Theory of Elastic Stability Beam-Column Buckling

BEAM-COLUMN BUCKLING

DIFFERENTIAL EQUATIONS OF BEAM-COLUMNS

Bifurcation-type buckling is essentially flexural behavior. Therefore, the
free-body diagram must be based on the deformed configuration as the
examination of equilibrium is made in the neighboring equilibrium position.

Summing the forces in the horizontal direction in Fig. 1-4(a) gives:

dV
o V= —q(x)

Summing the moment at the top of the free body gives

d.
Z Moy = 0= (M’ + (fM') — M + Vdx+ Pdy — q(rfx) Ex

Taking derivatives on both sides of Eq.: dj +p ﬂ = —V
dx dx

Taking derivatives on both sides of Eq. above give:
ﬂ/f” _|_ (Pyr)f — V!

Equation (3) is the fundamental beam-column governing differential
equation. Consider the free-body diagram shown in Fig. 1-4(d). Summing
forces in the y direction gives

dl’
ZF}' =0=—(V+dV)+ Vit qdx = —— = V= g(x)
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Figure 1-4 Free-body diagrams of a beam-column

Summing moments about the top of the free body yields
E M, =0

= —(M +dM) + M — Vidx — Pdy — qdxdx72=>

dM pdy _
dx dx
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Theory of Elastic Stability Beam-Column Buckling

For the coordinate system shown in Fig. 1-4(d), the curve represents a
decreasing function (negative slope) with the convex side to the positive y
direction. Hence, -Ely"=M(x). Thus,

—(-ED') = (=R) =V
which leads to

E{l’m-l‘ F:l” — 1V  or Efjf‘m—l— Py” — cj(:u.“)

It can be shown that the free-body diagrams shown in Figs. 1-4(b) and 1-
4(c) will lead to Eqg. (3). Hence, the governing differential equation is
independent of the shape of the free-body diagram assumed. Rearranging
Eq. (3) and if considered g(x)= 0 gives:

. , P
EI_}?W—I—P_}?” _ D=>y”’—|—k2y” _ D, where k2 — ﬁ

Assuming the solution to be of a form y =aé™, then )y = ame™,
2 1 F . . . .
Y= am’e™, Y = am’e™, and " = am’e". Substituting these derivatives

back to the simplified homogeneous differential equation yields
ij4€mx + &szmZE:mc — )= O:E:mc(mﬁr + kZmE} — 0
Sinceaw # 0 and ¢ #0 = m>(m®> ++*) = 0= m = +0, ki Hence,
Y, = d e e M 4 paxe® + gy
& =1
Know the mathematical identities § ¢* = cos kx 4 i sin kx
¢ R% — Cos kx — isin kx
Hence, y;, = A sin kx + B cos kx + Cx + D where integral constants A,

B, C, and D can be determined uniquely by applying proper boundary
conditions of the structure.
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Theory of Elastic Stability Beam-Column Buckling

TRANSVERSELY LOADED BEAM SUBJECTED TO AXIAL
COMPRESSION

A slender member meeting the Euler-Bernoulli-Navier hypotheses under
transverse loads and inplane compressive load (see Fig.1) is called a beam-
column. An exact analysis of a beam-column can only be accomplished by
solving the governing differential equation or its derivatives (for example,
slope-deflection equations). Consider a very simple case of a beam-column
shown in Fig. 1. The beam-column is subjected simultaneously to a
transverse load Q at its mid-span and a concentric compressive force P.
Since the response of a beam-column under these loads is no longer linear,
the method of superposition does not apply even if the final results are

within the elastic limit.

0 | M (x)

Poa o P P__’Tt p

-

12 | o=

12 |

, i J 0
o :

Figure 1. Simple beam-column

u|iQ~

Summing moments at a point x from the origin gives
M(x) — Py — gx =0 for0<x<//2 with M(x) = —ED/

"o, o2 Q x Qx5 I P
or + 'y = —— = k= with B = —
Y Y 2 EI 2P EI
The general solution to this differential equation is'y = y, + Yp. The

homogeneous solution has been given earlier. The particular solution can be
obtained by the method of undetermined coefficients. Assume the particular

solution to be of the form
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Theory of Elastic Stability

Beam-Column Buckling
yp = C+Dx with y, = D, y =0

Substituting these derivatives into the differential equation yields

Qx
0+ k*(C+Dx) = ——k
Hence,
C =0 and D:—giypz—gx
2P 2P

The total solution 1s

: Qx
= A cos kx + Bsin kx —
y C + >p

The two constants of integration can be determined from the following
boundary conditions:

y=0 atx =0=A4=20

Yy =0 at x = {/2

(Note : the boundary condition,y = 0

at x = ¢, cannot be used
here as 0 < x < ¢/2)
94
y’:Bkcosk’x—%,O:Bkcos——%iB:L]{’p
2 Pk cos —
2
sin kex x l mEI
y = QQ sin kx 7Qx for 0<x<”
k{ 2P 2

with P, = Pg

2
2 Pk cos — ¢
2

By observation, the maximum lateral deflection occurs at the midspan.

