 𝑦2).  
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P3.9 Determine the components of rotation about the various axes for the      

        flows, 

(i) 𝑢 = 𝑦2 𝑎𝑛𝑑 𝑣 = −3𝑥  

(ii) 𝑢 = 3𝑥𝑦 𝑎𝑛𝑑 𝑣 =
3

2
𝑥2 −

3

2
𝑦2  

(iii) 𝑢 = 3𝑦3𝑧, 𝑣 = −𝑦2𝑧2 𝑎𝑛𝑑 𝑤 = 𝑦𝑧2 −
𝑦3𝑧2

2
  

 

P3.10 Given the velocity field 𝑉⃗ = (6 + 2𝑥𝑦 + 𝑡2)𝑖 − (𝑥𝑦2 + 10𝑡)𝑗 + 25𝑘  

i) What is the velocity Components? 

ii) What the acceleration of a particle at (3,0,2) at time t=1s. 

 

P3.11 Obtain the equation to the stream line for the velocity field given as 

𝑉⃗ = 2𝑥3𝑖 − 6𝑥2𝑦𝑗  

 

P3.12 Determine the components of rotation about the various axes for 

velocity component   𝑢 = −4𝑎𝑥(𝑥2 − 3𝑦2);    𝑣 = 4𝑎𝑦(3𝑥2 − 𝑦2).  
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4.1 Introduction. 
       In previous chapters the forces exerted by static fluid on stationary 

surfaces was discussed. In this chapter the forces exerted by moving fluid 

particles in the flow field is discussed. In many cases the surfaces or the cross 

section area cause a variations or change in the magnitude and direction of the 

fluid particles velocity in the flow field, the fluid particles exert a force on the 

surface. In opposite direction the surface exert an equal force on the fluid 

particles. The force exerted by moving fluid particles on the surface is called 

dynamic force.  

 

4.2 Definitions. 
System:- A quantity of matter in space which is analyzed during problem. 

Surrounding:- Everything external to the system . 

System Boundary:- A separation present between system and surrounding.  

Classifications of the system boundary:- 

Real solid boundary and imaginary boundary.                    

The system boundary may be further classified as:- 

- Fixed boundary as control mass system. 

- Moving boundary as control volume system. 

      The choice of boundary depends on the problem being analyzed.  

 

 
Figure 4.1:   System and surroundings.  

Dynamics of Fluid Flow  

 

4 CHAPTER 



 
Chapter 4 Dynamics of Fluid Flow                                                                                 78  

Classification of Systems.  

 

4.3 Types of System. 
    a- Control Mass System (Closed System)  

1. It's a system of fixed mass with fixed identity.  

2. This type of system is usually referred to as "closed system". 

3.   There is no mass transfer across the system boundary.  

4. Energy transfer may take place into or out of the system as in Fig.4.2.   

 

Figure 4.2:   A control mass system or closed system.  

    b- Control Volume System (Open System)  

1. It's a system of fixed volume.  

2. This type of system is usually referred to as "open system” or a "control 

volume" C.V. as in Fig.4.3.  

3. Mass transfer can take place across a control volume.  

4. Energy transfer may also occur into or out of the system.  
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5. A control volume can be seen as a fixed region across which mass and 

energy transfers are studied.   

6. Control Surface- It's the boundary of a control volume across which the 

transfer of both mass and energy takes place.  

7. The mass of a control volume (open system) may or may not be fixed.  

8. When the net influx of mass across the control surface equals zero then 

the mass of the system is fixed and vice-versa.  

9. The identity of mass in a control volume always changes unlike the case 

for a control mass system (closed system).  

10. Most of the engineering devices, in general, represent an open system 

or control volume.  

Examples.  
 Heat exchanger - Fluid enters and leaves the system continuously 

with the transfer of heat across the system boundary.  

 Pump - A continuous flow of fluid takes place through the system 

with a transfer of mechanical energy from the surroundings to the 

system.  

 
Figure 4.3:  A control volume system or open system.  

     

 c- Isolated System. 

1. It's a system of fixed mass with same identity and fixed energy.  

2. No interaction of mass or energy takes place between the system and 

the surroundings as in Fig.4.4.    

3. In more informal words an isolated system is like a closed shop amidst 

a busy market.  
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Figure 4.4:   An isolated system.  

4.4 Basic Laws. 
1- Law of mass conservation. 

2- Law of momentum conservation. 

3- Law of Energy conservation. 

There are two method of derivation for each law. 

A- Use of differential element, and then by integration for more than one 

dimension.  

B- Use of free body, used for one-dimension without need to integration. 

 

4.4.1 Conservation of Mass - The Continuity Equation. 
 Law of conservation of mass states that mass can neither be created nor 

be destroyed. Conservation of mass is inherent to a control mass system (closed 

system). 

 The mathematical expression for the above law is stated as: 

          ∆m/∆t = 0,    where m = mass of the system 

 For a control volume Fig.4.5, the principle of conservation of mass is 

stated as 

Rate at which mass enters = Rate at which mass leaves the region + Rate of 

accumulation of mass in the region 

Or 

Rate of accumulation of mass in the control volume  

                       + Net rate of mass efflux from the control volume = 0       (4.1) 

 The above statement expressed analytically in terms of velocity and 

density field of a flow is known as the continuity equation C.E. 
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Figure 4.5:  A control volume in a flow field.  

4.4.2 Continuity Equation - Differential Form. 
1. The point at which the continuity equation has to be derived, is enclosed 

by an elementary control volume. 

2. The influx, efflux and the rate of accumulation of mass is calculated across 

each surface within the control volume.  

  

 
  

Figure 4.6:   A Control volume appropriate to a rectangular cartesian    

                       coordinate system.  

Consider a rectangular parallelopiped in the above figure as the control volume 

in a rectangular cartesian frame of coordinate axes.  

 Net efflux of mass along x -axis must be the excess outflow over inflow       

       across faces normal to x -axis. 

 Let the fluid enter across one of such faces ABCD with a velocity u and         

       a density ρ. The velocity and density with which the fluid will leave the 

face EFGH will be (neglecting the higher order terms in δx).  
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𝑢 +
𝜕𝑢

𝜕𝑥
 𝑑𝑥 &  +

𝜕

𝜕𝑥
 𝑑𝑥 

The rate of mass entering the C.V through    ABCD= u dy dz                  (a) 

Therefore the rate of mass leaving the face EFGH will be  

= (+
𝜕

𝜕𝑥
 𝑑𝑥) (𝑢 +

𝜕𝑢

𝜕𝑥
𝑑𝑥) 𝑑𝑦𝑑𝑧  

= [𝑢 + 
𝜕𝑢

𝜕𝑥
 𝑑𝑥 + 𝑢

𝜕

𝜕𝑥
 𝑑𝑥 +

𝜕

𝜕𝑥
 
𝜕𝑢

𝜕𝑥
(𝑑𝑥)2] 𝑑𝑦𝑑𝑧  

Neglecting the higher order terms in (dx) 

= (𝑢 +
𝜕

𝜕𝑥
 (𝑢)𝑑𝑥)𝑑𝑦𝑑𝑧                                                           (a') 

Similarly influx and efflux take place in all y and z directions also. 

The rate of mass entering the C.V through   (BCGF) =v dx dz                (b)  

The velocity & density when the fluid leaves the face (AEHD) will be  

(𝑣 +
𝜕𝑣

𝑑𝑦
𝑑𝑦)& (+

𝜕

𝜕𝑦
 𝑑𝑦) {Neglecting higher order} therefore rate of 

mass leaving the face (AEHD) will be 

 = [(+
𝜕

𝜕𝑦
 𝑑𝑦) (𝑣 +

𝜕𝑣

𝜕𝑦
 𝑑𝑦)] 𝑑𝑥 𝑑𝑧   

= [ 𝑣 + 
𝜕𝑣

𝑦
 𝑑𝑦 + 𝑣

𝜕

𝜕𝑦
 𝑑𝑦 +

𝜕

𝜕𝑦
∗

𝜕𝑣

𝜕𝑦
(𝑑𝑦)2]  𝑑𝑥 𝑑𝑧   

Neglecting the higher order terms in (dy)   

= [ 𝑣 +
𝜕

𝜕𝑦
 (𝑣)𝑑𝑦] 𝑑𝑥 𝑑𝑧                                                             (b')  

The rate of mass entering the C.V through (CDHG)= w dy dx                  (c)    

The velocity & density when the fluid leaves the face (ABFE) will be   

(w +
∂w

∂z
dx) & (+

∂

∂z
dz)  

 Therefore the rate of mass leaving the face (ABFE) will be    

= [(+
𝜕

𝜕𝑧
 𝑑𝑧) (𝑤 +

𝜕𝑤

𝜕𝑧
 𝑑𝑧)] 𝑑𝑦 𝑑𝑥 

= [ 𝑤 + 
𝜕𝑤

𝜕𝑧
 𝑑𝑧 + 𝑤

𝜕

𝜕𝑧
 𝑑𝑧 +

𝜕

𝜕𝑧

𝜕𝑤

𝜕𝑧
 (𝑑𝑧)2]  𝑑𝑦 𝑑𝑥 

Neglecting the higher order terms in (dz)      

= [ 𝑤 +
𝜕

𝜕𝑧
 (𝑤)𝑑𝑧] 𝑑𝑦 𝑑𝑥                                                                      (c') 

 

Rate of accumulation for a point in a flow field 
𝜕𝑚

𝜕𝑡
=

𝜕

𝜕𝑡
 𝑑∀                                                                                              (d) 

Rate of Entering fluid = Rate of Accumulation fluid + Rate of leaving fluid  

𝐸𝑞. (𝑎) + 𝐸𝑞. (𝑏) + 𝐸𝑞. (𝑐) = 𝐸𝑞. (𝑑) +  𝐸𝑞(𝑎́ ) + 𝐸𝑞(𝑏́ ) + 𝐸𝑞(𝑐́ )  
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𝑢 𝑑𝑦 𝑑𝑧 + 𝑣 𝑑𝑥 𝑑𝑧 + 𝑤 𝑑𝑥 𝑑𝑦

=
𝜕

𝜕𝑡
 𝑑∀ + 𝑢 𝑑𝑦 𝑑𝑧 +

𝜕

𝜕𝑥
 (𝑢)𝑑𝑥 𝑑𝑦 𝑑𝑧 + 𝑣 𝑑𝑥 𝑑𝑧

+
𝜕

𝜕𝑦
 (𝑣)𝑑𝑥𝑑𝑦 𝑑𝑧 + 𝑤 𝑑𝑥 𝑑𝑦 +

𝜕

𝜕𝑧
 (𝑤)𝑑𝑥 𝑑𝑦 𝑑𝑧  

𝑑∀= 𝑑𝑥𝑑𝑦𝑑𝑧,        Rearrangement the above equation 

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑥
 (𝑢) +

𝜕

𝜕𝑦
 (𝑣) +

𝜕

𝜕𝑧
 (𝑤)]  𝑑∀= 0                                     (4.2) 

This is the equation of continuity for a compressible fluid in a rectangular 

cartesian coordinate. The continuity equation for cylindrical polar coordinate 

system for a compressible fluid can be written as 

  
𝜕𝜌

 𝜕𝑡
+

𝜕

𝜕𝑟
 (𝜌𝑉𝑟) +

𝜌𝑉𝑟

𝑟
+

1

𝑟

𝜕

𝜕𝜃
 (𝜌𝑉𝜃) +

𝜕

𝜕𝑍
 (𝜌𝑉𝑧) = 0                                  (4.3) 

 

4.4.3 Continuity Equation (C.E) - Vector Form. 

 If          𝑉⃗ = 𝑢𝑖 + 𝑣𝑗 + 𝑤𝑘⃗                      is the velocity of the point  

∇= (
𝜕

𝜕𝑥
 𝑖 +

𝜕

𝜕𝑦
 𝑗 +

𝜕

𝜕𝑧
 𝑘⃗  )  

∴
𝜕𝜌

𝜕𝑡
+ (

𝜕

𝜕𝑥
 𝑖  +

𝜕

𝜕𝑦
 𝑗 +

𝜕

𝜕𝑧
 𝑘⃗  ) . [𝜌𝑢𝑖 +  𝜌𝑣𝑗 +  𝜌𝑤𝑘⃗  ] = 0   

Or 
𝜕𝜌

𝜕𝑡
+ ∇. (𝜌𝑉⃗  ) = 0                                                                                (4.4) 

In case of a steady flow; 
𝜕𝜌

𝜕𝑡
= 0   

Hence Eq. (4.4) becomes  

∇. (𝑉⃗  ) = 0             in a rectangelar cartesian system.                    (4.5) 
𝜕

𝜕𝑥
 (𝜌𝑢) +

𝜕

𝜕𝑦
 (𝜌𝑣) +

𝜕

𝜕𝑧
 (𝜌𝑤) = 0                                                     (4.6)   

Eq. (4.5&4.6) represents (C.E) for a steady flow, in case of incompressible 

flow,  = constant  

∇. (𝑉⃗ ) =  𝜌∇. (𝑉⃗ )                   is the (C. E) for an incompressible fluid   

∴ 𝜌 ∇. (𝑉⃗  ) = 0          →           ∇. (𝑉⃗  ) = 0                                           (4.7)  

𝑜𝑟      
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0                                                                       (4.8) 

Eq. 4.8 can be written in terms of the strain rate components as  

∈𝑥𝑥+∈𝑦𝑦+∈𝑧𝑧= 0                                                                                     (4.9) 

The left side of the Eq's. (4.8&4.9) can be physically identified as the rate of 

volumetric dilatation per unit volume of fluid element in motion is obviously 

zero for incompressible flow. 

Ex.1 
The velocity distribution for a three –dimensional incompressible steady state 

flow is given by 

  𝑢 = 2𝑥2 − 𝑥𝑦 + 𝑧2, 𝑣 = 𝑥2 − 4𝑥𝑦 + 𝑦2;   𝑤 = −2𝑥𝑦 − 𝑦𝑧 + 𝑦2  
Show that it satisfies C.E in 3-dimensions. 
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Sol.  
in 3-D C.E is  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0    𝑠𝑖𝑛𝑐𝑒

𝜕𝜌

𝜕𝑡
= 0, 𝜌 = 𝑐𝑜𝑛𝑠𝑡 .   

𝜕𝑢

𝜕𝑥
= 4𝑥 − 𝑦 ;  

𝜕𝑣

𝜕𝑦
= −4𝑥 + 2𝑦 ;   

𝜕𝑤

𝜕𝑧
= −𝑦   

Substituting in C.E  

4𝑥 − 𝑦 + (−4𝑥 + 2𝑦) − 𝑦 = 0   
4𝑥 − 𝑦 − 4𝑥 + 𝑦 = 0   𝑠𝑡𝑎𝑡𝑖𝑠𝑓𝑖𝑛𝑔 𝐶. 𝐸 .  
Ex.2 

Derive the continuity equation in cylindrical polar coordinate system Eq. 4.3. 

Sol. 

