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Abstract: Pipeline corrosion 1s among the most critical and precarious causes of pipeline mcidents which 1s
observed year after year. As these pipeline incidents give rise devastating harms to people as well as to the
economy and ecosystem of a country. Monitoring this component, pipeline operators have installed a more
systematic and comprehensive program for pipeline inspection by different sensors for the attainment of data
that may be helpful to gauge the existing pipelines state. However, in this corrosive process different factors
are involved which cause erosion, therefore, current inspection methods are not sufficiently particular in the
measuring process. Hence, a prediction model, capable to measure precise corrosion damage mechanisms is
required to develop. The most apposite method to be adopted for such model is Artificial Neural Networks
(ANN). Among the existing works on ANN, a critical research has proved the requirement to develop time
effectiveness of the techmque. A hybrid prediction model 15 developed in this research which can measure
particular corrosive mechanisms. An elementary ANN Model is enhanced by incorporating the Differential
Evolution (DE) algorithm in order to acquire an improved and ideal performance. The obtained hybrid model
will be tested with industrial dataset of world to approve its time effectiveness as compared to the elementary
ANN Model.
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INTRODUCTION

The mdustry of o1l and gas 1s among the biggest and
the most concentrated industries in the world as indicated
by the report of American Petroleum Institute. Presently,
there are more than millions of kilometers of gas and o1l
pipelines being connected and are daily used in the world
(Demma et al., 2004, Reber et al., 2002).

Mostly pipelines are prepared by steel as they
transport the secure intends to deliver huge amounts of
gas and oil products. These steel pipelines have a
tendency to be deteriorated when presented to numerous
corrosive mechanisms after some time (Reber ef af., 2002,
Lowe et al., 1998) in spite of the use of insulation. These
corrosive mechanisms, 1.e., sulfidation, cavitation and CO,
corrogion ultimately bring about corrosion and the
plpeline is prone to ruptures, breaks and leakages, leading
to the financial loss to the operators and ultimately, cause
extensive Health, Environmental and Safety (HSE) threats
to the nearby ecosystem (Singh and Markeset, 2009,
Hirao and Ogi, 1999). Observing this fact, the operators
keep on inspecting pipelines for a long time to ensure
therr smooth operation and to mmimize the risk of
sulfidation, cavitation and CO, corrosion (Rose, 2004).
Sensors are used for these observations that are added n

Table 1: Existing prediction methods

Index Years Incidents
1 2000 390
2 2001 350
3 2002 650
4 2003 690
5 2004 690
& 2005 710
7 2006 650
8 2007 600
9 2008 650
10 2009 600
11 2010 600
12 2011 580
13 2012 605
14 2013 590
15 2014 700

definite parameters in pipelines and store them in a
database. Prediction techniques are employed to foresee
and observe the pipelines condition by using this
corrosive data to regulate protective actions to be made
in front of a potential occurrence.

Even though all-inclusive measures have been
employed all through the vyears, pipelines are still
undergoing corrosive process and incidents of pipeline
are still happening in the whole world, producing fatal
results. The annual incidents of gas and o1l pipelines that
happened from 2000-2014 are shown in Table 1 incidents
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Fig. 1: Number of pipeline incidents
2000-2014 (Anonymous, 2016)

from years

and Fig. 1, according to the report of the Pipeline and
Hazardous Materials Safety Administration (PHMSA)
(USDT., 2016). Even though, there 1s an wrregular example
of decay and increment but it can be observed that the
pipelines episodes trends are generally increasing. It 1s
imperative to monitor and foresee the condition of gas
and o1l pipelines to avoid the casualties of pipeline
mneidents.