Q kl  kt _ k{ ¢ /P
Yimax = tan —— — withy = — = —/—
Ty = % 2 Pk 2 2 2V EI
A T @[3 _ Ve
Ymax — Q tan— — — = Q (tan " H) — Q X(M)
™oL 16PkP\ 2 2 48Kl w2 ASEI
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ES
Ymax / — 5n1ax — % when P = 0
> p AEL? T2ET
2 p— — - —
_?ﬁﬁp_ 7 and P = 12
P 4ELP 2 4P X(u) = 3(tan u — )
P 2 wEl 7%’ = 3

The previous section showed that the deflection at the mid-span of a simple

beam-column subjected to a X l J
- - - P ” '& " O‘ P
lateral load shown in Fig. 3 is £ f
L2 |2
' | |
y
3(tan u — u)
0 = Ymax = 00 3 Figure 3: simple beam-column
subjected to a lateral load
where
£ ol J2
50 — Q ]H — L_, Fllld k — —
43E] 2 EI

Reecall the power series expansion of tan u given by

) B +u3+2u5+17u7+
e N T T- R

Hence,

2w 174
6 =01+ +——+ ...
“( 5 ' 105 )
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Noting
, K?  pix? P
W = —— = — = 2.46 —
4 4EI 7 Pr
6 = 0g|1+0.984 P—|—0998 P 2—I—
= 0p . p, TO D,
= 0g|1+ P + P)? +
0 Pr Pr ces
1 .
= dp P = from power series sum for — < 1
1—— E
Pp
where
1 . o .
—p s called amplification factor or magnification factor.
1—
Pg

The maximum bending moment is

QY Q¢ PQA 1 QY P 1
Mpye = —+P6 = = +- >~ = |14+~
! 4 48E1, P 4 121, P
Pr Pg
¢ P 1
_ QY +0.82 —
4 Ppy_ P
Pg
or D
ot 1-0.18 o
*"‘"fmﬁ - T 2
T
where
p
1—0.18—
Pr
p
1 — —
Pg

is amplification factor for bending moment due to a concentrated load.
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Theory of Elastic Stability Beam-Column Buckling

The variation of 6 with Q as given by the amplification factor is plotted on
the left side of Fig. 4 for P =0, P = 0.4P, and P = 0.7Pcr. The curves show
that the relation between Q and o is linear even when P+#0, provided P is a
constant. However, if P is allowed to vary, as is the case on the right side of
Figure 4, the load-deflection relation is not linear. This is true regardless of

whether Q remains constant (dashed curve) or increases

as P increases (solid curve). The deflection of a beam-column is thus a

linear function of Q but a nonlinear function of P.

P=0
A l P=04P;
l P=07P_ R
= +— () : Proportional to P
Bending P -
stiffness P, ’
1 "1— () : Constant .
5 E?{} EJ“

Figure 4: Lateral displacements of beam-column

BENDING OF BEAM-COLUMNS BY COUPLES

9 6
e Case 1: one end is subjected to moment 2__ 4 y ¢ rﬁ:‘_f

the deflection curve is obtained by: l_

_ M, (sinkz _ =

Y=7p \snml "1/
oy Mo K 1\_ M3/ 1 1
be =\Zz).oo = P\l 1) " 6EIu\sin2u ~ 2u

o\ _ _ My(keoshl _1\_ M3 (1 _ 1
b = = dz /...  ~ P \sinki I/ 3EI2u\2« tan2u
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Theory of Elastic Stability Beam-Column Buckling

to simplify these expressions let: 3 1 1
o) = (sin 2u ﬁt_:)

1 1
Y = (2u tan 2u)
e Case 2: both ends are subjected to moments

M, 8 M,

Pl s\ } { m p £ A B P
é;gﬁ %Eg % x TI
!, : ‘4 T_ “ z
g (a) ly 03]

By substituting M, by M, and x by (I-x) in the same equation of case one.
Adding the two results together, then the deflection curve for this case:

M smk:c.___:g_l_M sink(l—2) 1—a2
P sinkl 1

Substituting M,=Pe, & My=Pe, we obtain:

_, (sinkx - z\  Isink(l—2z) l—=x
V=o\cam ,_._z *"’“[ “Enkl 1 ]

o= 3@1 o w(w) + é‘;*'} o(u)

b = g7 Y0 + g7 0

Case 3: both ends are subjected to equal moments (M= My= M,)

M, ko \ _ E]
Y= Poos (kl/2) [008 (5 k:c) co8 3

Mg 2 A ]

~ 8EI u’cosu[cos( l ) gos 4

The deflection at the center of the beam is obtained by substituting x=1/2

My? 2(1 — cosu) _
§= Wit = 3ET " wPcosu SE'I Mﬂ)

The slope at the ends are:
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Theory of Elastic Stability Beam-Column Buckling

Moltanu
b = s = dz,., 5ET " w

The max. bending moment which obtained at the middle of span:

d! .
M,..= —EI ( dx’)m;g = Mysec u

BEAM-COLUMNS WITH BUILT UP ENDS

Case 1: one end is fixed P yq A
. NARERAN SN INR R NARREANEN

The rotation at the fixed due to the 4

uniform load and the moment

equal to zero

Md tan U
24E1"( Ytemr—w =0 x() - 3““““1 u)
Moo @ x@ U
R 1 (tan (tan u)/u
Case 2: both ends are fixed
' ' ASNEENNEANSENSANRARANAEAE
The deflection curve is _62“[ . Bfé'?
symmetric and the moment at |y
fixed ends are equals (M= M,= M,) )
gk Ml tan u
sagl X togr— =0
@ x(uw)
Mo=—13 (tan u)/u
Case 3: unsymmetrical loaded beam
' Q
M, _ c— M,
b = 000 + 22t ¢()+ ¢(u)—0 YN | l.— B\ P
3EI BEI _é% @_
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Theory of Elastic Stability Beam-Column Buckling

SLOPE-DEFLECTION EQUATION WITHOUT AXIAL
FORCE

A typical derivation process will be traced here as it will be used again in
the development of the slope-deflection equations that include the effect of
axial compression on the bending stiffness From the deformations of a
beam shown in Fig.7, the moment at a distance x from the origin is

expressed as:
X
M, = Mg — (Mg + My,) 7
M,
El

- "
Knowy" =
Taking successive derivatives of the above equation gives

ELY =0
The general solution of the differential equation is

y = A+ Bx+ Cx% + Dx*

. 1—." —_—

o
a {f X -;9 M,, 5h
a b v
"wub +M, ba : b\P
— 7 El: Constant M+ M,,

| . /

}r
Figure 7: Deformations of beam

y = B+ 2Cx + 3Dx>

' = 2C + 6Dx
The four kinematic boundary conditions available are

y=060;, at x =0 and y =6, at x =1

YV =6, atx=0 and YV =0, at x= /¢
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Theory of Elastic Stability Beam-Column Buckling

0, = A, 0, =B
8p = Oa+ a0 + CP* + DPP

0,0 = 0,0 + 2C0% + 3DF

26y = 20,0+ 2CH + 2D + 26,
0,0 = 0,0+ 2C0% + 3D

26, — 0,0 = 26, + 6,0 — D

from which

1
D = F—3[—2(55 — 0q) + (gﬂ + ﬁfj)ﬁ]

36, = 30,0 + 3CL% + 3D + 36,
Oyl = 0,0 +2C0* + 3D(>

30, — 00 = 35, + 20,0 + CP2

from which

1

C = 5300~ 6,) — (20, + )1
y' = ;—2[3(55 — 6q) — (204 + 6;)(] + %[—2(55 — 8a) + (0o + 63)€)x
Y/(0) = 13000 —.) — (20 + 0)8) = —2
V(0 = 300, = b) — (20, + 0)10 + -2(0 — ) + (a+ )0
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Theory of Elastic Stability Beam-Column Buckling

Mﬂb 6 Mfm
_ 21 2(8y —8,) + (6, + 6,)0] =
2EI| 3
Mnb — 2‘9& T HEJ — _(55 — 5{4)
0| ;
2EI|