From Fig.4.6 the rate of mass entering the control volume through face 

ABCD=Vr rddz , and the rate of mass leaving the C.V through the face 

 𝐸𝐹𝐺𝐻 = 𝑉𝑟𝑟𝑑𝜃 𝑑𝑧 +
𝜕

𝜕𝑟
 (𝜌𝑉𝑟 𝑟𝑑𝜃𝑑𝑧)𝑑𝑟   

Therefore the net rate of mass efflux in the r-direction 

= 𝜌𝑉𝑟 𝑟𝑑𝜃 𝑑𝑧 +
𝜕

𝜕𝑟
 (𝜌𝑉𝑟 𝑟𝑑𝜃 𝑑𝑧)𝑑𝑟 − 𝜌𝑉𝑟 𝑟𝑑𝜃 𝑑𝑧   

=
𝜕

𝜕𝑟
 (𝜌𝑉𝑟 𝑟𝑑𝜃 𝑑𝑧 𝑑𝑟) =

𝜕

𝜕𝑟
 (𝜌𝑉𝑟)𝑑∀  =   

1

𝑟

𝜕

𝜕𝑟
 (𝑟𝑉𝑟)𝑑∀ 

𝑑∀= 𝑟𝑑𝑟 𝑑𝜃 𝑑𝑧 

The net rate of mass efflux from C.V in  direction = (mass leaving through 

face ADHE- mass entering through face BCGF)  

= 𝜌𝑉𝜃𝑑𝑟 𝑑𝑧 +
𝜕

𝜕𝜃
 (𝜌𝑉𝜃 𝑑𝑟 𝑑𝑧)𝑑𝜃 − 𝜌𝑉𝜃 𝑑𝑟𝑑𝑧 =

1𝜕

𝑟𝜕𝜃
 (𝜌𝑉𝜃𝑟𝑑𝑟𝑑𝜃𝑑𝑧)     =

1𝜕

𝑟𝜕𝜃
 (𝜌𝑉𝜃)𝑑∀   

The net rate of mass efflux in z-direction by similar fashion 

= 𝜌𝑉𝑧 𝑑𝑟(𝑟𝑑𝜃) +
𝜕

𝜕𝑧
 (𝜌𝑉𝑧 𝑟𝑑𝜃 𝑑𝑟)𝑑𝑧 − 𝜌𝑉𝑧 𝑑𝑟 (𝑟𝑑𝜃)  

=
𝜕

𝜕𝑧
 (𝜌𝑉𝑧 𝑟𝑑𝜃𝑑𝑟𝑑𝑧) =

𝜕

𝜕𝑧
 (𝜌𝑉𝑧)𝑑∀   

The rate of increase of mass within the C.V becomes  

= 
𝜕

𝜕𝑧
 (𝜌𝑉𝑧) 𝑑∀ +

1

𝑟

𝜕

𝜕𝑟
 (𝜌𝑉𝑟 𝑟)𝑑∀ +

1

𝑟

𝜕

𝜕𝜃
 (𝜌𝑉𝜃)𝑑∀   

Hence, the fixed form of C.E in a cylindrical polar coordinate system becomes 

per unit volume  
𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
 (𝜌𝑉𝑟 𝑟) +

1

𝑟

𝜕

𝜕𝜃
 (𝜌𝑉𝜃) +

𝜕

𝜕𝑧
 (𝜌𝑉𝑧) = 0   

𝑜𝑟     
𝜕𝜌

 𝜕𝑡
+

𝜕

𝜕𝑟
 (𝜌𝑉𝑟) +

𝜌𝑉𝑟

𝑟
+

1

𝑟

𝜕

𝜕𝜃
 (𝜌𝑉𝜃) +

𝜕

𝜕𝑍
 (𝜌𝑉𝑧) = 0   

In case of an incompressible flow. 
𝜕𝑉𝑟

𝜕𝑟
+

𝑉𝑟

𝑟
+

1

𝑟

𝜕𝑉𝜃

𝜕𝜃
+

𝜕𝑉𝑧

𝜕𝑧
= 0                                                                           
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Figure 4.6: A control volume appropriate to a cylindrical polar coordinate             

             system.  

 

4.4.4 Free Body Method. 
 From Fig. 4.7 the fluid at line KL moves to new position K'L' in time 

∆t form the mass conservation law, the mass in (KK') equal to mass in (LL'), 

then 

𝜌1𝐴1 𝑑𝑠1 = 𝜌2𝐴2 𝑑𝑠2                                                                                   (b1)       

Divided the Eq. b1 by ∆t  

𝜌1𝐴1 𝑉1 = 𝜌2𝐴2 𝑉2                                                                                       (b2) 

(V1&V2) represents the average velocity in cross-section 1&2, A1&A1 

represents the area of cross-section of the pipe in 1&2. Eq. (b2) represents the 

mass per time (kg/s) 

𝑚̇ = 𝜌𝐴𝑉 = 𝑐𝑜𝑛𝑠𝑡.                                                                                     (b3)      

If the fluid is incompressible =const. 

𝐴1 𝑉1 = 𝐴2 𝑉2                                                                                               (b4) 

 

      The rate of flow as discharge, is defined as the quantity of a liquid flowing 

per second through a section of pipe or a channel and it's denoted by Q. 

Discharge, Q= A*V = (m3/s) 
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Figure 4.7: Free body diagram.  

 

Ex-3.  
           As in Fig. 4.7 the diameter at cross-section (1) is equal to (12 cm), the 

diameter at cross-section (2) is equal to (8 cm). If the velocity at section (1) is 

1.5 m/s, calculate the velocity at section (2) 

 

Sol.  
the cross-section area at (1) is  

𝐴1 =
𝜋𝑑1

2

4
=  𝜋

(0.12)2

4
= 0.0113 𝑚2  

𝐴2 =
𝜋𝑑2

2

4
=

𝜋(0.08)2

4
= 5.026 ∗ 10−3𝑚2   

𝐴1 𝑉1 = 𝐴2 𝑉2  

𝑉2 =
𝐴1𝑉1

𝐴2
=

0.0113∗1.5

5.026∗10−3 = 3.375𝑚 𝑠⁄    

 

4.5 Energy Equation of an Ideal Flow along a Stream Line.  
Derivation of Bernoulli's Equation.  
 Euler's equation along a streamline is derived by applying Newton's 

second law of motion to fluid element moving along a stream line. 

 Considering gravity as the only the body force component acting vertically 

downward, the net external force acting on the fluid element moving along the 

direction of stream line as shown in Fig. 4.8, the equation of motion given as 

∑𝐹𝑠 = 𝑚𝑎𝑠                                                                                              (4.10) 

Take the velocity function of s & t , V(s , t)  

 

 

 

           

           K     K' 

 

                                                                L     L' 

                                                                 

                                                             2 L      L'   

            1                                                                 dS2                          

            K    K' 

                        dS1 
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Figure 4.8: Fluid element moving along stream line. 

 

Total differential of V(s,t)is  

𝑑𝑉 =
𝜕𝑉

𝜕𝑠
 𝑑𝑠 +

𝜕𝑉

𝜕𝑡
 𝑑𝑡        Divided by dt  

𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝑠

𝑑𝑠

𝑑𝑡
+

𝜕𝑉

𝜕𝑡
    

In steady flow      
𝜕𝑉

𝜕𝑡
= 0  

Then V=V(s) , the acceleration in the s-direction becomes  

𝑎𝑠 =
𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝑠

𝑑𝑠

𝑑𝑡
=

𝜕𝑉

𝜕𝑠
 𝑉 = 𝑉

𝑑𝑉

𝑑𝑠
                                                               (4.11)       

The forces acting in the s-direction are the pressure and the component of 

particle weight in the s-direction from Eq's. (4.10 &4.11) 

 𝑝 𝑑𝐴 − (𝑝 + 𝑑𝑝)𝑑𝐴 − 𝑊𝑠𝑖𝑛𝜃 = 𝑚 𝑉
𝑑𝑉

𝑑𝑠
                                                (4.12) 

       Where  is the angle between the normal to the streamline and the vertical 

z-axis at that point.  

𝑚 = 𝜌∀= 𝜌 𝑑𝐴 𝑑𝑠   
𝑊 = 𝑚𝑔 = 𝜌𝑔 𝑑𝐴𝑑𝑠   

𝑠𝑖𝑛𝜃 =
𝑑𝑧

𝑑𝑠
   

Substituting in Eq. 4.12  

−𝑑𝑝 𝑑𝐴 − 𝜌𝑔 𝑑𝐴 𝑑𝑠
𝑑𝑧

𝑑𝑠
= 𝜌 𝑑𝐴 𝑑𝑠 𝑉

𝑑𝑉

𝑑𝑠
                                                 (4.13)  

Divided by dA and simplifying  

−𝑑𝑝 − 𝜌𝑔 𝑑𝑧 = 𝜌𝑉 𝑑𝑉   

Note V dV =
1

2
 d(V2)& dividing each term by ρ gives   

𝑑𝑝

𝜌
+

1

2
 𝑑(𝑉2) +  𝑔 𝑑𝑧 = 0                                                                       (4.14)  

Integrating along streamline  

 

          z                                                               Stream line 

                                              

                                                   dS                  (p+dp)dA 

 

                                            pdA          

 

                       n                s           W         Wsin  

 

 

 

                                                                                             x    
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∫ (
𝑑𝑝

𝜌
+

1

2
 𝑑(𝑉2) +  𝑔 𝑑𝑧) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡     

For, incompressible = const.  
𝑝

𝜌
+

𝑉2

2
+  𝑔𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡       

        This is the famous Bernoulli's equation B.E used for steady 

incompressible & inviscid regions flow. The B.E can be written between any 

two points on the same streamline as  
𝑝1

𝜌
+

𝑉1
2

2
+  𝑔𝑧1 =

𝑝2

𝜌
+

𝑉2
2

2
+  𝑔𝑧2                                                              (4.15) 

Eq. 4.15 can be written as  
𝑝

𝜌
+

𝑉2

2
+  𝑔𝑧 = 𝐶                                                                                      (4.16) 

       Where C is a constant along a streamline. In case of an incompressible 

flow, Eq. 4.16 is based on the assumption no work or heat interaction between 

a fluid element and the surrounding take place, its terms illustrate as follows,    

 1st term represents the flow work per unit mass. 

 2nd term represents the kinetic energy per unit mass. 

 3rd term represents the potential energy per unit mass. 

        The sum of three terms represents the total mechanical energy per unit 

mass which remains constant along a streamline for steady, invicid & 

incompressible flow of fluid. Eq. 4.16 is known as mechanical energy 

equation. Also, Eq. 4.16 can be expressed in terms of energy per unit weight 

as 
𝑝

𝜌𝑔
+

𝑉2

2𝑔
+  𝑧 = 𝐶1                                                                                     (4.17)     

The energy per unit weight is termed as a Head, Eq. 4.17 can be written as 

(Pressure head)+(Velocity head)+ (Potential head)= Total head  

In many practical situations, problems related to real fluid and can be analyzed 

with help of a modified form of Bernoulli's equation as  
𝑝1

𝜌𝑔
+

𝑉1
2

2𝑔
+ 𝑧1 =

𝑝2

𝜌𝑔
+

𝑉2
2

2𝑔
+ 𝑧2 + ℎ𝑓                                                                            (4.18) 

          

Where hf represents the frictional work done (the work done against the fluid 

friction) per unit weight of fluid element. 

 

Ex.4   

      A 6m long pipe is inclined at angle of 20 with the horizontal. The smaller 

section of the pipe which is at lower level is of 100mm and the larger section 

of pipe is of 300 mm diameter as shown in figure. If the pipe is uniformly 

tapering and the velocity of water at the smaller section is 1.8 m/s determine 

the difference of pressures between the two sections.    
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Sol.  

𝐴1 =
𝜋𝑑12

4
=  𝜋 ∗

0.12

4
= 0.00785𝑚2     

𝑉1 = 1.8
𝑚

𝑠
     

𝑧1 = 0 𝑚   
𝑑2 = 0.3𝑚   

𝐴2 =
𝜋

4
∗ 0.32 = 0.0707𝑚2   

𝑧2 = 6𝑠𝑖𝑛20 = 6 ∗ 0.342 = 2.05𝑚         
From C.E  𝐴1𝑉1 = 𝐴2𝑉2     

∴ 𝑉2 =
𝐴1𝑉1

𝐴2
= 0.00785 ∗

1.8

0.0707
= 0.2 𝑚/𝑠   

Applying B.E. to both sections of pipe   
𝑝1

𝛾
+

𝑉12

2𝑔 
+ 𝑧1 =

𝑝2

𝛾
+

𝑉22

2𝑔
+ 𝑧2   

𝑝1 − 𝑝2 =  𝛾 (
𝑉2

2−𝑉1
2

2𝑔
+  𝑧2)   

𝑝1 − 𝑝2 = 9810 (
0.22 – 1.82

2∗9.81
+  2.05) = 18510

𝑁

𝑚2   

Ex.5 

a) Determine the velocity of efflux from the nozzle in the wall of the 

reservoir as in figure.  

b) Find the discharge at the nozzle. 

Sol.  

a)     
𝑉1

2

2𝑔
+

𝑝1

𝜌𝑔
+ 𝑧1 = 

𝑉2
2

2𝑔
+

𝑝2

𝜌𝑔
+ 𝑧2 

With pressure datum as local atmospheric pressure, p1=p2=0 & z2=0, z1=H, 

the velocity on the surface of the reservoir is zero Hence .  

0 + 0 + 𝐻 =
𝑉2

2

2𝑔
+ 0 + 0  

 𝑉2 = √2𝑔𝐻 = √2 ∗ 9.81 ∗ 4 = 8.86
𝑚

𝑠
  

=100 mm1D 

6 m 

=300 mm2D 

20 
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This is known as torricellis theorem 

b) 𝑄 = 𝐴2𝑉2 =  𝜋(0.05)2(8.86) = 0.07
𝑚3

𝑆
= 70 

𝐿

𝑆
   

 

 

 

 

 

 

 

 

 

 

 

 

4.6 Conservation of Momentum.  
In Newtonian mechanics, the conservation of momentum is defined by 

Newton’s second law of motion. The 2nd law of motion states as  

 The rate of change of momentum of a body is proportional to the 

impressed action and takes place in the direction of the impressed action. 

 If a force acts on the body, linear momentum is implied.  

 If a torque (moment) acts on the body angular momentum is implied.  

Statement of Reynolds Transport Theorem, "the time rate of increase of 

property (N) within a control mass system (CMS) is equal to the time rate of 

increase of property (N) within the control volume (CV) plus the net rate of 

efflux of the property (N) across the control surface (CS)". 

(
𝑑𝑁

𝑑𝑡
)
𝐶𝑀𝑆

=
𝜕

𝜕𝑡
 ∭ 𝜂 𝜌𝑑∀ + ∬ 𝜂𝜌 𝑉⃗ 𝑟 𝑑𝐴 

𝐶.𝑉𝐶.𝑉
                                           (4.19)   

Eq. 4.19 is known as Reynolds Transport Theorem,  𝑉⃗ 𝑟 = 𝑉⃗ − 𝑉𝑐⃗⃗  ⃗  

𝑉⃗ 𝑟= fluid velocity relative to C.V. 

𝑉⃗ &𝑉𝑐⃗⃗  ⃗ = velocities of fluid & C.V. as observed in a fixed frame reference. 

N= flow property which is transported.  

= intensive value of the flow property. 

 

4.6.1 Linear Momentum.  

           From Eq. 4.19, the property N as in the linear- momentum m𝑉⃗  &  as 

the velocity 𝑉⃗  . Then it becomes  
𝑑

𝑑𝑡
(𝑚𝑉⃗ 𝑟)𝐶𝑀𝑆

=
𝜕

𝜕𝑡
 ∭ (𝑉⃗ 𝑟)𝜌𝐶𝑉

 𝑑∀ + ∬ 𝑉⃗ 𝑟𝐶𝑆
 𝜌 ( 𝑉⃗ 𝑟 . 𝑑𝐴 )                          (4.20)   

      Where 𝑉⃗ 𝑟  is the velocity defining the linear momentum in above equation. 