The percentage of corrosive Pipeline incidents is
around 25% of the total annual number of incidents i the
world as reported by Transportation’s Research and
Special Programs Adminstration, Office of Pipeline Safety
(RSPA/OPS) which is a Department of TJS (Anonymous,
2016). A Malaysian gas and oil company corrosion
engineer agrees with the stats that the corrosion of
pipeline is more serious and records for more than 35% of
pipeline incidents and failures in Malaysia. The stats
show that the existing corrosion prediction techniques
employed in the gas and oil space have not yet possessed
the capacity to adapt the corrosive problems. Therefore,
an enhanced prediction corrosion model is required that
fulfills the gaps in the present strategies.

Literature review

Corrosion data: The industry of oil and gas contrary to
most industries has dealt with large quantities of data for
a long time to make technical assessments, like the
monitoring of pipeline fitness, hence, the ultrasonic waves
are used for this purpose. Ultrasonic sensors are inserted
at particular sectors of pipelines that determine the current
corrosion rate and measurements on the pipeline wall
thickness (Anonymous, 2016; ILLC., 2016). A part from
this, several other parameters of environment in which
the pipeline 15 presented to are additionally gathered
(Veiga et al., 2005). Conjointly, they can be alluded to as

corrosive data and can be encouraged into algorithms
which foresee the corrosion rate (Krautkramer and
Krautkramer, 2013).

Corrosion forecasting methods: Models are still
incapable to judge particular damage mechanisms that
cause pipeline corrosion, despite of possessing extensive
data. Resultantly, recognition of damage mechanisms and
current analysis still depend entirely on the experience
and understanding of human (Singh and Markeset, 2009;
Veiga et al., 2005). The recent models possess limited
accuracy, since, the related parameters that lead to
particular damage mechanisms are not observed
specially. A part from this certain organizations only
have slight.

Information related to the actual properties of damage
mechamsms and are recently making suppositions about
its nature (Supriyatman et «of., 2012). High priority” or
“Risk” and even a slight error in the expected result can
lead to most important results (Black and Baldwin,
2012).

ANN is selected to be the central model to be applied
for this study after studying and comparing the current
prediction methods in Table 2. The mtricate nature of
corrosive process creates complications mn the modeling
of damage mechanisms, as the study shows, hence, the
capacity of ANN Model to complex model relations is
very helpful to the study.

The dataset will be acquired from a Malaysian oil and
gas company and University Technology Petronas (UTP)
centre of corrosion for this strategy, consequently, the
dependency of this plan on dependable input data should
not be of supreme value. So, ANN, performing the best
with a dependable dataset is appropriate to be employed.
Nonetheless, the ANN Model is required to be backed up
employing numerous other algorithms or optimization
techniques to overpower its weaknesses in terms of poor
time efficiency and long training time.

Current research on ANN Model in the domain of gas
and oil: The correlation among three current models on
the ANN are shown by Table 2, like the prediction in oil
and gas domains. Supriyatman, Sumarni, Sidarto and
Suratman’s recent research m 2012 (Supriyatman et af.,
2012) has verified the suitability of ANN to be applied in
the gas and oil space as it exhibits a high precision in
predicting complex associations. The finding of this study
15 likewise helped by Ren ef al (2012) and Sinha and
Pandey (2002) whose have verified that
nonlinearity in the employed
experimentations are precisely represented by ANN.

results

variables in their
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Table 2: Existing prediction methods comparison in the gas and oil domain

Forecasting model  Fault tree analysis Mechanistic Model

Artificial neural network

Training time Low Very high High

Reliability on data Low High High

Accuracy High Very high Very high

Advantages Exploits finding of skilled Tt is the outcome of detailed and Capable of signifying complex forms of relationships

human operators
Lirnitations of the human
knowledge

Much timne is required to
scheme the fault tree

Disadvantages

Disadvantages
model for a single DM

all-inclusive experimentation

Needs perception of the fundamental

chemical, electrochemical and transport processes
Much time is required to produce a consistent

Good to signify non-linear relationships
Dependent on trustworthy input data

L.ong training time

5000 10000 20000

Number of epochs

1000 2000 100000

Fig. 2: Comparnison of average network error with different
network topologies (Tong, 2015)

These studies (Ren et al., 2012; Sinha and Pandey,
2002) clarify that the choice of neural network topology is
completed physically. The ANN Model’s short time
efficiency or prolong training time is another problem
(Supriyatman et al., 201 2; Sinha and Pandey, 2012). ANNs
show prolongs tramning time because of its learming
nature.