M ba —

3
2{‘91 gﬂ - 4 5J - 5(!
Tl b+ .E’( 1 )}

If any fixed end moments exist prior to releasing the joint constraints such

as My, fixed and My, fixed, then final member end moments become

2EI 3

Mup = / [26]& + 0y — ?(55 - 5n)j| + My, fixed
2E 3

My, = [26.‘1 + 6 — ?(55 - 6n)j| + My, Sfixed

EFFECTS OF AXIAL LOADS ON BENDING STIFENESS

The classical slope-deflections equations that are introduced in any standard
text on indeterminate structures give the moments, M,, and My, induced at
the ends of member AB as a function of end rotations 6, and 6, and by a
displacement A of one end to the other. In conventional linear structural
analysis (first-order analysis), it is customary to ignore the effect of axial
forces on the bending stiffness of flexural members. It can be shown that
the effect of amplification is negligibly small as long as the axial load

remains small in comparison with the critical load of the member. When the
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Theory of Elastic Stability Beam-Column Buckling

ratio of the axial load to the critical load becomes sizable, however, the
bending stiffness is reduced markedly due to the axial compression, and it is
no longer acceptable to neglect this reduction. As the first-order analysis
results may become dangerously unconservative, modern design

specifications call for a mandatory second-order analysis (AISC 2005).

It is expedient to introduce A=d, - d, With d,= 0 to avoid the rigid body
translation. The moment of the beam-column shown in Fig. 9 at a distance x

from the origin is

A "6 3p
P a
M db\‘» a 6}’ :-\I 4 P
v El: Constant b ‘\%/

| 4

l‘ ¢

y V= (M + My, + PAY

Figure 9: Deformations of beam-column

M, = My + Py — (My + My, + PA)
g M
EI
X
EI_‘*'!H + P.]*"' - _*ﬁ"{ab + (*"1"{[-4!1 + ﬂ’{b[-a + PA\‘] ?

Taking successive derivatives on both sides yields

EJ:‘.-‘JV _|_ IJL],-"H _ 0

> P
Letk® = —
El
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Theory of Elastic Stability Beam-Column Buckling

The simplified differential equation is
Y =0
for which the general soludon is
y = Asinkx+ Bcos kx+ Cx+ D
The proper geometric boundary conditions are
p0) =0, () =4, »(0)=06, and y({) =0
The proper natural boundary conditions are

j‘Il’:fuzﬂ:l ‘:Mh.:

Y'(0) = —= and Y'(f) = —=

El’ EIf

Applying the geometric boundary condidons to eliminate the integral
constants, A, B, C, I, and solving for M, and M, gives

0=B+D
Let § = kf
A=Asinff+ Beosf+ CE+ D

#, = Ak + C

The matrix equation for the integral constanes becomes

0 1 o 1 A 0
sin 3 cos 3 £ 1 B fa
3 0 1 0 C B fa
| kcos B —ksing@ 1 0O D &,
Applving Cramer’s rule yields
0 1 0 1
A cos (3 £ 1
&, 0 1 0
4 — #n —ksin 1 0 _ D,
4] 1 o 1 Iy
sin 3 cos |3 £ 1
[ 0 1 0
kcosff —ksinf@ 1 0
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Theory of Elastic Stability Beam-Column Buckling

Dy

Iy,

fwl !h

1 0 1 0 1 1
=f cosfB £ 1{+|A cos 3 1
—ksinf@ 1 0 fy —ksing@ 0

= fafcos B+ Bsin B — 1)+ — ksin BA — & cos 3
= Hi(cos B+ BsinB — 1)+ 8,(1 —cos 8) — ksin§ A

sin3 £ 1 sin 3 cosff £
= — I 1 0)— k 1] 1
kcosff 1 0 kcos —ksinfg 1

= —k+kcosf — k(cos” § +sin® B) + k @sin § + k cos §

= —2k+2kcos 3+ k Bsinf = k(2cosf+ Ssin §—2)

0 0 01
sinff A £ 1
ke s 1 0
B — kecos@ # 1 0 =&
Dy Dy
sinff A £
= - ke f, 1
kcos@ & 1

= —fsinf—@F —kcosfB A+8,Bcosf+k A48, sinf
= ﬂ,,[ﬁ cos § —sin ﬁ}"‘ﬂh[ﬁ‘lﬂﬁ—ﬁ)-l-ﬁ[k—kcmﬁ}
3 = Ak cos kx — Blsin kx + C

3 = — Ak sin kx — Bl cos kx

= —EL/'(0) = EIB¥

ERZ

_ | | [(B cos B —sin 8)8, + (sin § — 3)8

k(2 cos B4 B sinff —2)]
+ (ke — kcos B)A]
EIf

—_ |:[||3 cos § —sin 8)8, + (sin § — )&

1£(2 cos B4 B sin § — 2)]

(8= cos ]
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Theory of Elastic Stability Beam-Column Buckling