L.H.S of Eq. 4.20 represents the external forces ∑𝐹  on the CMS or on the 

 

              1 

 

                     Water 

                H=4 m    d2=100 mm 

                  

                                          2           
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coinciding C.V by the direct application of Newton's law of motion. The L.H.S 

of Eq. 4.20 form Newton's law of motion can be written as  

 𝑚 (
𝑑𝑉⃗ 

𝑑𝑡
)

𝐶𝑀𝑆

= ∑𝐹  

Therefore 

(𝑚
𝑑𝑉⃗⃗ 𝑟

𝑑𝑡
)
𝐶𝑀𝑆

= 𝑚(
𝑑𝑉⃗⃗ 𝑟

𝑑𝑡
)
𝐶𝑀𝑆

 = 𝑚
𝑑

𝑑𝑡
(𝑉⃗ − 𝑉⃗ 𝐶)𝐶𝑀𝑆

  = 𝑚(
𝑑𝑉⃗⃗ 

𝑑𝑡
)
𝐶𝑀𝑆

− 𝑚𝑎 𝐶  

Where 𝑎𝑐 = (
𝑑𝑉⃗⃗ 𝐶

𝑑𝑡
) is the rectilinear acceleration of the C.V (observed in a fixed 

coordinate system).  

Therefore,𝑚 (
𝑑𝑉⃗⃗ 𝑟

𝑑𝑡
)
𝐶𝑀𝑆

= ∑𝐹 − 𝑚𝑎 𝐶                                                      (4.21) 

Eq. 4.20 can be written as follows after consider Eq. 4.21   

∑𝐹 − 𝑚𝑎 𝐶 =
𝜕

𝜕𝑡
 ∭ (𝑉⃗ 𝑟)𝜌𝐶𝑉

 𝑑∀ + ∬ 𝑉⃗ 𝑟𝐶𝑆
 𝜌 ( 𝑉⃗ 𝑟 . 𝑑𝐴 )                           (4.22) 

   At steady state form it becomes  

∑𝐹 − 𝑚𝑎 𝐶 = ∬ 𝑉⃗ 𝑟𝐶𝑆
 𝜌 ( 𝑉⃗ 𝑟. 𝑑𝐴 )                                                             (4.23) 

In case of an inertial C.V, which is either fixed or moving with a constant 

rectilinear velocity 𝑎 𝑐  = 0, Now, Eq's. (4.22 & 4.23) becomes  

∑𝐹 = ∬ 𝑉⃗ 𝑟𝐶𝑆
 𝜌 ( 𝑉⃗ 𝑟 . 𝑑𝐴 )                                                                         (4.24)   

Or   ∑𝐹 =
𝜕

𝜕𝑡
 ∭ (𝑉⃗ 𝑟)𝜌𝐶𝑉

 𝑑∀ + ∬ 𝑉⃗ 𝑟𝐶𝑆
 𝜌 ( 𝑉⃗ 𝑟. 𝑑𝐴 )                                 (4.25) 

Eq's (4.22 & 4.23) for non-inertial C.V having an arbitrary rectilinear 

acceleration. 

 

4.6.2 The Application of Momentum Theorem. 
From the conservation of momentum phenomenon we can state the law 

of conservation of momentum as follows “ the net force acting on a mass of 

fluid is equal to change in momentum of flow per unit time in that direction”. 

The application of momentum theorem in some practical cases of inertial and 

non-inertial C.V can be treated. Three distinct types of practical problems for 

inertial C.V namely  

 

 

 

 

                                              

                                                        

                                                     

      

 

 

Forces acting due to internal flow 

through expanding or reducing pipe 

bends. 
 
Forces on stationary and moving 

vanes due impingement of fluid jet     
 

Jet propulsion of ship and aircraft 

moving with uniform velocity    
 

Inertial C.V. 
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Liner momentum of C.V in a system is (m.𝑉⃗ ) from Newton's 2nd law 

∑𝐹  =
𝑑(𝑚𝑉⃗⃗ )

𝑑𝑡
=

𝜕

𝜕𝑡
 ∫ 𝜌 𝑉⃗ 

𝐶.𝑉
 𝑑∀ + ∫ 𝜌𝑉⃗  (𝑉⃗ . 𝑑𝐴 )

𝐶.𝑆 
  

(i.e) the resultant force acting on a C.V is equal to the time rate of increase of 

linear momentum within the C.V plus the net output of linear momentum from 

the C.V. Types of forces acting on control volume (C.V) 

 Body force the weight of fluid  

 Pressure force  

 Hydrostatic force  

 Shear force  

∑𝐹 𝑡𝑜𝑡𝑎𝑙   = ∑𝐹 𝑔𝑟𝑎𝑣𝑖𝑡𝑦  +  ∑𝐹 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒  + ∑𝐹 𝑣𝑖𝑠𝑐𝑜𝑢𝑠                                (4.26) 

∑𝐹  = 𝑚𝑎 = 𝑚
𝑑𝑉⃗⃗ 

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑚𝑉⃗ )  

Where (𝑚𝑉⃗ ) is the linear momentum of system. Now the 2nd law can be 

expressed more general as  

∑𝐹 =
𝑑

𝑑𝑡
 ∫ 𝜌 𝑉⃗  𝑑∀

𝑠𝑦𝑠
       where dm=d 

 External force equal to the time rate of change of linear momentum of 

system. If system at rest or move with constant velocity then from Reynolds 

Transport Theorem is applied on C.V formulation as follows   
𝑑(𝑚𝑉⃗⃗ )

𝑠𝑦𝑠

𝑑𝑡
=

𝜕

𝜕𝑡
 ∭ 𝜌(𝑉⃗ )

𝐶𝑉
 𝑑∀ + ∬ 𝜌

𝐶𝑆
  𝑉⃗ (𝑉⃗ 𝑟 . 𝑛⃗ )𝑑𝐴                            (4.27) 

But the left side of Eq. 4.27 is equal to ∑𝐹   

∑𝐹 =
𝜕

𝜕𝑡
 ∭ 𝜌(𝑉⃗ )

𝐶𝑉
 𝑑∀ + ∬ 𝜌

𝐶𝑆
  𝑉⃗ (𝑉⃗ 𝑟 . 𝑛⃗ )𝑑𝐴                                   (4.28) 

      Eq. 4.28 can be expressed as 

(The sum of all external force acting on C.V)= (The times rate of change of 

linear momentum of the contents of the C.V) + (The net flow rate of LM out of 

the C.V by mass flow). 

Here 𝑉⃗ 𝑟 = 𝑉⃗ − 𝑉⃗ 𝑐𝑠 is the fluid velocity relative to the C.V. 𝑉⃗  is the velocity of 

fluid as viewed from fixed reference frame. The product 𝜌(𝑉⃗ 𝑟 . 𝑛⃗ )𝑑𝐴 represents 

the mass flow rate through area element dA into or out of the C.V for fixed 

C.V. For fixed C.V no motion of C.V or deformation 𝑉𝑟 = 𝑉   and the linear- 

momentum equation for fixed C.V becomes 

∑𝐹 =
𝑑

𝑑𝑡
∫ 𝜌 𝑉⃗  𝑑∀
𝐶.𝑉

+ ∫ 𝜌 𝑉⃗ 
𝐶𝑆

(𝑉⃗ . 𝑛⃗ )𝑑𝐴                                                (4.29) 

For steady the derivative with respect to time is equal to zero  

∑𝐹 = ∫∫ 𝜌 𝑉⃗ 
𝐶𝑆

(𝑉⃗ . 𝑛⃗ )𝑑𝐴                                                                            (4.30)                   

Rocket engine which works on the 

principle of jet propulsion. 
 

Non-Inertial C.V 
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Mass flow rate across an inlet or outlet  

𝑚̇ = ∫ 𝜌(𝑉⃗ . 𝑛⃗ )𝑑𝐴𝑐 = 𝜌𝑉𝑚 𝐴𝑐𝐴𝑐
                                                               (4.31)   

Momentum flow rate across inlet or outlet  

∫ 𝜌 𝑉⃗ (𝑉⃗ 
𝐴𝑐

. 𝑛⃗ )𝑑𝐴𝑐 = 𝜌𝑉𝑚𝐴𝑐 𝑉⃗ 𝑚 = 𝑚̇ 𝑉⃗ 𝑚                                                 (4.32)  

Vm= uniform mean velocity 

∑𝐹 = ∑ 𝑚̇𝑉⃗ 𝑜𝑢𝑡 − ∑ 𝑚̇𝑉⃗ 𝑖𝑛                                                                        (4.33)     

 

 

            

 

 

 

 

 

 

 

 

 

                 Figure 4.9: Linear momentum of system. 

 

Along x-direction as in Fig.4.9 

∑𝐹 𝑥 = 𝑚̇(𝑉⃗ 2𝑥 − 𝑉⃗ 1𝑥)  

Similarly ∑𝐹𝑦 = 𝜌𝑄(𝑉2𝑦 − 𝑉1𝑦) = 𝑚̇(𝑉2𝑦 − 𝑉1𝑦)  

        For any C.V the total force 𝐹  which acts upon it in a given direction will 

made up of three components 𝐹 = 𝐹1 + 𝐹2 + 𝐹3  

 F1=force exerted in the direction on the fluid in the C.V by any solid 

body within the C.V or coinciding with boundaries of the C.V. 

 F2=force exerted in the given direction on the fluid in the C.V by body 

for such as gravity.  

 F3=force exerted in the give direction of fluid in the C.V by the fluid 

outside the C.V such as pressure. 

The effects of these forces on C.V can be study through practical engineering 

problem from the following cases.  

I- Forces due to Flow through Expanding or Reducing Pipe Bends. 
 Fig's 4.10 and 4.11 shows the fluid flow through an expander where Fx 

&Fy are the external forces on the fluid areas 2-3 & 1-4 due to net efflux linear 

momentum through the interior surface of the expander since C.V (1 2 3 4) is 

stationary and at steady state apply Eq.4.24 for x & y components. 

𝑚̇𝑉2 𝑐𝑜𝑠𝜃 − 𝑚̇𝑉1 = 𝑝1𝐴1 − 𝑝2𝐴2 𝑐𝑜𝑠𝜃 + 𝐹𝑥   

And        𝑚̇𝑉2 𝑠𝑖𝑛𝜃 − 0 = −𝑝2𝐴2𝑠𝑖𝑛𝜃 + 𝐹𝑦 − 𝑚𝑔  

𝑚̇𝑉⃗ 1 

𝑚̇𝑉⃗ 2 

System 
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Or       𝐹𝑥 = 𝑚̇(𝑉2 𝑐𝑜𝑠𝜃 − 𝑉1) + 𝑝2𝐴2 𝑐𝑜𝑠𝜃 − 𝑝1𝐴1                             (4.34) 

                                      

𝐹𝑦 = 𝑚̇𝑉2𝑠𝑖𝑛𝜃 + 𝑝2𝐴2 𝑠𝑖𝑛𝜃 + 𝑚𝑔                                                         (4.35)             

Where  

𝑚̇=mass flow rate through the expander, analytically it can be expressed as 

𝑚̇ = 𝜌𝐴1𝑉1 = 𝜌𝐴2𝑉2  

 

Figure 4.10: Flow of a fluid through an expander.  

m represents the mass of fluid contained in the expander at any instant and can 

be expressed as  

𝑚 = 𝜌∀ Where ∀ internal volume of the expander, Fx & Fy forces acting on 

the C.V by the expander. According to Newton's third law (any action there is 

a reaction) the expander will experience the forces  

𝑅𝑥 = −𝐹𝑥  &  𝑅𝑦 = −𝐹𝑦   are the reactions in the x&y directions respectively 

as shown in the free body diagram of the expander Fig. 4.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rx= -Fx 

Figure 4.12: Free body 

diagram of the expander. 

Figure 4.11: Control volume 

comprising the fluid contained in 

the expander at any instant.  
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The magnitude of the resultant force acting on the pipe bend is 

𝑅 = √𝑅𝑥
2 + 𝑅𝑦

2 

And the direction of the resultant force with x-axis is 

𝜃 = 𝑡𝑎𝑛−1 (
𝑅𝑦

𝑅𝑥
) 

Ex.6      
      A 600 mm diameter pipeline carries water under a head of 30 m with 

velocity of 3 m/s. This water main is fitted with a horizontal bend which turns 

the axis of the pipeline through 75. Calculate the resultant force on the bend 

and its angle to the horizontal. 

  

Sol.  

 𝐴1 = 𝐴2 = 𝜋 (
0.6

2
)
2

= 0.283 𝑚2   

𝑑 = 0.6𝑚, ℎ = 30𝑚   

𝑉1 = 𝑉2 = 3
𝑚

𝑠
, 𝑝1 = 𝜌𝑔ℎ = 9810 ∗ 30 = 294300𝑁

𝑚2⁄   

𝑄 = 𝐴1𝑉1 = 𝐴2𝑉2 = 0.283 ∗ 3 = 0.849𝑚3

𝑠⁄    

From Eq.(4.34 & 4.35)  𝑚̇ = 𝜌𝑄 = 1000 ∗ 0.849 = 849
𝑘𝑔

𝑠
   

𝐹𝑥 = 𝑚̇(𝑉2 𝑐𝑜𝑠𝜃 − 𝑉1) + 𝑝2𝐴2 𝑐𝑜𝑠𝜃 − 𝑝1𝐴1  

𝐹𝑥 = 849(3 ∗ 𝑐𝑜𝑠75 − 3) + 294300 ∗ 0.283 ∗ 𝑐𝑜𝑠75 − 294300 ∗ 0.283   
𝐹𝑥 = −63.618 𝑘𝑁   
𝐹𝑦 = 𝑚̇𝑉2𝑠𝑖𝑛𝜃 + 𝑝2𝐴2 𝑠𝑖𝑛𝜃 + 𝑚𝑔  

= 849 ∗ 3 ∗ 𝑠𝑖𝑛75 + 294300 ∗ 0.283 ∗ 𝑠𝑖𝑛75    Since the bend in horizontal  

𝐹𝑦 = 82.9 𝑘𝑁   
  𝑅𝑥 = −𝐹𝑥 = +63.618 𝑘𝑁, 𝑅𝑦 = −𝐹𝑦 = −82.9𝑘𝑁   

𝑅 = √𝑅𝑥
2 + 𝑅𝑦

2 = √(63.618)2 + (−82.9)2 = 104.5 𝑘𝑁  

𝜃 = 𝑡𝑎𝑛−1 (
𝑅𝑦

𝑅𝑥
) = 𝑡𝑎𝑛−1 (

−82.9

63.618
) = −52.5° 

Ex.7  
      A pipe bend tapers from a diameter d, of (500) mm at inlet to a diameter 

d2 of (250mm) at outlet and turns the flow through an angle () of 45. 

Measurements of (p1 & p2) at inlet and outlet are 40 kN/m2 and 23 kN/m2. If 

the pipe is conveying oil which has a density =850 kg/m3. Calculate the 

magnitude and direction of resultant force on the bend when the oil is flowing 

at the rate of 0.45 m3/s. The bend is in a horizontal plan. (Gravity force=0) 

Sol.  

