

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Component form of the dot product:

For purposes of computation, it is desirable to have a formula that expresses the dot product of two vectors in terms of the components of the vectors.

Let $\mathbf{u} = \langle u_1, u_2, u_3 \rangle$ and $\mathbf{v} = \langle v_1, v_2, v_3 \rangle$ are two nonzero vectors in 3-space, and θ is the angle between **u** and **v** as shown in (**figure23**), then using the law of cosines yield, we can obtain the formula of dot product of two vectors as shown below:

$$\|\overline{P_1 P_2}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\|\mathbf{u}\|\|\mathbf{v}\|\cos\theta$$
(2)

Since $\overrightarrow{P_1P_2} = \mathbf{v} - \mathbf{u}$, we will write (2) as:

$$\|\mathbf{u}\| \|\mathbf{v}\| \cos \theta = \frac{1}{2} (\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - \|\mathbf{v} - \mathbf{u}\|^2), \text{ and by (1) we obtain}$$

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{2} (\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - \|\mathbf{v} - \mathbf{u}\|^2); \text{ and since,}$$

$$\|\mathbf{u}\|^2 = u_1^2 + u_2^2 + u_3^2; \|\mathbf{v}\|^2 = v_1^2 + v_2^2 + v_3^2; \|\mathbf{v} - \mathbf{u}\|^2 = (v_1 - u_1)^2 + (v_2 - u_2)^2 + (v_3 - u_3)^2;$$

We obtain,

$$\|\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

Similarly, for vectors in 2-space, if \mathbf{u} and \mathbf{v} are two nonzero vectors in 2-space then,

 $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2$

The formula is also valid if $\mathbf{u} = 0$ *or* $\mathbf{v} = 0$ *.*

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Example (20): find the approximate angle between two vectors $\mathbf{x} = \langle 2, 4 \rangle$ and $\mathbf{y} = \langle -1, 2 \rangle$. Solution:

$$\begin{aligned} \mathbf{x} \cdot \mathbf{y} &= \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta \ \to \cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}, \\ \mathbf{x} \cdot \mathbf{y} &= (2)(-1) + (4)(2) \\ &= 6, \\ \|\mathbf{x}\| &= \sqrt{(2)^2 + (4)^2} \\ &= \sqrt{20}; \\ \|\mathbf{y}\| &= \sqrt{(-1)^2 + (2)^2} \\ &= \sqrt{5}; \\ \cos \theta &= \frac{6}{\sqrt{20}\sqrt{5}} = 0.6 \ \to \theta = \cos^{-1}(0.6) \ \to \ \theta \approx 53^\circ. \end{aligned}$$

Example (21): find the approximate angle between the two vectors $\mathbf{u} = \langle 2, 3, 5 \rangle$ and $\mathbf{v} = \langle 1, 6, -4 \rangle$.

Solution:

$$\mathbf{u} \cdot \mathbf{v} = (2)(1) + (3)(6) + (5)(-4) = 2 + 18 - 20 = 0$$

$$\|\mathbf{u}\| = \sqrt{(2)^2 + (3)^2 + (5)^2}; \quad \|\mathbf{v}\| = \sqrt{(1)^2 + (6)^2 + (-4)^2}; = \sqrt{4 + 9 + 25} = \sqrt{1 + 36 + 16} = \sqrt{38} = \sqrt{53}$$

$$\cos \theta = \frac{0}{\sqrt{38}\sqrt{53}} = 0 \rightarrow \theta = \cos^{-1}(0) \rightarrow \theta = 90.$$

Note: If the angle between any two nonzero vectors **u** and **v** is equal 90° then by formula (1), $\cos \theta = 0$ and **u** · **v**=0. The opposite if **u** · **v**=0, then $\cos \theta = 0$ and the two vectors are perpendicular (orthogonal) since $\theta = 90^\circ$.

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Example (22): If $\mathbf{u} = \langle 2, -4 \rangle$ and $\mathbf{v} = \langle 4, 2 \rangle$ are two nonzero vectors in 2-space, find the approximate angle between the two vectors.