From past dataset. The training epoch’s number is
indirectly proportional to the network error, the network
error decreases by increasing the number of training
epochs and the prediction correctness increases for an
extended training time.

Both complications demonstrate that ANN model
area can be upgraded. The research of Krautkramer and
Krautkramer (2013) has proved that diverse network
topologies influence on the efficiency that how quick
the network learns. Different error rates of various
topologies after a specific epochs number are displayed
in Fig. 2.

Every one of the four lines denotes a distinctive
topology. It can be realized from Fig. 2 that the 5-node
entirely linked topology attamns less emror rates at the
identical number of epochs while relating to the other
three topologies. As various topologies attain a smallest
error rate at dissimilar epochs number, it shows the
required time to prepare the model’s difference. Hence, it
1s conceivable either to apply an optimization algorithm or
form of selection that is capable to perform choice of an

optimum network topology employing ANN as the fitness
function in place of manual choice (Supriyatman et al.,
2012).

The investigators have suggested numerous
recommendations for upcoming research, for example, an
improved investigation that classifies the concerned
parameters to be sustamed mto the neural network
(Supriyatman et al., 2012) and to Decrease the required
tramning time (Smha and Pandey, 2002). The classification
of the associated mput.

Parameters m first proposal differentiates the
motivation for this study which 1s to see particular
corrosive mechanism by concentrating on the precise
parameters that identify with them. The decrease in the
training time is the second proposal, it can be explained
by applying the algorithm of optimization to choose an
optimum ANN topology.

Algorithms of optimization: Genetic Algorithm (GA) and
Differential Evolution (DE), the two most generally used
optimization algorithms have been observed. The
comparative results of DE and GA are shown mn the
following Table 3.

On the basis of Table 4 by Ren et al. (2012), it is
observed that DE overtakes GA m terms of the following
four parameters: capacity to approach good solution
outside local search, population under the effect of
optimal solution, stability of search space and solution
time under the influence of population size which are
related to this study. First of all, DE shows a developed
capability to approach a fine solution without doing local
search, contrasting to GA, therefore, pulling down the
time desired for the search It is owing to the lesser
continuity of search area in GA which might reduce its
incompetency of creating all optimum results in the search
area.

Besides DE, the optimum result has a greater effect
on the populace when comparing to GA, assisting to
protect search time as the consequent iterations will turn
around the noted optimum result. The superiority of
computational efficiency of DE over the GA having
99% confidence level is proved in the research (Ren et al.,
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Table 3: Current works on ANN Model with comparisons

Researchers Forecasting output type Gap of study Future recommendations

Supriyatman et al. (2012) Numerical Topology selection is manually completed To have an optimal research that identifies the
Long training time/low time efficiency related parameters

Renetal. (2012) Numerical Topology selection is manually completed -

Sinha and Pandey (2012) Probability Topology selection is manually completed Decrease training time

Long training time/low time efficiency

Table 4: DE and GA algorithms comparison

Table 5: Synthetic dataset in terms of some sample rows (Tong, 2015)