 𝑚̇ = 𝜌𝐴𝑉 = 𝜌𝑄 = 850 ∗ 0.45 = 382.5 𝑘𝑔/𝑠  
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𝐹𝑥 = 𝑚̇(𝑉2𝑥 − 𝑉1𝑥) + 𝑝1𝐴1 − 𝑝2𝐴2 𝑐𝑜𝑠𝜃  

𝑉2 =
𝑸

𝑨𝟐
= 0.45 ∗

4

𝜋(0.25)2
= 9.16m s⁄   

𝑉1 =
𝑄

𝐴1
= 0.45 ∗

4

𝜋(0.5)2
= 2.29 m s⁄                                                                                  

 

𝐹𝑥 = 382.5(9.16 cos 45 − 2.29) + 40 ∗ 103 ∗
𝜋(0.5)2

4
− 23 ∗ 103 ∗

𝜋(0.25)2

4
cos 45          

∴ 𝐹𝑥 = 8657𝑁    − −→ Rx = −8657 𝑁  

𝐹𝑦 = 𝑚̇(𝑉2𝑦 − 𝑉1𝑦) + 𝑝2𝐴2 𝑠𝑖𝑛𝜃 = 382.5(9.16 sin 45 − 0) + 23 ∗

                                                                   103 ∗ 𝑠𝑖𝑛 45 = 18740.9 𝑁   

𝑅𝑦 = −𝐹𝑦 = −18740.9 𝑁   

𝑅 = √𝑅𝑥
2 + 𝑅𝑦

2 = √(−8657)2 + (−18740.9)2 = 20643 𝑁                  

𝜃 = 𝑡𝑎𝑛−1
𝑅𝑦

𝑅𝑥
= 65° 

 

II-Dynamic Force on Plane Surfaces due to the Impingement of Liquid Jet.  

A. Forces on a Stationary Surface. 

Consider a stationary flat plate and a liquid jet of cross sectional area (a) 

striking with a velocity V at an angle θ to the plate as shown in Fig. 4.13.a. 

 

 

 

 

 

 

 

       To calculate the force required to keep the plate stationary, a control 

volume ABCDEFA Fig. 4.13.a is chosen so that the control surface DE 

coincides with the surface of the plate. The control volume is shown separately 

as a free body in Fig. 4.13.b. Let the volume flow rate of the incoming jet be 

Q and be divided into Q1 and Q2 gliding along the surface with the same 

 

Figure 4.13: Impingement of liquid jets on a stationary flat plate.  

2V 

=45

 

p1 

V1 

d1 

A1 
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velocity V since the pressure throughout is same as the atmospheric pressure, 

the plate is considered to be frictionless and the influence of a gravity is 

neglected (i.e. the elevation between sections CD and EF is negligible).  

 Q(m3/s) incoming jet plane flow rate 

 (Q1&Q2)m3/s gliding along the plate output volume flow rate with the 

same velocity 

 Plate is friction less 

 Gravity is neglected due to elevation between section CD & EF is 

negligible  

 Os & On are the axes along and perpendicular to the plate  

 Neglecting the viscous force along the plate, the plate is friction less & the 

pressure throughout is same as the atmospheric pressure. The force along 

the plate is zero 

 The momentum conservation of the C.V {A B C D E F} in terms of (𝑠&𝑛) 

can be written from Eq.  4.24  

  ∑𝐹 = ∫ 𝜌 𝑉⃗ 𝑟𝐶𝑆
(𝑉⃗ . 𝑑𝐴⃗⃗⃗⃗  ⃗) 

𝐹𝑠 = 0 = (𝑚̇𝑉⃗ )
𝑜𝑢𝑡

− (𝑚̇𝑉⃗ )
𝑖𝑛

→ 𝑜𝑟 (𝜌 𝑄 𝑉⃗ )
𝑜𝑢𝑡

− (𝜌 𝑄 𝑉⃗ )
𝑖𝑛

= 0  

𝐹𝑠 = (𝜌 𝑄2 𝑉 + 𝜌 𝑄1(−𝑉)) − 𝜌𝑄𝑉 𝐶𝑜𝑠𝜃 = 0  s-direction                     (4.36) 

&  𝐹𝑛 = (𝜌𝑄𝑉)𝑜𝑢𝑡 − (𝜌𝑄𝑉)𝑖𝑛 = 0 − 𝜌𝑄𝑉 𝑆𝑖𝑛𝜃 = −𝜌𝑄𝑉 𝑆𝑖𝑛𝜃            (4.37) 

Where Fs&Fn are the forces acting on the C.V along Os& On respectively  

From continuity  

𝑄 = 𝑄1 + 𝑄2                                                                                           (4.38)  

From Eq. 4.36  

𝑄 𝑉𝑐𝑜𝑠𝜃 = 𝑄2𝑉 − 𝜌𝑄1𝑉        Divided by V, and from Eq. 4.38 

𝑄2 = (𝑄 − 𝑄1) 

𝑄 𝑐𝑜𝑠𝜃 = (𝑄 − 𝑄1) − 𝑄1 = 𝑄 − 2𝑄1 

2𝑄1 = 𝑄 − 𝑄𝑐𝑜𝑠𝜃 = 𝑄(1 − 𝑐𝑜𝑠𝜃)  

𝑄1 =
𝑄

2
(1 − 𝑐𝑜𝑠𝜃)  

By same procedure 𝑄1 = (𝑄 − 𝑄2)  

∴ 𝑄2 =
𝑄

2
(1 + 𝑐𝑜𝑠𝜃)  

 The net force acting on the C.V due to the change in momentum of the 

jet by the plate is Fn along the direction (On) and is give by Eq. 4.37 as 

𝐹𝑛 = −𝜌𝑄𝑉 𝑠𝑖𝑛𝜃  According to Newton's third law the force acting on the 

plates  𝐹𝑝 = −𝐹𝑛 = 𝜌𝑄𝑉𝑠𝑖𝑛 𝜃                                                                 (4.39)   

𝑄 = A𝑉                                                                                                    (4.40) 

𝐹𝑝 = 𝜌A𝑉2𝑠𝑖𝑛𝜃;    where A  is the cross-section area                            (4.41) 

 

 

 

B. Forces on a Moving Surface. 
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 V: is the velocity of jet striking the plate  

  u: is the velocity of plate  

Vr = V-u                                                                                                   (4.42)    

The volume of liquid striking the plate per unit time will be  

𝑄 = 𝐴(𝑉 − 𝑢)                                                                                          (4.43) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At inlet velocity of jet relative to the C.V is 𝑉𝑟1 = 𝑉 − 𝑢  
 Due to the pressure remains same throughout  

      𝑉𝑅0 = 𝑉 − 𝑢   is the same as inlet  

 Friction is neglected between liquid & plate.  

Absolute velocity of the liquid at the outlets can be found out by adding 

vectorially the triangle of velocites as shown in Fig. 4.14. The force acting 

along (Os) is zero for a friction less flow, only the net force acting on the C.V 

will be along (On). To calculate Fn from the momentum theorem on the C.V 

can be written as 

𝐹𝑛 = 𝑂 − 𝜌𝑄[(𝑉 − 𝑢)𝑠𝑖𝑛𝜃]  
Substituting Q from Eq. 4.43    

𝐹𝑛 = −𝜌𝐴(𝑉 − 𝑢)2𝑠𝑖𝑛𝜃                                                                          (4.44)  

The force acting on the plate becomes  

𝐹𝑝 = −𝐹𝑛 = 𝜌𝐴(𝑉 − 𝑢)2𝑠𝑖𝑛𝜃                                                                 (4.45)      

If the plate moves with velocity u in a direction opposite to that of V (the plate 

moving towards the jet), since                Q=A (V+u)  

∴ 𝐹𝑝 = −𝐹𝑛 = 𝜌𝐴(𝑉 + 𝑢)2𝑠𝑖𝑛𝜃                                                                        

         The power developed due to the motion of the plate can be written in case 

of the plate moving in the same direction as that of the jet as 

𝑃 = 𝐹𝑝 ∗ 𝑢   

 

Figure 4.14:   Impingement of liquid jet on a moving flat plate.  
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𝑃 = 𝐹𝑝 𝑠𝑖𝑛𝜃  |𝑢|=𝜌𝐴(𝑉 − 𝑢)2 𝑢 𝑠𝑖𝑛𝜃                                                     (4.46)             

Ex.8  
 Consider a jet that is deflected by a stationary vane, such as is given in 

figure. If the jet speed and diameter are 25 m/s &25 cm, respectively and the 

jet is deflected 60, what force is exerted by the jet? 

 

 
Sol.  
       First solve for Fx, the x-component of force of the vane on the jet 

𝐹𝑥 = (𝜌𝑄𝑉)𝑥 𝑜𝑢𝑡 − (𝜌𝑄𝑉)𝑥 𝑖𝑛   
𝐹𝑥 = 𝜌𝑄(𝑉2𝑥 − 𝑉1𝑥)  

𝑉2𝑥 = 𝑉2 𝑐𝑜𝑠60 = 25 ∗ 0.5 = 12.5𝑚 𝑠⁄   

𝑉1𝑥 = 25𝑚 𝑠⁄   

𝑄 = 𝑉1𝐴1 = 25 ∗
𝜋(0.25)2

4
= 1.227 𝑚

3

𝑠⁄   

Therefore Fx = (1000)(1.227)(12.5-25)= -15.3398 kN 

Similarly determined, the y-component of force on the jet is  

𝐹𝑦 = 𝜌𝑄 [(𝑉𝑦)𝑜𝑢𝑡
− (𝑉𝑦)𝑖𝑛

] = 1000 ∗ 1.227(−21.65 − 0) = −26.5646 𝑘𝑁  

𝑠𝑖𝑛𝑐𝑒 𝑉2𝑦 = 𝑉𝑠𝑖𝑛60 = 25𝑠𝑖𝑛60 = 21.65 𝑚/𝑠  

The resultant force is 

𝐹 = √𝐹𝑥2 + 𝐹𝑦2 = √(−15.3398)2 + (−26.5646)2 = 30.67𝑘𝑁  

Then the force on the vane will be the reactions to the forces of the vane on the 

jet as 

𝑅𝑥 = −𝐹𝑥 = +15.3398𝑘𝑁  

𝑅𝑦 = −𝐹𝑦 = +26.5646𝑘𝑁  

 

C. Dynamic Forces on Curve Surfaces due to the Impingement Liquid Jets.  

          In determination of the force and energy transfer between the moving 

blades and the fluid, the relative velocity between the blade and the fluid 

becomes very important effective factor in calculations. The following 

parameters and notations will be used in our calculation of dynamic forces. 
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α1 , angle with direction of motion of the vane, at which the jet enters the       

       vane.  

α2 , angle with direction of motion at which the jet leaves the vane.  

𝜃1 & 𝜃2 , angles which Vr1 and Vr2 makes with direction of motion of vane.  

V1 & V2 absolute velocities of jet at inlet & leaving the vane. 

Vr1 & Vr2 relative velocity at entrance and exit the vane, Vr= V-u 

Vw1&Vw2, horizontal components of V1 & V2 respectively. 

Vf1&Vf2, vertical components of V1 & V2 respectively. 

Fc is the force applied on the C.V by the vane therefore from Eq. 4.24 the 

momentum theorem in x-direction as, 

𝐹𝑐 = 𝜌𝑄[(𝑉𝑟𝑥)𝑜𝑢𝑡 − (𝑉𝑟𝑥)𝑖𝑛] = 𝑚̇[𝑉𝑟2 𝑐𝑜𝑠𝜃2 − 𝑉𝑟1𝑐𝑜𝑠𝜃1]                    (4.47) 

Let the force Rx has to be act opposite to Fc 

𝑅𝑥 = −𝐹𝑐 = 𝑚̇[𝑉𝑟1 𝑐𝑜𝑠𝜃1 − 𝑉𝑟2𝑐𝑜𝑠𝜃2]                                                  (4.48)   

Power developed by the vane is given by  

𝑃 = 𝑢𝑅𝑥 = 𝑢 ∗ 𝑚̇[𝑉𝑟1 𝑐𝑜𝑠𝜃1 − 𝑉𝑟2𝑐𝑜𝑠𝜃2]                                             (4.49) 

From the outlet velocity triangle, it can be written 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(𝑉𝑤2 + 𝑢)2 = 𝑉𝑟2
2 − 𝑉𝑓2

2   

Or    𝑉𝑤2
2 + 𝑢2 + 2𝑉𝑤2𝑢 = 𝑉𝑟2

2 − 𝑉𝑓2
2   

Or  𝑉2
2 − 𝑉𝑓2

2 + 𝑢2 + 2𝑉𝑤2𝑢 = 𝑉𝑟2
2 − 𝑉𝑓2

2  

Or   𝑉𝑤2𝑢 =
1

2
(𝑉𝑟2

2 − 𝑉2
2 − 𝑢2)                                                               (4.50) 

 

Figure 4.15: Flow of fluid along a moving curved plane 
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Similarly from the inlet velocity triangle. It is possible to write 

𝑉𝑤1𝑢 =
1

2
(−𝑉𝑟1

2 + 𝑉1
2 + 𝑢2)                                                                   (4.51)    

  Addition of Eq's. (4.50 and 4.51) with no losses in relative velocity gives 

(𝑉𝑤1 + 𝑉𝑤2)𝑢 =
1

2
(𝑉1

2 − 𝑉2
2)                                                                  (4.52) 

Power of jet   = 𝑚̇𝑉1
2/2                                                                          (4.53)         

The efficiency of the vane in developing power is given by 

 

𝜂 =
𝑜𝑢𝑡 𝑝𝑜𝑤𝑒𝑟

𝑖𝑛𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟
=

𝑢𝑅𝑥
𝑚̇

2
𝑉1

2
                                                                             (4.54)  

Ex.9  
      A jet of water moving at 60 m/s is deflected by a vane moving at 25 m/s in 

a direction at 30 to the direction of the jet. The water leaves the blade normally 

to the motion of the vanes. Draw inlet and outlet triangle of velocities and find 

the vane angles for no shock at entering & exit. Take relative velocity at outlet 

equal to (0.85Vr1) and calculate the force on the vane of the jet diameter equal 

to (10) cm 

 

Sol.  

𝑢 = 25
𝑚

𝑠
 ;  𝑉1 = 60

𝑚

𝑠
;  ∝1= 30°  

From triangle (ADC) as in below figure 

𝑉𝑤1 = 60 cos 30   

𝑉𝑤1 = 60 ∗ 0.866 = 51.96
𝑚

𝑠
    

Vf1=V1sin30 

𝑉𝑓1 = 60 ∗ 0.5 = 30 𝑚/𝑠  

𝑡𝑎𝑛𝜃1 =
𝐶𝐷

𝐴𝐷−𝐴𝐵
=

𝑉𝑓1

𝑉𝑤1−𝑈
      

𝑡𝑎𝑛𝜃1 =
30

51.96−25
= 1.1127  

𝜃1 = 48°4′  

𝑉𝑟1 =
𝑉𝑓1

𝑠𝑖𝑛𝜃1
=

30

0.7437
= 40.34

𝑚

𝑠
   

From triangle EFG 

𝑉𝑟2 = 0.85 𝑉𝑟1 = 0.85 ∗ 40.34 = 34.29
𝑚

𝑠
  

𝑐𝑜𝑠𝜃2 =
𝐹𝐺

𝐹𝐸
=

𝑢

𝑉𝑟2
=

25

34.29
= 0.729    

𝜃2 = 43°12′   

𝑚̇𝑟1 = 𝜌𝐴𝑉𝑟1 = 1000 ∗
𝜋(0.1)2

4
∗ 40.34 = 316.7 𝑘𝑔/𝑠  

𝑚̇𝑟2 = 𝜌𝐴𝑉𝑟2 = 𝑚𝑟1 ∗ 0.85 = 269.1 𝑘𝑔/𝑠  

𝐹𝑐 = 𝑚̇(𝑉𝑟2𝑐𝑜𝑠𝜃2 − 𝑉𝑟1𝑐𝑜𝑠𝜃1)  

𝐹𝑐 = 269.9 ∗ 34.29 cos 43° − 316.7 ∗ 40.34 ∗ 𝑐𝑜𝑠48°4′    
𝐹𝑐 = −1800 𝑁  
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𝑅 = −𝐹𝑐 = 1800 𝑁  

 
III. Jet engine: 

A turbo jet engine as shown in Fig. 4.16 is consists essentially of  

 a compressor  

 a combustion chamber  

 a gas turbine  

 a nozzle 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Turbo jet engine 
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Applying the momentum theorem for the C.V above as  

(𝑚̇𝑎 + 𝑚̇𝑓)𝑉𝑟 − 𝑚̇𝑎𝑉 = 𝐹𝑥 − (𝑝2 − 𝑝𝑎𝑡𝑚)𝐴2  

Or       𝐹𝑥 = (𝑝2 − 𝑝𝑎𝑡𝑚)𝐴2 + 𝑚̇𝑎[(1 + 𝑟)𝑉𝑟 − 𝑉]                                 (4.55)                                

𝑟 =
𝑚𝑓

𝑚𝑎
   

Where Fx is the force acting on the C.V along the direction of the coordinate 

axis .  

