r^{t} Class
Basic of Electrical Engineering.
Parallel circuits

Parallel Circuits

PARALLEL ELEMENTS

Two elements, branches, or networks are in parallel if they have two points in common.

$$
\begin{gathered}
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\cdots \ldots+\frac{1}{R_{N}} \\
G_{T}=G_{1}+G_{2}+\cdots \ldots G_{N}
\end{gathered}
$$

In parallel circuits
The voltage across parallel elements is the same.
Using this fact will result in
$E=V_{1}=V_{2}$
but
$\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$
$\frac{E}{R_{T}}=\frac{E}{R_{1}}+\frac{E}{R_{2}}$
$\frac{E}{R_{T}}=\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}$
$I_{s}=I_{1}+I_{2}$
Therefore, The total current equal to algebraic sum of branches current

EXAMPLE 1

Determine the total conductance and resistance for the parallel network of Fig. shown below

EXAMPLE 2

Determine the total conductance and resistance for the parallel network of Fig. shown below

The total resistance of parallel resistors is always less than the value of the smallest resistor.
${ }^{p t}$ Class
Basic of Electrical Engineering.
Parallel circuits

EXAMPLE 3

Determine the total conductance and resistance for the parallel network of Fig. shown below

EXAMPLE 4

For the following parallel network:
a. Calculate R_{T}.
b. Determine I_{s}.
c. Calculate I_{1} and I_{2}, and demonstrate that $I s=I_{1}+I_{2}$.
d. Determine the power to each resistive load.
e. Determine the power delivered by the source, and compare it to the total power dissipated by the resistive elements.

KIRCHHOFF'S CURRENT LAW

Kirchhoff's voltage law provides an important relationship among voltage levels around any closed loop of a network. We now consider
Kirchhoff's current law (KCL), which provides an equally important relationship among current levels at any junction.
Kirchhoff's current law (KCL) states that the algebraic sum of the currents entering and leaving an area, system, or junction is zero.
In other words,
the sum of the currents entering an area, system, or junction must equal the sum of the currents leaving the area, system, or junction.
In equation form:

$$
\Sigma I_{\text {entering }}=\Sigma I_{\text {leaving }}
$$

EXAMPLE 5

Determine the currents I_{3} and I_{4}

${ }^{p t}$ Class
Basic of Electrical Engineering.
Parallel circuits

Engineering Collage
Electrical Engineering Dep.
Dr. Tbrahim Aliubouri

EXAMPLE 6

Find the magnitude and direction of the currents I_{3}, I_{4}, I_{6}, and I_{7} for the network of following Figure. Even though the elements are not in series or parallel, Kirchhoff's current law can be applied to determine all the unknown currents.

EXAMPLE 7

Determine I_{1}, I_{3}, I_{4}, and I_{5} for the network shown below

EXAMPLE 8

Determine the currents I_{3} and I_{5} of Fig. shown below through applications of Kirchhoff's current law.

EXAMPLE 9 Find the magnitude and direction of the currents I_{3}, I_{4}, I_{6}, and I_{7} for the network shown below. Even though the elements are not in series or parallel, Kirchhoff's current law can be applied to determine all the unknown currents.

CURRENT DIVIDER RULE

The current divider rule (CDR) will determine how the current entering a set of parallel branches will split between the elements.
For two parallel elements of equal value, the current will divide equally.
For parallel elements with different values,
The smaller resistance has greatest value of current.
The current will split with a ratio equal to the inverse of their resistor values.

relass

Basic of Electrical Engineering.

Parallel circuits

$I_{T}=I_{1}+I_{2}+\cdots+I_{N}$
$E=V_{1}=V_{2}=V_{N}$
$I_{T}=\frac{E}{R_{T}}=\frac{I_{1} R_{1}}{R_{T}}=\frac{I_{2} R_{2}}{R_{T}}=\frac{I_{N} R_{N}}{R_{T}}$
$I_{T}=\frac{I_{x} R_{x}}{R_{T}}$
$I_{\chi}=I_{T} \frac{\frac{1}{R_{\chi}}}{\frac{1}{R_{T}}}=I_{T} \frac{R_{T}}{R_{\chi}}$

For the particular case of two parallel resistors,
$I_{1}=I_{T} \frac{\frac{1}{R_{1}}}{\frac{1}{R_{T}}}=I_{T} \frac{\frac{1}{R_{1}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=I_{T} \frac{\frac{1}{R_{1}}}{\frac{R_{1}+R_{2}}{R_{1} R_{2}}}=I_{T} \frac{R_{2}}{R_{1}+R_{2}}$
$I_{2}=I_{T} \frac{\frac{1}{R_{2}}}{\frac{1}{R_{T}}}=I_{T} \frac{\frac{1}{R_{2}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=I_{T} \frac{\frac{1}{R_{2}}}{\frac{R_{1}+R_{2}}{R_{1} R_{2}}}=I_{T} \frac{R_{1}}{R_{1}+R_{2}}$

EXAMPLE 10

Determine the current I_{2} for the network shown below using the current divider rule

EXAMPLE 11

Determine the current I_{1} for the network shown below using the current divider rule.

