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BEAM-COLUMN BUCKLING                                    

 

DIFFERENTIAL EQUATIONS OF BEAM-COLUMNS 

Bifurcation-type buckling is essentially flexural behavior. Therefore, the 

free-body diagram must be based on the deformed configuration as the 

examination of equilibrium is made in the neighboring equilibrium position. 

Summing the forces in the horizontal direction in Fig. 1-4(a) gives:  

 

 

 

Neglecting the second-order term leads to:   

Taking derivatives on both sides of Eq.: 

Taking derivatives on both sides of Eq. above give:  

 

Equation (3) is the fundamental beam-column governing differential 

equation.  Consider the free-body diagram shown in Fig. 1-4(d). Summing 

forces in the y direction gives 
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Since the convex side of the curve (buckled shape) is opposite from the 

positive y axis, M = EIy" & V' = - q(x). Hence,   (EIy")"+(Py')'= q(x)    For 

a prismatic (EI = const.) beam-column subjected to a constant compressive 

force P, the equation is simplified to 

EIy
iv 

+ Py"= q(x) ……….(3) 
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For the coordinate system shown in Fig. 1-4(d), the curve represents a 

decreasing function (negative slope) with the convex side to the positive y 

direction. Hence, -EIy"=M(x). Thus, 

 

 
 

 

 

It can be shown that the free-body diagrams shown in Figs. 1-4(b) and 1-

4(c) will lead to Eq. (3). Hence, the governing differential equation is 

independent of the shape of the free-body diagram assumed. Rearranging 

Eq. (3) and if considered q(x)= 0 gives: 
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TRANSVERSELY LOADED BEAM SUBJECTED TO AXIAL 

COMPRESSION  

A slender member meeting the Euler-Bernoulli-Navier hypotheses under 

transverse loads and inplane compressive load (see Fig.1) is called a beam-

column. An exact analysis of a beam-column can only be accomplished by 

solving the governing differential equation or its derivatives (for example, 

slope-deflection equations). Consider a very simple case of a beam-column 

shown in Fig. 1. The beam-column is subjected simultaneously to a 

transverse load Q at its mid-span and a concentric compressive force P. 

Since the response of a beam-column under these loads is no longer linear, 

the method of superposition does not apply even if the final results are 

within the elastic limit. 

 

 

Figure 1: Simple beam-column 

Summing moments at a point x from the origin gives 

 

 

The general solution to this differential equation is y = yh +   yP. The 

homogeneous solution has been given earlier. The particular solution can be 

obtained by the method of undetermined coefficients. Assume the particular 

solution to be of the form 
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The previous section showed that the deflection at the mid-span of a simple 

beam-column subjected to a 

lateral load shown in Fig. 3 is 

 

Figure 3: simple beam-column  

                                                                           subjected to a lateral load 
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  is amplification factor for bending moment due to a concentrated load. 
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The variation of δ with Q as given by the amplification factor is plotted on 

the left side of Fig. 4 for P = 0, P = 0.4Pcr, and P = 0.7Pcr. The curves show 

that the relation between Q and δ is linear even when P≠0, provided P is a 

constant. However, if P is allowed to vary, as is the case on the right side of 

Figure 4, the load-deflection relation is not linear. This is true regardless of 

whether Q remains constant (dashed curve) or increases  

as P increases (solid curve). The deflection of a beam-column is thus a 

linear function of Q but a nonlinear function of P. 

 

 

 

 

Figure 4: Lateral displacements of beam-column 

  BENDING OF BEAM-COLUMNS BY COUPLES 

 Case 1: one end is subjected to moment 

the deflection curve is obtained by: 
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to simplify these expressions let: 

   

 Case 2: both ends are subjected to moments 

 

 

By substituting Ma  by Mb  and x by (l-x) in the same equation of case one. 

Adding the two results together, then the deflection curve for this case:  

 

Substituting  Ma=Pea & Mb=Peb we obtain: 

 

  

 

Case 3: both ends are subjected to equal moments (Ma= Mb= Mo) 

 

 

The deflection at the center of the beam is obtained by substituting x=l/2  

 

The slope at the ends are: 
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The max. bending moment which obtained at the middle of span: 

 

 

BEAM-COLUMNS WITH BUILT UP ENDS  

Case 1: one end is fixed 

The rotation at the fixed due to the 

uniform load and the moment 

equal to zero 

                                                                                                                  = 

 

 Case 2: both ends are fixed 

The deflection curve is 

symmetric and the moment at 

fixed ends are equals   (Ma= Mb= Mo) 

 

 

Case 3: unsymmetrical loaded beam  
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 SLOPE-DEFLECTION EQUATION WITHOUT AXIAL 

FORCE 

A typical derivation process will be traced here as it will be used again in 

the development of the slope-deflection equations that include the effect of 

axial compression on the bending stiffness From the deformations of a 

beam shown in Fig.7, the moment at a distance x from the origin is 

expressed as: 

 

 

 

 

 

 

 

 

Figure 7:  Deformations of  beam 
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If any fixed end moments exist prior to releasing the joint constraints such 

as Mab fixed and Mba fixed, then final member end moments become 

 

 

 

 

EFFECTS OF AXIAL LOADS ON BENDING STIFFNESS 

The classical slope-deflections equations that are introduced in any standard 

text on indeterminate structures give the moments, Mab and Mba, induced at 

the ends of member AB as a function of end rotations θa and θb and by a 

displacement Δ of one end to the other. In conventional linear structural 

analysis (first-order analysis), it is customary to ignore the effect of axial 

forces on the bending stiffness of flexural members. It can be shown that 

the effect of amplification is negligibly small as long as the axial load 

remains small in comparison with the critical load of the member. When the 



Buckling Column-Beam                                  Theory of Elastic Stability  

 
 

Asst. Prof. Dr. Sheelan M. Hama 

ratio of the axial load to the critical load becomes sizable, however, the 

bending stiffness is reduced markedly due to the axial compression, and it is 

no longer acceptable to neglect this reduction. As the first-order analysis 

results may become dangerously unconservative, modern design 

specifications call for a mandatory second-order analysis (AISC 2005). 

 It is expedient to introduce Δ=δb - δa with δa= 0 to avoid the rigid body 

translation. The moment of the beam-column shown in Fig. 9 at a distance x 

from the origin is 

  

 

 

Figure 9: Deformations of beam-column 
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  Again dividing the numerator and denominator of S3 by sin β gives: 
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H.W 1: Drive an expression for deflected curve for the following cases of 

compressed beam-column shown in Figures. 

 

 

 

H.W 2: Drive an expression for deflected curve for the following cases of 

compressed beam-column shown in Figures by using high-order differential 

equation. 
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