Now according to the note, $\cos \theta = 0$ and we don't need to find the magnitude of the two vectors, because the dot product of these vectors is equal to zero, so the angle between them is 90° and they are orthogonal as shown in (figure 24).

Example (23): Find the approximate angle between the given vectors. (Homework).

- a) $\mathbf{u} = \langle 1, 2, 3 \rangle, \mathbf{v} = \langle -3, -1, 4 \rangle$.
- b) **u**=<2, -1, 1>, **v**=<1, 1, 2>.
- c) $\mathbf{u} = \langle 0, 1, 0, 1 \rangle, \mathbf{v} = \langle 1, 0, 0, 1 \rangle.$

Example (24): If $\mathbf{u} = \langle 3, 4 \rangle$, $\mathbf{v} = \langle 5, -1 \rangle$ and $\mathbf{w} = \langle 7, 1 \rangle$ are three vectors in 2-space, evaluate the expressions: (Homework).

- a) **u**. (7v + w).
- b) $\|(\mathbf{u} \cdot \mathbf{w}) \mathbf{w}\|$.
- c) $||u|| (v \cdot w)$.
- d) (||u||v).w.

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Example (25): a) Show that the components of the vector $\mathbf{v} = \langle v_1, v_2 \rangle$ in (figure 25) are $v_1 = \|\mathbf{v}\| \cos \theta$ and $v_2 = \|\mathbf{v}\| \sin \theta$.

b) Let **u** and **v** be the vectors in (**figure 26**). Use the result in part (a) to find the components of 4**u** – 5**v**. (**Homework**).

Example (26): Let $\mathbf{u} = \langle 2, -1, 1 \rangle$ and $\mathbf{v} = \langle 1, 1, 2 \rangle$ be two vectors in 3-space, find $\mathbf{u} \cdot \mathbf{v}$ and determine the angle θ between \mathbf{u} and \mathbf{v} . (Homework).

Example (26): Find the angle between a diagonal of a cube and one of its edges.

Solution:

Let *k* be the length of any edge of a cube as shown in (figure 27).

Let $\mathbf{u}_1 = \langle k, 0, 0 \rangle$, $\mathbf{u}_2 = \langle 0, k, 0 \rangle$ and $\mathbf{u}_3 = \langle 0, 0, k \rangle$, then the sum of these vectors represents a vector, **d** such that,

$$\mathbf{d} = \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3$$

= + <0, k, 0> + <0, 0, k>
= is the diagonal of a cube

The angle between the vector \mathbf{d} and any edge (let the edge \mathbf{u}_1) satisfies the following formula:

$$\cos \theta = \frac{\mathbf{u}_1 \cdot \mathbf{d}}{\|\mathbf{u}_1\| \|\mathbf{d}\|}, \text{ and } \mathbf{u}_1 \cdot \mathbf{d} = \langle k, 0, 0 \rangle \cdot \langle k, k, k \rangle \rightarrow \mathbf{u}_1 \cdot \mathbf{d} = k^2;$$

$$\|\mathbf{u}_1\| = \sqrt{k^2 + 0 + 0} \rightarrow \|\mathbf{u}_1\| = k$$

$$\|\mathbf{d}\| = \sqrt{k^2 + k^2 + k^2} \rightarrow \|\mathbf{d}\| = \sqrt{3k^2} = k\sqrt{3}$$

Thus
$$\cos \theta = \frac{k^2}{k^2 \sqrt{3}} \rightarrow \cos \theta = \frac{1}{\sqrt{3}} \rightarrow \theta = \cos^{-1}(\frac{1}{\sqrt{3}}) \rightarrow \theta \approx 54.74^{\circ}.$$

Figure 27

Theorem (2): Let u and v be vectors in 2- or 3-space.

a) $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$; that is, $\|\mathbf{v}\| = (\mathbf{v} \cdot \mathbf{v})^{1/2}$.

b) If the vectors **u** and **v** are two nonzero vectors and θ the angle between them, then

θ is acute	if and only if	u . v > 0.
θ is obtuse	if and only if	u . v < 0.
$\theta = \pi/2$	if and only if	$\mathbf{u} \cdot \mathbf{v} = 0.$

Proof (a):