V =is the velocity of the aircraft  

Vr = Vj-V  is the relative velocity of the exit jet with respect to the aircraft  

Vj= exit jet velocity of gas at nozzle as absolute 

𝑚̇𝑎&𝑚̇𝑓 Are the mass flow rate of air and mass burning rate of fuel, usually 

𝑚̇𝑓 is very less compared to 𝑚̇𝑎.  𝑚̇𝑓/𝑚̇𝑎 usually varies from 0.01 to 0.02 in 

practice. The propulsive thrust on the aircraft can be written as  

𝐹𝑇 = −𝐹𝑥 = −[(𝑝2 − 𝑝𝑎𝑡𝑚)𝐴2 + 𝑚̇𝑎(𝑉𝑟 − 𝑉)]  
Since 𝑚̇𝑓 << 𝑚̇𝑎, The propulsive power is given by 

 𝑃 = [ 𝑚̇𝑎(𝑉𝑟 − 𝑉) + (𝑝2 − 𝑝𝑎𝑡𝑚)𝐴2]𝑉                                                (4.56) 

The mechanical efficiency as the useful work divided by the same of useful 

work and kinetic energy as follows 

 𝜂𝑚  =
𝑜𝑢𝑡𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟

𝑖𝑛𝑝𝑢𝑡 𝑝𝑜𝑤𝑒𝑟
   , 

𝜂 𝑚 =
[(𝑝2−𝑝𝑎𝑡𝑚)𝐴2+𝑚̇𝑎(𝑉𝑟−𝑉)]𝑉

[(𝑝2−𝑝𝑎𝑡𝑚)𝐴2+𝑚̇𝑎(𝑉𝑟−𝑉)]𝑉+
𝑚̇𝑎(𝑉𝑟−𝑉)2

2

  

 𝑖𝑓 𝑝2 ≈ 𝑝𝑎𝑡𝑚.  

𝜂𝑚 =
1

1+
(𝑉𝑟−𝑉)

2𝑉

                                                                                         (4.57) 

 

 Ex.10  
 An airplane consumes 1 kg fuel for each 20kg air and discharge hot gases 

from the tail pipe at u=1800 m/s determine the mechanical efficiency for the 

airplane speeds of 300 m/s & 150 m/s when 𝑝2 ≈ 𝑝𝑎𝑡𝑚 & 𝑎𝑡 𝑉 = 300
𝑚

𝑠
  

Sol.  

At V=300m/s  ; Vr=Vj-V=1800-300=1500 m/s ; from Eq. 4.57 

𝜂𝑚 =
1

1+
 (𝑉𝑟−𝑉) 

2𝑉

=
1

1+
1200

600

= 0.333 = 33.3%  

𝑎𝑡 𝑉 = 150
𝑚

𝑠
;  𝑉𝑟 = 1650 𝑚/𝑠  

𝜂𝑚  = 0.1666 = 16.66%  

 

Ex.11 

 A jet engine under static test conditions in laboratory. Consumes 200 N/s 

air and 2 N/s fuel. What is the thrust produced from engine if the gas exit 

velocity is 450 m/s and the pressure at exit equal to atmosphere pressure. 
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Sol. 

𝐹𝑡 = −𝑚̇𝑎[(1 + 𝑟)𝑉𝑟 − 𝑉]    𝑟 =
2

200
= 0.01;  𝑉 = 0; 𝑉𝑟 = 𝑉𝑗 = 450 𝑚/𝑠  

𝐹𝑡 = −𝑚̇𝑎(1 + 𝑟)𝑉𝑟 = −
200

9.81
∗ 1.01 ∗ 450   

𝐹𝑡 = − 9266 𝑁    
 

4.6.3 Angular Momentum (Moment of Momentum).  

       The moment of a force 𝐹 ⃗⃗  ⃗ 𝑎𝑏𝑜𝑢𝑡 𝑂 is the vector or cross product  

𝑀⃗⃗ =  𝑟 × 𝐹                                                                                             (4.58)                                                                           

Where 𝑟  is the position vector from point 0 to any point on the line of action 

of 𝐹  . Vector product of two vector is a vector whose line of action is normal 

to the plane that contain the crossed vector ( 𝑟  & 𝐹  ) from Fig.4.17 the 

magnitude of the moment of a force as 

 

 

 

 

       

 

 

 

Figure 4.17: Moment of line force. 

 

𝑀 = 𝐹 𝑟 𝑠𝑖𝑛𝜃                                                                                         (4.59) 

       Where 𝜃 is the angle between the lines of action of the vector 𝑟  𝑎𝑛𝑑 𝐹  . 

Replacing the vector 𝐹  in Eq. 4.58 by the moment vector 𝑚𝑉⃗  gives the moment 

of momentum, and is called the angular momentum about O as  

𝐻⃗⃗ = 𝑟 × 𝑚𝑉⃗                                                                                            (4.60) 

The angular momentum of differential mass 𝑑𝑚 = 𝜌 𝑑∀  is   

𝑑𝐻⃗⃗ = (𝑟 × 𝑉⃗ )𝜌 𝑑∀  

𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑜𝑓 𝑠𝑦𝑠.  𝐻⃗⃗  𝑠𝑦𝑠 = ∫ (𝑟 × 𝑉⃗ )𝜌 𝑑∀
𝑠𝑦𝑠

  

∴ 𝑟 × 𝑉⃗              𝑖𝑠 𝑡ℎ𝑒 𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑚𝑎𝑠𝑠   
The general C.V formulatims of the angular momentums is obtained from Eq. 

4.19 by setting 𝑁 = 𝐻⃗⃗ ;  𝜂 = 𝑟 × 𝑉⃗  in the general Reynolds Transport 

Theorem.  Rate of change of moment of momentum as 
𝑑𝐻𝑠𝑦𝑠

𝑑𝑡
=

𝑑

𝑑𝑡
 ∫ (𝑟 × 𝑉⃗ )𝜌𝑑∀

𝑠𝑦𝑠
                                                                   (4.61) 

𝑑𝐻𝑠𝑦𝑠

𝑑𝑡
=

𝑑

𝑑𝑡
 ∫ (𝑟 × 𝑉⃗ )𝜌 𝑑𝑉 + ∫ (𝑟 × 𝑉⃗ )𝜌(𝑉⃗ 𝑟 . 𝑛⃗ )𝑑𝐴

𝐶𝑆
 

𝐶𝑉
  

In general ∑ 𝑀⃗⃗  =
𝑑

𝑑𝑡
 ∫ (𝑟 × 𝑉⃗ )𝜌 𝑑∀ + ∫ (𝑟 × 𝑉⃗ )𝜌(𝑉⃗ 𝑟 . 𝑛⃗ )𝑑𝐴

𝐶𝑆
 

𝐶𝑉
        (4.62) 

O 

𝐹  
𝑟   

Direction of rotation 

r sin 
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 𝑉𝑟 = 𝑉⃗ − 𝑉⃗ 𝑐𝑠 ; 𝜌(𝑉⃗ 𝑟. 𝑛⃗ )𝑑𝐴 is the mass flow rate through dA into or out the C.V. 

For fixed C.V  𝑉𝑟 = 𝑉⃗  

∑ 𝑀⃗⃗  =
𝑑

𝑑𝑡
 ∫ (𝑟 × 𝑉⃗ )𝜌 𝑑𝑉 + ∫ (𝑟 × 𝑉⃗ )𝜌(𝑉⃗  . 𝑛⃗ )𝑑𝐴

𝐶𝑆
 

𝐶𝑉
  

For steady flow  

∑ 𝑀⃗⃗  = ∫ (𝑟 × 𝑉⃗ )𝜌(𝑉⃗  . 𝑛⃗ )𝑑𝐴
𝐶𝑆

                                                            (4.63) 

 The angular momentum flow rate can be expressed as the difference 

between the angular momentum of outgoing and incoming streams. If the flow 

is steady as well as uniform the angular momentum is  

∑ 𝑀⃗⃗ = ∑ (𝑟 × 𝑉⃗ )𝑚̇ − ∑ (𝑟 × 𝑉⃗ )𝑚̇𝑖𝑛𝑜𝑢𝑡                                                (4.64) 

      In many problem, all the significant force and momentum flows are in the 

same plane, and then giving rise to moments in the same plane, Eq. 4.64  can 

be expressed in scalar from as  

∑𝑀 = ∑ 𝑟 𝑚̇𝑉 − ∑ 𝑟𝑚̇𝑉𝑖𝑛𝑜𝑢𝑡                                                                (4.65) 

Where r represents the normal distance between the point about which 

moments are taken and the line of action of the force as velocity, 

 

Ex.12  
 A small lawn sprinkler operates as indicated in figure. The inlet mass 

flow rate is 9.98 kg/min with inlet pressure of 30 kPa. The two exit jets direct 

flow at an angle of 40 above the horizontal. Determine the following 

a) Jet velocity relative to the nozzle. 

b) Torque required to hold the arm stationary. 

c) Friction torque if the  arm is rotating at 30 r.p.m. 

d) Maximum rotational speed if we neglect friction 

Sol. 
a) r2=160 mm, dj=5 mm 

For each of the two jets : 

𝑄𝑗 = 0.5
𝑚𝑇

𝜌
=

0.5∗9.98

1000
= 5 ∗ 10−3  𝑚3/min     

𝐴𝑗 =
𝜋𝑑𝑗

2

4
=

𝜋(0.005)2

4
= 1.963 ∗ 10−5 𝑚2   

𝑉𝑗 =
𝑄𝑗

𝐴𝑗
=

5∗10−3

60(1.963∗10−5)
= 4.244𝑚/𝑠   

 

 

 

 

 

b) Torque required to hold the arm stationary taking the moment about the 

center of rotation  

Inlet moment =0 due to r=0 the basic equation 

   Vjsin                           Vj 

r                                     Vjcos  

  jet point               Tangential                       

                               Velocity                 
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∑𝑀 = 𝑇𝑜 = ∑ 𝑚𝑒̇ (𝑟 × 𝑉⃗ 𝑟) − ∑ 𝑚𝑖̇ (𝑟 ×  𝑉⃗ 𝑟)
𝑖𝑛𝑜𝑢𝑡

 

∴ 𝑇𝑜 = 2𝑚𝑒̇  𝑟(𝑉𝑗 𝑐𝑜𝑠 ∝  −𝑟𝜔)  

For stationary arm r=0 

𝑇𝑜 = 2 𝜌𝑄𝑗  𝑟  𝑉𝑗 𝑐𝑜𝑠 ∝  

∴ 𝑇𝑜 = 2 ∗ 1000 ∗ (
0.005

60
) ∗ 0.16 ∗ 4.244 ∗ 𝑐𝑜𝑠40   

𝑇𝑜 = 0.0866 𝑁.𝑚  counter clockwise (A resisting torque which must be 

applied in the counterclockwise direction to keep the arm from rotating in the 

clockwise direction).  

c) At =30 rpm, calculate the friction torque Tf  

𝜔 =
2𝜋

60
∗ 30 = 𝜋

𝑟𝑎𝑑

𝑠
   

 𝑇𝑜 = 2 𝜌𝑄𝑗  𝑟 ( 𝑉𝑗 𝑐𝑜𝑠 ∝ −𝑟𝜔)  

𝑇𝑜 = 2 ∗ 1000 ∗ (
0.005

60
) ∗ 0.16(4.244𝑐𝑜𝑠40 − 𝜋 ∗ 0.16)  

𝑇𝑜 = 0.07329 𝑁.𝑚  
d) The maximum rotational speed occurs when the opposing torque is zero 

and all the moment of momentum goes to the angular rotation. 

𝑉𝑗𝑐𝑜𝑠 ∝ −𝑟𝜔 = 0  

𝜔 =
𝑉𝑗𝑐𝑜𝑠∝

𝑟
=

4.244∗𝑐𝑜𝑠40

0.16
= 20.319

𝑟𝑎𝑑

𝑠𝑒𝑐
= 194 𝑟𝑝𝑚  

 

 

 

 

 

 

 

 

 

4.7  Radial-Flow Devices.  
The fluid will be affected by centrifugal action of moving blades from the 

inner radius to the outer radius. Due to the suction created by the impeller 

motion, the fluid enters the eye of the impeller axially. The momentum transfer 

to the fluid by the impeller blades will increase the total head of the fluid and 

causing the fluid to flow out.      

To analyze the centrifugal pump, we choose the annular region that 

encloses the impeller section as the C.V 

: is the angular velocity of shaft impeller blades will have a tangential 

velocity 

V1,t=r1 at the inlet 

V2,t=r1 at the  outlet                                                                              (4.66)       

dj=5mm 

160mm 

 
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For steady incompressible flow, the conservation of mass equation can be 

written as  

𝑄1̇ = 𝑄2̇ = 𝑄̇ − −−→ (2𝜋𝑟1𝑏1)𝑉1,𝑛 = (2𝜋 𝑟2𝑏2)𝑉2,𝑛                          (4.67)  

Where b1&b2 are the flow widths at r=r1 inlet & r=r2 at outlet  

The average normal components V1,n & V2,n of absolute velocity can be 

expressed in terms of the volumetric flow rate Q as  

𝑉1,𝑛 =
𝑄

2𝜋𝑟1𝑏1
     &   𝑉2,𝑛 =

𝑄

2𝜋𝑟2 𝑏2
                                                           (4.68)  

        Since V1,n & V2,n pass through the shaft  center , thus they do not contribute 

to torque about the origin. Only the tangential velocity components contribute 

to torque and the application of the angular momentum as  

∑𝑀 = ∑ 𝑟 𝑚̇𝑉 − ∑ 𝑟𝑚̇𝑉𝑖𝑛𝑜𝑢𝑡                                                                (4.69)    

∑𝑇𝑠ℎ𝑎𝑓𝑡 = 𝑚̇(𝑟2𝑉2,𝑡 − 𝑟1𝑉1,𝑡)                                                               (4.70)                                                                             

Is known as Euler's turbine formula from Fig. 4.18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∝2 & ∝1 Angles between the direction of absolute flow velocities & the radial 

direction. Substituting Eq.  4.66  in Eq.  4.70  gives an ideal case when the 

tangential velocity begin equal to the blade angular velocity both at inlet & 

outlet  

𝑇𝑠ℎ,𝑖𝑑𝑒𝑎𝑙 = 𝑚̇ 𝜔(𝑟2
2 − 𝑟1

2)  

Shaft power 𝑃𝑠ℎ = 𝜔 𝑇𝑠ℎ =
2𝜋𝑛

60
 𝑇𝑠ℎ                                                      (4.71)        

Ex.13  
Centrifugal blower has the following specifications.   