Let

. B(f cos f —sin 3)
 2cos B+ Bsinf—2

(sin § — @)
2cos B+ Bsinff—2

51 =35

I.qz —

R.ecall identities
sin 3 = 2sin(/2)cos(B/2)
cos § = cos>(8/2) —sin®(B/2) = 1 —2sin*(8/2)

Dividing the numerator and denominator of §; by sin [§ gives

¢ _g_ BBeorf—1) _ B(BcorB—1)
B L = denl + 3

where

2 2cosfB—2 201 —2sin®(8/2) —1
denl = 2 cot f — _ 2cosf — [ sin”(B/2) ]

sinff sinf 2sin(8/2)cos(B/2)
= —2tan(f/2)
oo BlBeorf—1)
T T 2 (8/2)+ 8
1 —fcotf
ST
g
B(sin B — §)

Let 5 = C =
=2 2cosfF+PGsinff—2

Taking the same procedure used above gives

S = C = B(1 —pcosecf)  B(1 — fcosecf)

gmtﬁ_qijﬁ'kﬁ  —2tan (B/2)+ 3
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Theory of Elastic Stability Beam-Column Buckling

_ _ Bcosecf—1
2= T s
g8

-1

o BB BoosB)t
Let§ = SC = 2cosff+ fFsinff—2

Again dividing the numerator and denominator of Sz by sin £ gives:

g = SC = B(8 cosec # — B cot 3) /£ B B(8 cosec f — B cot B) /£
o * s e+

zmtﬁ_qinﬁ_'_ﬁ
B (B cot § — @ cosec 3) /£ _ [—(1 =8 cot8) — (B casec f — 1)] /¥

Emn[ﬁ;@]_l Etanfﬁjzj_l
g g

81+ 52 S+ C
Lqﬁ_'; — qu: — = —
) £ £

Recall My, = M(0) = —EL/(0).
But M, = —M(£) = EIY"(£) (note the negative sign!)

3" = —Ak® sin kx — BE cos kx

My, = -I-Ef_}’fJI (£)

—EnZ ]
N k(2 cos B+ B sin § —2)
(sin B[f,(cos B+ Bsin 8 — 1)+ #{1 —cos ) — A ksin 3]

+ cos B[8,(8 cos § —sin ) + @4(sin § — 8)
+ Ak — k cos )]

—_ .

. —En:
B (Ec:mﬁ—l—ﬁsinﬁ—E)
#.(cos Bsin 8 + B sin® § —sin B + B cos® — cos 3 sin 8)

+ #4(sin 3 — cos @ sin 8 + cos @sin § — @3 cos )
+ Ak cos # — k cos® § — ksin® §)
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Theory of Elastic Stability Beam-Column Buckling

£ (2 cos B+ @ sinf—2)
_ (u) (0.5(sin B — ) + 0,8(8 cos f — sin B) + AB(S — B cos )/

_ ( E'Iﬁ) [0.(8 — sin 8) + @4(sin § — B cos ) + A(kcos § — k)]

£ [Ecmﬁ-l—ﬁﬂnﬁ 2)
EIf Al
ﬂ»"f;!b = — nS‘_I H" + LQEHFJ - (hS] + L‘;E:J_
£ £
EIT Al
My, = 7 Safl, + S8, — [:S] + 53]?

If M, = 00 {(when the support A is either pinned or roller), then

El A
Ma = ?[Sj H:: + Slﬂh - (Sj + SE)?} =0

A
g = _[— Safly + (S +53]?}
¥ A

Substituting {0, into M, vields

v, = 22| (s qd& Si+8)[1-2)2
fh.:—f 1 91 h— 1 I3 S] 7

— 1 . 2 2
Let &5 = o (S — 83), then
S

Hh.:l = —|S

= 1 ¥ i
S = E(s; - 55)

_ |:—2 ta.n[:ﬁf2j+|l9:||: B2 (B cot f —1)° B 82(1 — cosec 3)* i|
BB cot f—1) (—2 tan({3/2) + ﬁ]g (—2 tan(8/2) -ngz

_ B
 (Beot f — 1)[-2aan(B/2) + 6]

[(8 cot B — 1)* — (1 — cosec 8)7]

_F
1— 8 cotfs

IBE

= Beotf-D—zan@m) +a) 2ol =
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Theory of Elastic Stability Beam-Column Buckling

H.W 1: Drive an expression for deflected curve for the following cases of

compressed beam-column shown in Figures.

i

S o p
i
C1

—L
L

A
v

A

[
»

H.W 2: Drive an expression for deflected curve for the following cases of

compressed beam-column shown in Figures by using high-order differential

RN N N

L

P »
<« »

equation.
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