Parameters DE GA D1 D2 D3 States
Capacity to approach good solution outside local Higher Lower 0.4027 3.1099 69.1401 Corrosion
search 0.1497 3.2726 51.3000 MNormal
Population under the influence of optimal solution  Higher Lower 0.4919 1.4049 53.5009 Acceptable
Stability of search space Higher Lower 0.3493 24791 71.3176 Corrosion
Solution time under the influence of population size Linear Exponential 0.0805 3.4467 50.2971 Normal
0.5633 1.2386 52.7457 Acceptable
. . . 0.4073 2.0708 72.8467 Carrosion
2012). This has presented to be in accordance with the 01207 30027 561964 Normal
results acquired by Supriyatman et al. (2012) as the effect 0.5491 1.2265 58.6375 Acceptable
of population estimate on the solution time 1s exponential g'i’zgz iigz g?éi’gg g"ms‘l"“
. . . . B . orma
in GA as related to DE. Thus, the GA time consumed will 0.5074 13124 57 5068 Acceptable
dependably be longer and may not be appropriate for this 0.2875 1.9848 70.7309 Corrosion
development wheretime proficiency is an issue that 0.0982 3.6991 520072 Normal
. 0.4544 1.6525 53.9283 Acceptable
requires to be upgraded. 0.6421 2.3433 71.9723 Carrosion

Research novelty: From the literary study of current
methods and exploration, it is proved that the novelty for
this study 1s dual Primarly, there are no current
prediction models that are capable to gauge specific
damage mechanisms that influence the pipeline erosion
and further cwrrent techniques make their prediction
without concerning to these damage mechamsms.
Secondly, I will tty to create a novel algorithm that
optimizes both ANN topology selection along with ANN
training to develop time efficacy of the whole model.

MATERIALS AND METHODS

The methodology for this project 18 showed by
Fig. 3. Primarnly, the attained erosion dataset will be
prepared to fit the ANN Model. The corrosive data 1s first
regularized and afterward separated into validation data
and training data under data-preprocessing. The ANN
Model is tramed with the help of training data. The ANN
Model performance is certified by using the validation
data. Then, the data will be added into the DE, employing
training time of ANN as the fitness function to choose an
optimal topology for ANN. An optimal topology for ANN
denotes a topology that shows a greater time efficacy
than a topology that is choosing physically. The ANN
will be processed employing the optimal topology
together with more parameters of ANN Model. The
optimal ANN model will be accomplished using the similar
training data accomplished using the similar training data
till a specific condition is seen. Tnitially stopping a
techmque tosave the network from over fitting will be

]

Corrosion
data

Optimized ANN
topology
Data pre-
pressing |
ANN

initialization|

o
Early

Traini Validati ANN
raining alidation training | stoppin
data data | = ppPIng
ANN C
validation -TOSS
| validation
Differential |; . Prediction
cvolution Fitness model

Fig. 3: The flow of research methodology

employed by preventing the training once the error of
network noted 1s greater than its former reading (Table 5).
The ANN Model will be validated in contrast to the
validation data to limit its time efficacy if effectively
trained. The final result will be in the form of the hybrid
prediction model capable to note specific damage
mechanisms for pipeline corrosion.

Initial proof of concept

Assessment Model: The synthetic dataset has been
acquired by a literary survey (Black and Baldwin, 2012;
Ren et al., 2012; Sinha and Pandey, 2012) and has been
certified by a staff and senior corrosion expert to achieve
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Table 6: Values of initial parameters with justification

Parameter Values Justification

Nodes for output 3 The output has 3 possible results

Nodes tor input 3 The data cormprises 3 predictors

Hidden nodes 3 Based on literary study where the number of hidden nodes is formatted between the number of Output and input nodes
Tnitial weights Between 0-1  Based on literary study

Hidden layers 1 Based on literary study

Table 7: Results obtained for the proof of concept

No. of Tatal number of Tatal number of Number of Number of Average training Accuracy of
epochs validation data training data wrong prediction correct prediction time (sec) prediction (%)
50 270 31.50 81 189 01.98 70.00
500 270 315.00 7 263 21.33 9741
1.50 270 945,000 4 266 63.27 98.52
real principles industry and validated for use in this 1?0‘ / Accuracy
verification of concept. The dataset comprises 300 cross- ;g: // )
sectional rows of data. 704

Synthetic dataset in terms of some sample rows g 60 !
displays in Table 5-7. There are three input parameters in E 4518: I,"
every row of the data set: flow velocity (m/sec), CO, < 041
partial pressure (MPa), temperature (°C) and a classifier 20 4 ;'
output that categorizes the strictness of erosion, it is 18- !

possible that it 1s in severe “Corrosion” or “Acceptable”
range or “Normal” range. The connection between the
outputs and inputs denote the real nature of corrosion in
subsea pipelines (Tong, 2015).