𝑟1 = 20𝑐𝑚 , 𝑏1 = 8.2𝑐𝑚   𝑎𝑡 𝑖𝑛𝑙𝑒𝑡  

𝑟2 = 45𝑐𝑚  , 𝑏2 = 5.6𝑐𝑚 𝑎𝑡 𝑜𝑢𝑡𝑙𝑒𝑡   

                          V2 

                               V2,t 

            V2,n   2                                     V1,n 

                                                             1 

                           

     

                                                                       V1 

                                                                 V1,t                                        
2r 1r 

Figure 4.18: Velocities components in radial flow    
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𝑄 = 0.7
𝑚3

𝑠
 , 𝑛 = 700 𝑟. 𝑝. 𝑚   

∝1= 0∘ 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡     ∝2= 50∘ 𝑓𝑟𝑜𝑚 𝑟𝑎𝑑𝑖𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  

Determine the minimum power consumption of the blower 𝜌𝑎𝑖𝑟 = 1.25𝑘𝑔/𝑚3 

Sol. 

∑ 𝑀 = ∑ 𝑟 𝑚̇𝑉⃗ − ∑ 𝑟 𝑚̇𝑉⃗  𝑖𝑛𝑜𝑢𝑡   

𝑄1 = 𝑄2 = 𝑄 = 0.7 𝑚3/𝑠 ,    𝑚̇ = 𝜌 ∗ 𝑄 = 1.25 ∗ 0.7 = 0.875 𝑘𝑔/𝑠           

𝑉2 =
𝑄

𝐴2
=

0.7

(2𝜋𝑟2∗𝑏2)
=

0.7

(2𝜋∗0.45∗0.056)
= 4.42

𝑚

𝑠
  

𝑇𝑠ℎ = 𝑚̇(𝑟2 𝑉2𝑠𝑖𝑛 ∝ 2 − 𝑟1𝑉1𝑠𝑖𝑛 ∝ 1)  

= 0.875(0.45 ∗ 4.42 ∗ 𝑠𝑖𝑛50 − 0) = 1.33     𝑁.𝑚  

𝑃 = 𝜔. 𝑇𝑠ℎ =
2𝜋𝑛

60
  𝑇𝑠ℎ =

2𝜋∗700

60
∗ 1.33 = 97.75 𝑊        

 

Problems.  
P4.1 A pipe of diameters (12cm) and (8cm) through sections (1) and (2) 

respectively. If the velocity at section (1) is (1.5 m/s ) , what is the 

velocity at section(2)? 

 

P4.2 the velocity of flow (𝑉2 = 5
𝑚

𝑠
) and the exit flow rate (𝑄4 = 120

𝑚3

ℎ𝑟
) as 

in below figure. Find a) V1 , b) V3 and  c) V4 if it's  known that increasing 

in Q3 by (20%) would increase Q4 by (20%). 

 

 

 

 

 

 

 

 

 

 

 

 

P4.3 The velocity distribution for a (3-D), incompressible, steady state flow is 

given by: 

𝑢 = 2𝑥2 − 𝑥𝑦 + 𝑧2  

𝑣 = 𝑥2 − 4𝑥𝑦 + 𝑦2  

𝑤 = −2𝑥𝑦 − 𝑦𝑧 + 𝑦  
Show that it satisfies the continuity equation in (3-D).  

cm6=3D 

=9cm4D 

cm4=1D 

cm5=2D 
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P4.4 A 6m long pipe is inclined at an angle of 20 as shown in figure. If the 

velocity at smaller section is 1.8 m/s, find the difference of pressure 

between the two sections. 

 

 

 

 

 

 

 

 

 

 

P4.5 As shown in the figure, the pump is lift water at 60 lit/s, through 0.1m 

diameter. Determine the required power by assuming the overall 

efficiency of 70%. Also, find pressure intensities at points (L) and (M).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P4.6 Determine whether the continuity equation is satisfied by the following 

velocity components for an incompressible fluid.  

𝑢2 = 𝑥2𝑦                   𝑣2 =   2𝑥𝑦 − 𝑥𝑦2             𝑤2 = 𝑥2 − 𝑧2  

 

P4.7 A pipe (1) has diameter is 450mm branches into two pipes (2&3) of 

diameters 300mm and 200mm respectively. If the a average velocity in 

pipe (1) 3m/s find 

i) discharge through pipe (1)  

ii) Velocity in pipe (3) if the average velocity in pipe (2) is 2.5 m/s.    

Datum line 

=20 

100mm=1D 

300mm=2D 6m 

2 

1 

L 

4m 

6m 

4m 
P 

Water 

M 
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P4.8 The tangential component of velocity in a two dimension flow 

incompressible fluid is 𝑉𝜃 = −
𝐶𝑠𝑖𝑛𝜃

𝑟2
  where C is constant. 

i) Using continuity equation. Determine the expression for radial velocity 

𝑉𝑟. 

ii) Find the magnitude of resultant velocity. 

 

P4.9 A cube tank has side 2m. The tank filled to level (h) above orifice that 

placed above the its base, with 0.06m diameter and 0.7 coefficient 

discharge. 

i) If water enters the tank at a constant rate (0.015
𝑚3

𝑠
) find the depth of 

water above the orifice when the level in the tank becomes constant. 

ii) Find the time when the level of water fall from 4m to 0.5m above the 

orifice when the flow in is turn off.  

 

P4.10 A horizontal cylinder 2m diameter and 10m long is half full of water. 

Find the time of emptying the cylinder through a short opining pipe of 

diameter 0.08m attached to the bottom of cylinder. Take the coefficient 

of discharge to be (cd=0.8) 

 

P4.11 Water flows in pipe (1) with diameter 0.75m and branches into three 

pipes (2, 3, 4) with diameters (0.3, 0.3, 0.4) m respectively  

i) If the Velocity of a pipe 1 is 1.2 m/s find the flow rate at pipe  

ii) If the velocity at (2&3) is 2 m/s find the velocity at pipe 4. 

 

P4.12 The vertical pipe as shown in below figure. The pipe Convergent and 

connected to U tube manometer. The diameters at A section is 0.3m 

and at B section is 0.15m. Find the flow rate in the pipe if the actual 

flow rate in this pipe is 0.15
𝑚3

𝑠
. Also, find the coefficient of discharge 

(Cd). Assumed the fluid is oil and has specific gravity 0.8. 

 

 

 

 

 

 

 

 

 

 

0.25m 
A 

B 

Oil 

S.G.=0.8 
0.6m 

Mercury 

S.G.=13.6 
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P4.13 water enters Y reducing horizontal pipe and comes out vertical in the 

downward direction. If the inlet velocity is 5 m/s and pressure is 80kPa 

(gauge) and diameter at entrance and exit section are 30cm and 20cm 

respectively. Calculate the component of reaction acting on the pipe. 

 

P4.14 360 liters per second of water is flowing in a pipe. The pipe is bent by 

120. The pipe measures diameters (360 mm and 240 mm) and volume 

at the bend is 0.14m3. The pressure at the entrance is 73kN/m2 and exit 

is 2.4 m above the entrance section. 

 

P4.15 A flat plate is moving with Velocity u in a same direction at the jet as 

shown in below figure. Drive the expression for power developed due to 

motion at the plate. 

 

 

 

 

 

 

 

 

 

 

 

 

P4.16 The water is flowing in a pipe having a diameter of 300 mm with flow 

rate 250 l/s. If the pipe is bent by 133, find the magnitude and direction 

of the resultant force on the bend. The pressure of the water flowing is 

400 kN/m2.   

 

P4.17 A sprinkler in below figure has 12mm diameter nozzles at the end of 

rotation arm and discharge water with a velocity of 15 m/s. Determine  

i) Torque required for holding the rotating arm stationary.  

ii) Maximum rotational speed if we neglect friction.  

 

 

 

u 
V 
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P4.18 A jet of water exits from nozzle with 𝑉1 = 25
𝑚

𝑠
 , ∝1= 30° with 

horizontal as in below figure and 𝑚̇ = 15
𝑘𝑔

𝑠
. If the angle at exit of water 

from the vane is 150 with horizontal and the water losses is 15% from 

its velocity by friction with surface of vane compute the power 

developed by the vane. 

 

 

 

 

A 

B 0.375m 0.3m 

 15m/s 

15m/s 

Vr2 
150 

1=30 

u=15 m/s 
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5.1 Measurement of Flow Rate Through Pipe. 
       The determination of the flow rate from the measurement of pressure 

drop depends on the straight forward application of Bernoulli's equation. 

Four different flow meters operate on this principle. 

 Venturimeter  

 Orificemeter 

 Flow nozzle 

 Pitot tube 

5.1.1 Venturimeter. 

Working: 

1- The gradual diverging passage in the direction of flow avoiding the 

losses of energy due to separation 

 

 

 

 

 

 

 

 

 

  

2- 
𝑑𝑉

𝑑𝑥
> 0 

𝑑𝑝

𝑑𝑥
< 0              

      

3- Vmax. 

p min  

Down stream 

part. 
Upstream part. 

2 

Direction of 

Flow 

D1 

Throat Divergen

t 

Converge

nt 
1 

D

2 

D1 

Figure 5.1: Venturimeter. 

To satisfy continuity equation in 

convergent part according to 

Bernoulli's Equation 

 

At throat area, demonstrated by 

Battisla Venturi 1797.  

 

Applications of energy 
Equation 

 

5 CHAPTER 
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4- dV/dx<0 

 dp/dx>0 

  

       For measuring the flow rate through pipe, let us consider a steady, ideal 

and one dimensional, where the flow of fluid, the velocity and pressure at any 

section will be uniform. Let V1&p1 are the velocity and pressure at inlet 

section (1), while those at throat V2 & p2 at section (2) as shown in Fig. 5.2. 

Applying Bernoulli's equation between sec.1&2, we get 

 

 

𝑝1

𝜌𝑔
+

𝑉1
2

2𝑔
+ 𝑧1 =

𝑝2

𝜌𝑔
+

𝑉2
2

2𝑔
+ 𝑧2                                                                     (5.1)  

𝑉2
2−𝑉1

2

2𝑔
=

𝑝1−𝑝2

𝜌𝑔
+ 𝑧1 − 𝑧2                                                                           (5.2)  

Where  is the density of fluid through the Venturimeter. From continuity 

𝐴1 𝑉1 = 𝑉2𝐴2 − −−→ 𝑉1 =
𝑉2𝐴2

𝐴1
                                                              (5.3)    

Subtituting Eq. 5.3 in Eq. 5.2  
𝑉2

2

2𝑔
 (1 −

𝐴2
2

𝐴1
2) = (

𝑝1

𝜌𝑔
+ 𝑧1) − (

𝑝2

𝜌𝑔
+ 𝑧2)  

𝑉2 =
1

√1−
𝐴2

2

𝐴1
2

  √2𝑔(ℎ1
∗ − ℎ2

∗ )                                                                      (5.4)               

Where ℎ1
∗&ℎ2

∗  are the piezometric pressure at Sec.1 & Sec.2 and are defined 

as 

ℎ1
∗ =

𝑝1

𝜌𝑔
+ 𝑧1                                                                                           (5.5.a)  

ℎ2
∗ =

𝑝2

𝜌𝑔
+ 𝑧2                                                                                           (5.5.b) 

In the divergent part. 

 

Figure 5.2:  Measurement of Flow by a Venturimeter.  
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Hence, the volume flow rate through the pipe is given by 

𝑄 = 𝐴2  𝑉2=
𝐴2

√1−
𝐴2

2

𝐴1
2

 √2𝑔(ℎ1
∗ − ℎ2

∗)                                                            (5.6)  

 The pressure difference between Sec.1&2 is measured by a manometer 

as shown in Fig 5.2, we can write 

𝑝1 +  𝜌𝑔( 𝑧1 − ℎ0) = 𝑝2 + 𝜌𝑔(𝑧2 − ℎ0 − ∆ℎ) + ∆ℎ 𝜌𝑚𝑔  

𝑜𝑟, (𝑝1 + 𝜌𝑔𝑧1) − (𝑝2 + 𝜌𝑔𝑧2) = (𝜌𝑚 − 𝜌)𝑔∆ℎ  

(
𝑝1

𝜌𝑔
+ 𝑧1) − (

𝑝2

𝜌𝑔
+ 𝑧2) = (

𝜌𝑚

𝜌
− 1) ∆ℎ  

𝑜𝑟  ℎ1
∗ − ℎ2

∗ = (
𝜌𝑚

𝜌
− 1) ∆ℎ                                                                      (5.7)  

Where m is the density of the manometric liquid. Eq. 5.7 shows that a 

manometer always registers a direct reading of the difference in piezometric 

pressures. Now, substitution of (ℎ1
∗ −  ℎ2

∗) from Eq. 5.7 in Eq. 5.6 will gives 

the flow rate through pipe.  

𝑄 =
𝐴1𝐴2

√𝐴1−𝐴2
 √2𝑔(ℎ1

∗ − ℎ2
∗ ) =

𝐴1𝐴2

√𝐴1
2−𝐴2

2
 √2𝑔 (

𝜌𝑚

𝜌
− 1) ∆ℎ                        (5.8) 

If C the constant of Venturimeter which is equal to  
𝐴1𝐴2

√𝐴1
2−𝐴2

2
 √2𝑔 and the pipe 

along with the Venturimeter is horizontal, then z1=z2, and hence ℎ1
∗ − ℎ2

∗  

becomes(ℎ1 − ℎ2), where h1 and h2 are the static pressure heads can be 

written as (ℎ1 =
𝑝1

𝑝𝑔
 , ℎ2 =

𝑝2

𝑝𝑔
)  then, the manometric Eq. 5.7 becomes  

ℎ1 − ℎ2 = (
𝜌𝑚

𝜌
− 1) ∆ℎ   

Eq. 5.8 gives the flow rate in pipe with the terms of manometer deflection ∆ℎ 

is remain the same irrespective of whether the pipe-line along with the 

Venturimeter connection is horizontal or not. Eq. 5.8 always overestimates 

the actual flow rate due to the ideal flow assumption and read fluid 

measurement (Δh). Multiplying Eq. 5.8 by the factor Cd, called the coefficient 

of discharge as follows. 

𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐶𝑑
𝐴1𝐴2

√𝐴1
2−𝐴2

2
 √2𝑔 (

𝜌𝑚

𝜌
− 1) ∆ℎ                                                    (5.9) 

Cd <1.0 and is defined as 

𝐶𝑑 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑏𝑦 𝐸𝑞5.8
   

Value of Cd between (0.95 to 0.98); Cd≈ 0.9858-0.196 4.5 where    

=(d2/d1) 

Ex.1  

 A Venturimeter is placed at 30 to the horizontal (sloping upwards in 

the direction of flow) to a pipe line carrying on oil of specific gravity 0.8. A 
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differential with mercury as the manometer fluid is attached to the inlet and 

throat of the Venturimeter. The manometer shows a deflection of 100 mm. 

the pipe diameter is 200 mm, while the diameter of Venturi throat is 100 mm. 

a) Find the volume flow rate of oil if the coefficient of discharge of the 

Venturimeter is 0.96. 

b) What will be the reading of differential manometer if the 

Venturimeter is turned horizontal? The length of Venturimeter 

between the inlet and the throat is 320 mm. 

Sol. 