The angle between \mathbf{v} and \mathbf{v} is 0, and by formula (1), we have

$$\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\| \|\mathbf{v}\| \cos \theta$$

$$= \|\mathbf{v}\|^2 \cos 0$$

$$= \|\mathbf{v}\|^2.$$

Proof (b):

Using formula (1):

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos \theta \rightarrow \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}, \|\mathbf{u}\| > 0 \text{ and } \|\mathbf{v}\| > 0.$$

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Since θ satisfies $0 \le \theta \le \pi$, it becomes clear the following:

- 1- θ is **acute** if and only if $\cos \theta > 0$ and this true if and only if **u** · **v** > 0.
- 2- θ is **obtuse** if and only if $\cos \theta < 0$ and this true if and only if **u** · **v** < 0.
- 3- $\theta = \pi/2$ (right angle) if and only if $\cos \theta = 0$ and this true if and only if **u** · **v** = 0.

We can see that in (figure 22) page 17.

Orthogonal vectors:

By theorem 2 (b) we denote that the two nonzero vectors **u** and **v** are **orthogonal** (**perpendicular**) if and only if their dot product is zero ($\mathbf{u} \cdot \mathbf{v} = 0$) and that is true also if either (or both) of these vectors is zero, therefore we can state without exception that two vectors **u** and **v** are orthogonal if and only if $\mathbf{u} \cdot \mathbf{v} = 0$ and denoted by ($\mathbf{u} \perp \mathbf{v}$).

Example (27): If $\mathbf{u} = \langle 1, -2, 3 \rangle$, $\mathbf{v} = \langle -3, 4, 2 \rangle$ and $\mathbf{w} = \langle 3, 6, 3 \rangle$ are three vectors in 3-space, determine the type of the angle between each pair of these vectors.

Solution:

 $\mathbf{u} \cdot \mathbf{v} = (1)(-3) + (-2)(4) + (3)(2) = -5 \rightarrow$ the angle between \mathbf{u} and \mathbf{v} is obtuse.

 $\mathbf{u} \cdot \mathbf{w} = (1)(3) + (-2)(6) + (3)(3) = 0 \rightarrow$ the angle between \mathbf{u} and \mathbf{w} is a right angle (90°), \mathbf{u} and \mathbf{w} are perpendicular vectors ($\mathbf{u} \perp \mathbf{w}$).

 $\mathbf{v} \cdot \mathbf{w} = (-3)(3) + (4)(6) + (2)(3) = 21 \rightarrow$ the angle between \mathbf{v} and \mathbf{w} is acute.

Example (28): (A vector perpendicular to a line):

Show that the vector $\mathbf{u} = \langle \mathbf{a}, \mathbf{b} \rangle$ in 2-space is perpendicular to the line ax + by + c = 0.

Solution:

Let $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ be any two points on the line such that.

$$ax_1 + by_1 + c = 0$$
 (1)
 $ax_2 + by_2 + c = 0$ (2)

We can obtain the vector $\overrightarrow{P_1 P_2}$ by subtracting the coordinates of P_1 from the coordinates of P_2 , such that $\overrightarrow{P_1 P_2} = \langle x_2 - x_1, y_2 - y_1 \rangle$ and this vector passes along the line.

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Now to show that the vector **u** is perpendicular to a line, we must only proof that **u**. $\overrightarrow{P_1P_2} = 0$ Subtracting the equation 1 from 2 we obtain:

$$a(x_2 - x_1) + b(y_2 - y_1) = 0$$

and this represents the dot product of the two vectors **u** and $\overrightarrow{P_1 P_2}$.

Thus, **u**. $\overrightarrow{P_1P_2} = 0$ and the vector is perpendicular to the line as shown in (figure 28).

References

- 1- Introductory linear algebra with applications, Bernard Kolman, first edition, 1976.
- 2- Elementary Linear Algebra Subsequent Edition, Arthur Wayne Roberts, 1985.

3- Elementary Linear Algebra, Ninth Edition, Howard Anton, Chris Rorres, 2005.

4- Student Solutions Manuals for use with College Algebra with Trigonometry: graphs and models, by Raymond A. Barnett, Michael R. Ziegler and Karl E. Byleen, 2005.