A basic ANN Model was established for the
evidence of conception. It 1s a feed-forward Multi Layered
Perceptron (MLP) and 1s trained using Back-Propagation
(BP). The model consists of a hidden layer an output layer
and an input layer, all have three nodes. Every node in
each layer is related to every node in the subsequent
layer, making a topology with 18 connections or weights.
The ANN Model parameters are shown i Table 4 and
validates the reasoning behind the formatted values.

RESULTS AND DISCUSSION

It 13 observed from Fig. 4 that the ANN 13 effective by
creating high accuracy predictions on nonlinear erosion
data. The model prediction accuracy has reached 98.52%
after 1,500 epochs of training and it is essential due to the
implication of ANN Model on real industrial data. Tt also
shows nonlinearity and prediction of a high accuracy that
verifies that ANN Model 1s a reasonable model for this
study. It 1s observed that an increment in the mumber of
epochs results mn the linear nise of traiming time. Therefore,
the training time shows time efficacy in this study, it may
be observed that an increment in the number of epochs
reduced the time efficacy linearly. Moreover, it is seen
that the model prediction correctness rises logarithmically
by increasing the number of epochs. A logarithmical
development is showed by a development that begms
quickly, succeeded by slow development that goes on
increasing at a low rate. Henceforth, it can be decided
from Fig. 4 that the time efficacy declines as the prediction

250 500 1000 1500

Number of epochs

Fig. 4: Graph shows an increase in the number of epochs
glves increase in prediction accuracy and traming
time

accuracy of ANN rises. This shows that ANN Model is
capable to better 1its predicion correctness by
exchanging off its time efficacy. Though, it 15 seen
that the ANN training time is not important from the
outcomes of the proof, it is notable that the synthetic data
size 1s much lesser than the real industrial dataset. Hach
epoch takes more data in an actual industrial dataset
which is translated to an enlarged traiming time (ILLC.,
2016).

Hence, the suggested technique 1s optimum for the
neural networlk topology employing DE to develop its time
efficacy 1s recommended strongly. The logarithmic
development revealed by the 1mise in prediction
correctness approves the motivation for network
optimization due to the slow rise 1 prediction accuracy,
the next phases of traimng will assume more training time
when endeavoring to train the ANN Model to proposed
accuracy level.

So, the proposition of this study 1s that DE can be
employed to discover an optimum topology for network
that leamns quicker by utilizing capitalize on the initial fast
development of logarithmic curve. Thus, only a slight time
will be used on the DE whereas preserving additional
time on the real traming of ANN Model (Tong,
2015).
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CONCLUSION

This review study has explored complications
concermnng to the curmrent prediction models and
strictness of pipeline corrosion. The advantages and
disadvantages of some well-known models utilized in the
supposition of corrosion in the gas and oil field are
presented. ANN Model 1s adopted and 15 selected as the
model to be upgraded in this research.

A primary proof of idea is showed to prove the
probability of ANN to be employed m this study. The
collective outcomes from the proof and literary study
have exposed that an optimal topology would permit the
model to be trained quicker, simultanecusly rendering a
correct prediction associated to the pipelines state. It 1s
significant to target the correct parameters that relate to
particular damage mechanisms. The ANN will have a
capacity to make predictions of a high accuracy and
confidence level with mput and the correct parameters.
The next stage of study will comprise of ANN Model
optimization by applying DE and detecting an appropriate
method to use DE to choose a topology for network
which increases ANN time effectiveness. Finally, the
developed hybrid model can be set to traimng with the
industrial data. Tt can also be used to make a prediction
model that could be very useful for the gas and oil
industry.
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