𝐴1  = 0.0314 𝑚2; 𝐴2 = 0.00785 𝑚2 

 𝑄𝑎𝑐𝑡 = 𝐶𝑑
𝐴1𝐴2

√𝐴1
2−𝐴2

2
 √2𝑔 (

𝜌𝑚

𝜌
− 1) ∆ℎ           𝜌 = 800

𝑘𝑔

𝑚3   , 𝜌𝑚 = 13600
𝑘𝑔

𝑚3 

∆ℎ = 0.1𝑚, 𝐶𝑑 = 0.96    

a) 𝑄𝑎𝑢𝑡 = 0.04386
𝑚3

𝑠
   

b) 𝑉1 =
𝑄

𝐴1
=

0.04386

0.0314
= 1.388

𝑚

𝑠
  

𝑉2 =
𝑄

𝐴2
=

0.04381

0.00785
= 5.58

𝑚

𝑠
   

𝐼𝐹 𝑧1 = 𝑧2   
𝑝1−𝑝2

𝑃𝑔
=

 𝑉2
2−𝑉1

2

2𝑔
=

5.502−1.3822

2∗9.81
=

31.38−1.96

2∗9.81
= 1.488 𝑚   

From Eq. 5.7     
𝑝1−𝑝2

𝜌𝑔
= ℎ1 − ℎ2 = (

 𝜌𝑚

𝜌
− 1)∆ℎ  where z1=z2 

𝑝1−𝑝2

𝜌𝑔
= (

 𝜌𝑚

𝜌
− 1) ∆ℎ = 1.488𝑚          ∆ℎ =

1.488

16
= 0.093𝑚 

 

 

 

  

 

 

 

 

 

 

5.1.2 Orificemeter. 

A- First Method  

Is a cheaper arrangement for the measurement of flow through a pipe, is 

essentially a thin circular plate with a sharp edged concentric circular hole in 

it as in Fig. 5.3. 
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Figure 5.3:   Flow through an Orificemeter.      

 Consider the fluid to be ideal, by applying Bernoulli's theorem between 

Sec.1-1 and Sec. c - c  
𝑝1

∗

𝜌𝑔
+

𝑉1
2

2𝑔
=

𝑝𝑐
∗

𝜌𝑔
+

𝑉𝑐
2

2𝑔
                                                                                   (5.10)     

Where 𝑝1
∗ & 𝑝2

∗ are the piezometric pressure at Sec. 1-1 & c - c respectively. 

From continuity equation  

𝑉1𝐴1 ≈ 𝑉𝑐𝐴𝑐                                                                                           (5.11) 

Where 𝐴𝑐   is the area of the vena contracta from Eq's. 5.10 & 5.11 we can 

written as,  

𝑉𝑐 = √2(𝑝1
∗ − 𝑝𝑐

∗)/𝜌 (1 −
𝐴𝐶

2

𝐴1
2)                                                               (5.12)      

        The measured value of the piezometric pressure drop for a real fluid is 

always more due to friction than that assumed in case of an inviscid flow, a 

coefficient of velocity CV (always less than 1) has to be introduce to 

determine the actual velocity Vc when the pressure drop 𝑝1
∗ − 𝑝𝑐

∗ in Eq. 5.12 

is substituted by its measured value in terms of the monometer deflection Δh. 

∆𝑝 = (𝜌𝑚𝑒𝑟𝑐 − 𝜌𝑤𝑎𝑡𝑒𝑟)𝑔∆ℎ = 𝜌𝑔 (
𝜌𝑚

𝜌
− 1) ∆ℎ.  

Hence, 

𝑉𝑐 = 𝐶𝑉
√

2𝑔(
𝜌𝑚

𝜌
−1)∆ℎ

1−𝐴𝑐
2/𝐴1

2                                                                                 (5.13)    

Where  

Δh is the difference in liquid level. 

m is the density of the manometric liquid.  

  is the density of the working fluid. 

Volumetric flow rate 

𝑄 = 𝐴𝑐 𝑉𝑐                                                                                                 (5.14)  

If a coefficient of contraction 𝐶𝑐 is defined as 𝐶𝑐 =
𝐴𝑐

𝐴2
,         𝐴𝑐 = 𝐶𝑐 𝐴2     
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𝐴2 Is the area of orifice due to unknown the position of 𝐴𝑐along the flow. Eq. 

5.14 can be written with help of Eq. 5.13.    

𝑄 = 𝐶𝑐 𝐴2 𝐶𝑉√
2𝑔(

𝜌𝑚
𝜌

−1)∆ℎ

1− 
𝐶𝐶

2𝐴2
2

𝐴1
2

   

𝑄 = 𝐶𝑐𝐴2𝐶𝑉  
√

2𝑔

1 −  
𝐶𝑐

2𝐴2
2

𝐴1
2

  √(
𝜌𝑚

𝜌
− 1) ∆ℎ                                                                    

𝑄 = 𝐶𝑑√(
𝜌𝑚

𝜌
− 1) ∆ℎ                                                                             (5.15)    

With, 𝐶𝑑 = 𝐶 𝐴2√
2𝑔

1 − 
𝐶𝐶

2 𝐴2
2

𝐴1
2

  , 𝑊ℎ𝑒𝑟𝑒 (𝐶 = 𝐶𝑉𝐶𝑐)   

Where C is depends upon the ratio of orifice to duct area, and Reynolds 

number of flow. 

B-  Orificemetes ( Second Method) 
A1, V1, p1 at Sec.1 A2, V2, p2 at Sec.2. Applying B.E. at Sec.1 & 2 we get  
𝑝1

𝜌𝑔
+

𝑉1
2

2𝑔
+ 𝑧1 =

𝑝2

𝜌𝑔
+

𝑉2
2

2𝑔
+ 𝑧2   

(
𝑝1

𝜌𝑔
+ 𝑧1) − (

𝑝2

𝜌𝑔
+ 𝑧2) =

𝑉2
2

2𝑔
−

𝑉1
2

2𝑔
   

∆ℎ∗ =
𝑉2

2

2𝑔
−

𝑉1
2

2𝑔
   

𝑉2
2

2𝑔
= ∆ℎ∗ +

𝑉1
2

2𝑔
   

𝑜𝑟 𝑉2 = √2𝑔 (∆ℎ∗ +
𝑉1

2

2𝑔
) =  √2𝑔 ∆ℎ∗ + 𝑉1

2 − − − − − (𝑎)  

Section 2 is at vena contracta and A2 represents the area of vena contracta, 

Ao is the area of orifice, 

𝐶𝐶 =
𝐴2

𝐴0
  Where 𝐶𝐶 =Co-efficient of contraction  

∴  𝐴2 = 𝐶𝐶𝐴0 − − − − − −(𝑏) ` 

Using C.E. ,we get  

𝐴1𝑉1 = 𝐴2𝑉2 − −−→ 𝑂𝑅 𝑉1 =
𝐴2𝑉2

𝐴1
  

𝑂𝑟       𝑉1 =
𝐴0𝐶𝐶𝑉2

𝐴1
− − − − − − − (𝑐)  

Substituting the value of 𝑉1 Eq. (a), we get  

𝑉2 = √2𝑔 ∆ℎ∗ + 𝐴0
2𝐶𝐶

2.
𝑉2

2

𝐴1
2   

𝑂𝑟   𝑉2
2 = 2𝑔∆ℎ∗ + (

𝐴0

𝐴1
)

2

. 𝐶𝐶
2. 𝑉2

2  
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𝑉2
2 [1 − (

𝐴0

𝐴1
)

2

𝐶𝐶
2] = 2𝑔 ∆ℎ∗  

𝑉2 =  
√2𝑔 ∆ℎ∗

√1−(
𝐴0
𝐴1

)
2

𝐶𝐶
2

   

∴ 𝑇ℎ𝑒 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒   𝑄 = 𝐴2𝑉2 = 𝐴0. 𝐶𝑐𝑉2   = 𝐴0𝐶𝐶
√2𝑔∆ℎ∗

√1−(
𝐴0
𝐴1

)
2

𝐶𝐶
2

− − − −(𝑑) 

The above expression is simplified by using  

𝐶𝑑 = 𝐶𝐶

√1−(
𝐴0
𝐴1

)
2

√1−(
𝐴0
𝐴1

)
2

𝐶𝐶
2

                           𝐶𝑑 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 

𝐶𝐶 = 𝐶𝑑

√1−(
𝐴0
𝐴1

)
2

𝐶𝐶
2

√1−(
𝐴0
𝐴1

)
2

                       𝐶𝑑 = 𝐶𝐶 . 𝐶𝑉  

Substituting the value of 𝐶𝐶  in Eq. d, we get  

𝑄 = 𝐴0. 𝐶𝑑  

√1−(
𝐴0
𝐴1

)
2

𝐶𝑐
2

√1−(
𝐴0
𝐴1

)
2

∗
√2𝑔∆ℎ∗

√1−(
𝐴0
𝐴1

)
2

𝐶𝑐
2 

  ;  𝑄 =
𝐶𝑑𝐴0√2𝑔∆ℎ

√1−(
𝐴0
𝐴1

)
2

=
𝐶𝑑𝐴0𝐴1√2𝑔∆ℎ∗

√𝐴1
2−𝐴0

2
 

(
𝑝1

𝛾
+ 𝑧1) − (

𝑝2

𝛾
+ 𝑧2) = ∆ℎ∗ = ℎ1

∗ − ℎ2
∗ = (

𝜌𝑚

𝜌
− 1) ∆ℎ     is the differential 

head.  

𝑄 = 𝐶𝑑
𝐴0𝐴1

√𝐴1
2−𝐴0

2 

 √2𝑔(
𝜌𝑚

𝜌
− 1)∆ℎ                                                             (5.16)   

Ex.2 
 The following date related to an orificemeter  

Diameter of pipe =240 mm  

Diameter of orifice =120mm  

Reading of differential manometer =400 mm of mercury Co-efficient of 

discharge of the meter =0.65. Determine the rate of oil flow 

Sol.   

𝑑1 = 240𝑚𝑚 = 0.24 𝑚  

∴ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑝𝑖𝑝𝑒 𝐴1 =
𝜋

4
∗ 0.242 = 0.0452𝑚2   

𝑜𝑟𝑖𝑓𝑖𝑐𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑑𝑜 = 120 𝑚𝑚 = 0.12𝑚  

 𝐴0 =
𝜋

4
∗ 0.122 = 0.0113𝑚2  

𝐶𝑑 = 0.65   
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𝑆. 𝐺𝑜𝑖𝑙 = 0.88   
Reading differential h= 400mm = 0.4 m of mercury  

∴ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 ℎ𝑒𝑎𝑑 = ∆ℎ∗ = ∆ℎ (
𝜌𝑚

𝜌
− 1)  

∴  ∆ℎ∗ = 0.4 [
13.6

0.88
− 1] = 5.78 𝑚 𝑜𝑓 𝑜𝑖𝑙    

𝑄 = 𝐶𝑑  
𝐴0∗𝐴1√2𝑔 ∆ℎ∗

√𝐴1
2−𝐴0

2
   

𝑄 = 0.65 ∗
0.0113∗0.0452√2∗9.81∗5.78

√0.04522−0.01132
   

𝑄 = 0.08
𝑚3

𝑆
   

5.1.3 Flow Nozzle. 

 The flow nozzle as shown in Fig.15.4 is essentially a Venturimeter with 

the divergent part omitted. Therefore the basic equations for 

calculation of flow rate are the same as those for a Venturimeter.  

 The dissipation of energy downstream of the throat due to flow 

separation is greater than that for a Venturimeter. But this disadvantage 

is often offset by the lower cost of the nozzle.  

 The downstream connection of the manometer may not necessarily be 

at the throat of the nozzle or at a point sufficiently far from the nozzle. 

 The deviations are taken care of in the values of Cd, The coefficient Cd 

depends on the shape of the nozzle, the ratio of pipe to nozzle diameter 

and the Reynolds number of flow.  

 

Figure 5.4: A flow nozzle. 

 A comparative picture of the typical values of Cd, accuracy, and the 

cost of three flow meters (venturimeter, orificemeter and flow nozzle) 

is given below:  
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Type of 

Flowmeter  
Accuracy Cost 

Loss of 

Total Head  

Typical Values 

of Cd  

     

Venturimeter     High    High        Low      0.95 to 0.98  
     

Orificemeter     Low    Low        High      0.60 to 0.65  
     

Flow Nozzle 

Intermediate 

between a 

venturimeter and 

an orificemeter  

       0.70 to 0.80  

 

5.2 Orifice in a Reservoir.  

      (h) is the head is measured from the center of the orifice to the free 

surface as in Fig. 5.5. Bernoulli's Eq. applied from a point (1) on the free 

surface to the center of the vena contracta point (c). Neglecting losses, is 

written  
p1

ρg
+

V1
2

2g
+ z1 =

pc

ρg
+

VC
2

2g
+ zc   

h =
Vc

2

2g
− −→  VC = √2gh     also Vci = √2gh   where Vci is the theoretical 

velocity. 

 
Figure 5.5: Flow through a sharp edge orifice.  

To calculate the discharge from orifice in reservoir, we must find the actual 

velocity (𝑉𝑐𝑎). Cv is the coefficient of velocity  

𝐶𝑉 =
𝑉𝑐𝑎

𝑉𝑐𝑖 
− −−→ 𝑉𝑐𝑎 = 𝐶𝑉      𝑉𝑐𝑖  

𝑉𝑐𝑎 = 𝐶𝑉√2𝑔ℎ    
To calculate the actual flow rate 𝐴𝑐 = 𝐶𝑐𝐴2 , where A2 is the orifice area 

∴ 𝑄𝑎𝑐𝑡 = 𝐴𝑐𝑉𝑐𝑎 = 𝐶𝑐 𝐶𝑉𝐴2√2𝑔ℎ    

𝐶𝑑 is the coefficient of discharge  
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𝐶𝑑 = 𝐶𝑐𝐶𝑉                    𝑜𝑟 𝐶𝑑 =
𝑄𝑎𝑐𝑡

𝑄𝑖
  

𝑄𝑎𝑐𝑡 = 𝐶𝑑𝐴2  √2𝑔ℎ     
𝑄𝑎𝑐𝑡 = 𝐶𝑑 𝑄𝑖                       ` 
 

Ex.3  

       As in figure the orifice diameter is (12 cm) in reservoir and the level of 

water above the orifice is (10 m). Calculate the actual flow rate when the 

coefficient of discharge is (0.65).  

Sol. 

Applying B.E. between point 1 & 2.   
𝑝1

𝜌𝑔
+

𝑉1
2

2𝑔
+ 𝑧1 =

𝑝2

𝜌𝑔
+

𝑉𝑐𝑖
2

2𝑔
+ 𝑧2   

10 =
𝑉𝐶𝑖

2

2∗9.8
   

𝑉𝑐𝑖 = √10 ∗ 2 ∗ 9.81 = 14.0
𝑚

𝑠
  

𝑄𝑖 = 𝐴2 ∗ 𝑉𝑐𝑖 =
𝜋

4
(0.12)2 ∗ 14 = 0.15833

𝑚3

𝑠
   

𝑄𝑎𝑐𝑡 = 𝐶𝑑𝑄𝑖 = 0.65 ∗ 0.15833 = 0.1029
𝑚3

𝑠
  

Ex.4  
        Calculate the actual flow rate from the orifice diameter (10 cm) in 

reservoir forming a vina contracta diameter (8.5 cm) and the (𝐶𝑉 & 𝐶𝐶) as in 

figure. Take the discharge coefficient  𝐶𝑑 = (0.58)& 𝑆. 𝐺. = 0.9    
Sol. 
Apply B.E. between (1&c) 
𝑝1

𝜌𝑔
+

𝑉1
2

2𝑔
+ 𝑧1 =

𝑝𝑐

𝜌𝑔
+

𝑉𝑐
2

2𝑔
+ 𝑧𝑐  

35∗103

0.9∗9810
+ 5 =

𝑉𝑐𝑖
2

2∗9.81
− − − −→ 𝑉𝑐𝑖 = 13.26

𝑚

𝑠
  

𝑉2𝑖 = 𝑉𝑐𝑖 = 13.26
𝑚

𝑠
  

𝑄𝑖 = 𝐴2 ∗ 𝑉2𝑖 =
𝜋

4
∗ (0.1)2 ∗ 13.26 = 0.1041

𝑚3

𝑠
  

𝑄𝑎𝑐𝑡 = 𝐶𝑑 ∗ 𝑄𝑖 = 0.58 ∗ 0.1041 = 0.0604
𝑚3

𝑠
   

𝐶𝑐 =
𝐴𝑐

𝐴2 
=

𝜋

4
(0.085)2

𝜋

4
(0.1)2

= 0.7225  

𝐶𝑑 = 𝐶𝑉𝐶𝐶 − − − −→ 𝐶𝑉 =
𝐶𝑑

𝐶𝐶
=

0.58

0.7225
   

𝐶𝑉 = 0.8    

 

 

   

 

10 m 

12cm 

1 

2 

5 m 

10cm 

1 

c 

Air 35 kPa 
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5.3 Pitot Tube for Flow Measurements. 

5.3.1 Hydrostatic, Hydrodynamic, Static and Total Pressure. 

         The points A&B are at a height 𝑧𝐴&𝑧𝐵 respectively from the datum & 

consider a fluid flow through pipe of varying cross section area as in Fig. 5.6. 

 

 

 

 

 

 

 

Figure 5.6: Static and Total Pressure. 

 

- If the fluid is to be stationary , then (
𝜕𝑝

𝜕𝑧
)ℎ𝑠 = −𝑔   

(hs) Represent the hydrostatic case.  

So,   𝑝𝐴ℎ𝑠 − 𝑝𝐵ℎ𝑠 = 𝜌𝑔(𝑧𝐵 − 𝑧𝐴)                                                            

From above equation, the hydrostatic pressure at a point in a fluid is the 

pressure acting at the point when the fluid is at rest or pressure at the point 

due to weight of the fluid above it.  

- Now, if the fluid to be moving, the pressure at a point can be written as a 

sum of two components, hydrodynamic & hydrostatic  

𝑝𝐴 = 𝑝𝐴ℎ𝑠 + 𝑝𝐴ℎ𝑑                                                                                   (5.17)  

- Using Eq. 5.17 in Bernoulli's equation between A&B  
𝑝𝐴ℎ𝑑−𝑝𝐵ℎ𝑑

𝜌𝑔
+ [

𝑝𝐴ℎ𝑠−𝑝𝐵ℎ𝑠

𝜌𝑔
+ (𝑧𝐴 − 𝑧𝐵)] =

𝑉𝐵
2−𝑉𝐴

2

2𝑔
                                        (5.18)        

   

From Eq. 5.18, the terms within the square bracket cancel each other, hence  
𝑝𝐴ℎ𝑑−𝑝𝐵ℎ𝑑

𝜌𝑔
=

 𝑉𝐵
2−𝑉𝐴

2

2𝑔
                                                                                  (5.19)  

𝑝𝐴ℎ𝑑 +
𝜌𝑉𝐴

2

2
= 𝑝𝐵ℎ𝑑 +

𝜌𝑉𝐵
2

2
= 𝐶 = 𝑝𝑂                                                      (5.20)                                                

 Eq's (5.19 &5.20) convey the flowing  

The pressure at a location has                                  

 

 The difference in kinetic energy due to hydrodynamic components only. 

Note.  
1-  The hydrodynamic component is often called static pressure. 

2- The velocity term is the dynamic pressure.  

The sum of two components is (𝑝𝑂) is known as total pressure. 

𝑝𝑂 = 𝑝 +
𝜌𝑉2

2
                                                                                           (5.21) 

Hydrostatic component 
Hydrodynamic component                               

pA 

VA 

 

B 

A 

zB 
zA 

pB 

VB 
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 Is known as stagnation pressure  

𝑉 = √2
𝑝𝑂−𝑝

𝜌
                                                                                           (5.22)     

 

5.3.2 Pitot Tube for Measurement. 
           Firstly at 1732 by Henri Pitot, was used a right angled glass tube, one 

end of the tube face the flow while the other end is open to atmosphere. The 

difference in level between the liquid in the glass tube and the free surface 

becomes the measure of dynamic pressures neglecting friction as in           

Fig. 5.7.a.  

𝑝𝑂 − 𝑝 =
𝜌𝑉2

2
= 𝜌𝑔 ℎ   

𝑉 = √2𝑔ℎ  

 

(a)                                                 (b) 

Figure 5.7:Simple Pitot tube  (a) Tube for measuring the stagnation pressure. 

                                     (b) Static and stagnation tubes together.  

For a free stream a single tube is sufficient to determine the velocity.In closed 

duct the Pitot tube measures only the stagnation pressure and so the static 

pressure must be measured separately as shown in Fig. 5.7-b. Applying B.E. 

between stagnations s & p in horizontal pipe  
𝑝𝑂

𝜌𝑔
+

𝑉2

2𝑔
=

𝑝𝑠

𝜌𝑔
    𝑜𝑟         ℎ𝑜 +

𝑉2

𝜌𝑔
= ℎ𝑠  

𝑉 = √2𝑔(ℎ𝑠 − ℎ𝑜) = √2𝑔∆ℎ  

Where:  

po= Pressure at point p. i.e. static pressure. 

V= Velocity at point (p) i.e free flow velocity  

ps= Stagnation pressure at point s 

Δh= Dynamic pressure  

= Difference between stagnation pressure head (ℎ𝑠) and static pressure (ℎ0)  
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If a differential manometer is connected to the tube of a Pitot static tube as in 

Fig. 5.8 it will measure the dynamic pressure head. The following figure 

shows the static pressure and stagnation pressure tube are combined into one 

instrument known as Pitot static tube. If y is the manometric difference, then  

∆ℎ = 𝑦(
𝜌𝑚

𝜌
− 1)  

𝜌𝑚 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑚𝑎𝑛𝑜𝑚𝑒𝑡𝑒𝑟𝑖𝑐 𝑙𝑖𝑞𝑢𝑖𝑑    
 = density of the liquid flowing through the pipe 

∴ 𝑉 = 𝐶√2𝑔∆ℎ    or 

𝑉 = 𝐶√2 (
∆𝑝

𝜌
)   

 

       Where Δp is the difference between stagnation and static pressure. The 

value of C is usually determine from calibration test of the Pitot tube 

 

Figure 5.8:  Pitot static tube.  

Ex.1  A submarine fitted with a Pitot tube moves horizontally in sea. Its axis 

is 12 m below the surface of water. The Pitot tube fixed in front of the 

submarine and along it axis is connected to the two limbs of a u-tube 

containing mercury, the reading of which is found to be 200 mm. Find the 

speed of the submarine. 

Sol. 

ρsea = 1025 kg/m3 , ρmer = 13600 kg/m3  

To find the head ∆ℎ = 𝑦 (
𝜌𝑚

𝜌
− 1) = 0.2(

13600

1025
− 1)  

∆ℎ = 2.45 𝑚  

∴ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑉 = √2𝑔∆ℎ = √2 ∗ 9.81 ∗ 2.45 = 6.94 𝑚/𝑠  

= 24.97 𝑘𝑚/ℎ𝑟  
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Ex.2 For the Pitot-static pressure arrangement of the following figure, the 

manometer fluid is (colored) water at 20C. Estimate (a) The centerline 

velocity, (b) The pipe volume flow rate, and (c) The smooth wall shear stress. 

 

 

 

 

 

 

 

 

 

Sol. 

  𝜌 = 1.2
𝑘𝑔

𝑚3       ,    𝜇 = 1.8 ∗ 10−5 𝑘𝑔

𝑚.𝑠
   𝑓𝑜𝑟 𝑎𝑖𝑟.  

𝜌 = 998
𝑘𝑔

𝑚3  ,      𝜇 = 0.001  
𝑘𝑔

𝑚.𝑠
 𝑓𝑜𝑟 𝑤𝑎𝑡𝑒𝑟.  

The manometer reads  

𝑝𝑂 − 𝑝 = ( 𝜌𝑤𝑎𝑡𝑒𝑟 − 𝜌𝑎𝑖𝑟)𝑔ℎ = (998 − 1.2)(9.81)(0.04)  

𝑝𝑂 − 𝑝 = 391 𝑃𝑎   

Therefore 𝑉𝑐𝑙 = [
2∆𝑝

𝜌
]

0.5

= [
2(391)

1.2
]

0.5

= 25.5
𝑚

𝑠
  

𝐺𝑢𝑒𝑠𝑠 𝑉𝑎𝑣. ≈ 0.85 𝑉𝐶𝐿      ≈ 21.7
𝑚

𝑠
  

𝑡ℎ𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑖𝑠 𝑄 = (
𝜋

4
) (0.08)2 (21.7) ≈ 0.109

𝑚3

𝑠
   

𝑡ℎ𝑒𝑛  𝑅𝑒 =
𝜌𝑉𝐷

𝜇
=

1.2(21.7)(0.08)

1.8∗10−5   

𝑅𝑒 = 115700  

𝑡ℎ𝑒𝑛 𝑓 𝑠𝑚𝑜𝑡ℎ ≈ 0.0175  

𝑓𝑖𝑛𝑎𝑙𝑙𝑦 𝜏𝑤 =
𝑓

8
 𝜌𝑉2 =

0.0175

8
(1.2)(21.7) ≈ 1.23𝑃𝑎𝑠   

Ex.3  
  For the water flow of figure use the Pitot- static arrangement to estimate  

a) The center line velocity 

b) The volume flow in 5 in diameter smooth pipe  

c) What error in flow rate is caused by neglecting the (1 ft) elevation 

difference? 

Take:- 𝜌 = 1.94 𝑠𝑙𝑢𝑔/ 𝑓𝑡3 ; 𝜇 = 2.09 ∗ 10−5 𝑠𝑙𝑢𝑔

𝑓𝑡.𝑠
  

 h = 2 in.  
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Sol. 

For the manometer reading take the equal pressure at 0-0  

𝑝𝑂𝐵 + (ℎ + 𝑅)𝜌𝑤𝑔 = 𝑝𝐴 + ℎ 𝜌𝑚𝑔 + 𝑅𝜌𝑤𝑔 + 1 ∗ 𝜌𝑤𝑔   
𝑝𝑂𝐵 − 𝑝𝐴 = ℎ𝜌𝑚𝑔 − ℎ𝜌𝑤𝑔 + 𝜌𝑤𝑔 = (𝜌𝑚 − 𝜌𝑤)ℎ𝑔 + 𝜌𝑤𝑔 − − − −(𝑎)  
Where R is the vertical distance between point B and the top level of mercury 

in right leg. From energy equation,  
𝑝𝐴

𝜌𝑔
+

𝑉𝐴
2

2𝑔
+ 𝑧𝐴 =

𝑝𝐵

𝜌𝑔
+

𝑉𝐵
2

2𝑔
+ 𝑧𝐵 + ℎ𝑓−𝐴𝐵    

𝑝𝐴 − 𝑝𝐵 = 𝜌𝑔ℎ𝑓−𝐴𝐵 − 𝜌𝑔(1 𝑓𝑡)        Static pressure difference ----------(b) 

Therefor by summation Eq's (a) & (b)  

𝑝𝑂𝐵 − 𝑝𝐴 + 𝑝𝐴 − 𝑝𝐵 = (𝜌𝑚 − 𝜌𝑤)ℎ𝑔 + 𝜌𝑤𝑔 + 𝜌𝑔ℎ𝑓−𝐴𝐵 − 𝜌𝑔  

𝑝𝑜𝐵 − 𝑃𝐵 = (𝜌𝑚 − 𝜌𝑤)ℎ𝑔 + 𝜌𝑔 ℎ𝑓−𝐴𝐵  Where ℎ𝑓−𝐴𝐵   friction losses.  

(𝑝𝑂𝐵 − 𝑝𝐵) = (𝑆𝐺 − 1)𝜌𝑔ℎ = (13.56 − 1)(62.4) (
2

12
) ≈

130.6𝑙𝑏𝑓

𝑓𝑡2   

𝑉𝐶𝐿 = (
2∆𝑝

𝜌
)

0.5

= (2 ∗
130.6

1.94
)

0.5

= 11.6 
𝑓𝑡

𝑠
  

𝑄 = 𝐴𝑉𝐶𝐿 =
𝜋

4
(

5

12
)

2

∗ 11.6 = 1.58
𝑓𝑡3

𝑠
  

∆𝑝𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛  =
𝑓(

𝑙

𝑑
)𝜌𝑉2

2
≈ 3.2                                                    3% 𝑖𝑠 𝑛𝑒𝑔𝑙𝑒𝑐𝑡𝑖𝑛𝑔   

∆𝑝 𝑝𝑖𝑡𝑜𝑡 = 130.6 + 3.2 = 133.8 𝑝𝑠𝑓   
 

Problems 

P5.1 Oil flows through a 160 mm pipe diameter with oil density 950 kg/m3. 

A venturimeter is fitted to the pipe line having 110 mm throat diameter 

for measuring the flow rate of oil. The reading of mercury manometer is 

attached to it shows 180 mm. Determine the discharge of oil, assuming 

the coefficient of discharge for venturimeter as 0.98.         [0.0725 m3/s]                                      

                                 

P5.2 Oil flows in 0.18 mm pipe diameter with oil density is 825 kg/m3. A 

venturimeter 0.1 m throat diameter is used to measure the flow rate of 

oil in pipe. The mercury manometer is attached to it showing a reading 

of 0.2 m, determine the coefficient of discharge of the venturimeter if 

the flow rate is 0.055m3/s.                                                               [0.85]                                                                           
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P5.3  The throat diameter 0.08 m of the venturimeter is used to measure the 

flow in the pipe line of 0.15 m diameter. A mercury manometer 

attached to it shows deflection of 0.3 m. Assuming coefficient of 

discharge as 1.0. Calculate the flow rate in the pipe.            [0.045 m3/s] 

                                      

P5.4  A liquid flow rate 6800 lit/min is measured by using venturimeter. The 

pressure difference across the venturimeter  is equivalent to 7.0 m of the 

flowing liquid. The pipe diameter is 0.2 m. Calculate the throat 

diameter of the venturimeter. Assuming the coefficient of discharge for 

the venturimeter as 0.97.                                                         [0.1096 m]  

                                                                                            
P5.5 A 0.075 m orifice diameter is fitted in an open tank under a head of 4 m. 

the actual velocity of liquid through the orifice is 8 m/s. If the flow rate 

measured in a collecting tank is 0.022 m3/s. Determine the velocity 

coefficient, coefficient of contraction and the theoretical flow rate 

through the orifice.                                                          [0.9, 0.56, 0.62]  

                                                                                       
P5.6  A pipe diameter is 0.22 m carries oil with S.G=0.8, an orifice of 0.088 

m diameter is fitted inside the pipe. The mercury manometer is attached 

across the orifice shows a reading of 0.8 m. Determine the actual flow 

rate through the pipe. Assume coefficient of discharge for the orifice as 

0.61.                                                                                             [0.0587] 

P 5.7 A pitot static tube is used to measure the air velocity shows a reading of 

0.088 m through the water manometer is attached to pitot tube. 

Assuming the velocity coefficient is 0.95 and air density is 1.22 kg/m3. 

Determine the air velocity.                                                   [35.71 m/s] 

 

P5.8 A mercury manometer attached to a pitot static tube is used to measure 

the water velocity in pipeline, it shows a reading of 0.15 m. Assuming 

the velocity coefficient is 0.97, determine the water velocity in pipe.          

                                                                                                             [5.9 m/s] 

P5.9 The difference in stagnation and static pressure is 0.09 m of water for a 

pitot static tube fitted in a pipe of 0.25 m diameter. Assume the velocity 

         coefficient as unity, calculate the water velocity in pipe line.  [1.33 m/s]         

 

P5.10 The air velocity measured by pitot static tube is 40 m/s. The pressure 

difference recorded by the pitot static tube is 0.125 m of water, if the 

density of flowing air is 1.3 kg/m3 calculate the velocity coefficient.                     

                                                                                                                  [0.92] 


