Ministry of Higher Education \& Scientific Research University of Anbar College of Science Department of Applied Mathematics

lectures

Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

An orthogonal projection (Principle of vector analysis):

In many applications it is of interest to decompose a vector (as \mathbf{u}) into a sum of two terms, one parallel to a specified nonzero vector (as a) and the perpendicular to \mathbf{a}. if \mathbf{u} and \mathbf{a} are positioned so that their initial points coincide at a point Q, we can decompose the vector \mathbf{u} as shown in (figure 31). Drop a perpendicular from the tip (terminal point) of the vector \mathbf{u} to the line through \mathbf{a}, and construct the vector \mathbf{w}_{1} from Q to the tail of this perpendicular. We not that the deference between two vectors \mathbf{u} and \mathbf{w}_{1} forms a vector perpendicular (as \mathbf{w}_{2}) to the vector \mathbf{a}, which can be placed in the following formula:

$$
\mathbf{w}_{2}=\mathbf{u}-\mathbf{w}_{1} \ldots(\mathbf{1})
$$

Thus, the vector \mathbf{w}_{1} is parallel to the vector a, and the vector \mathbf{w}_{2} is perpendicular to the vector \mathbf{a}, and this can be formulated as follows:

$$
\begin{equation*}
\mathbf{w}_{1}+\mathbf{w}_{2}=\mathbf{w}_{1}+\left(\mathbf{u}-\mathbf{w}_{1}\right)=\mathbf{u} \tag{2}
\end{equation*}
$$

The vector \mathbf{w}_{1} is called the orthogonal projection of \mathbf{u} on a or the vector component of \mathbf{u} along a and it is denoted by:

$$
\begin{equation*}
\mathbf{w}_{1}=\operatorname{proj} \mathbf{a} \mathbf{u} \tag{3}
\end{equation*}
$$

Also The vector \mathbf{w}_{1} is denoted by the symbol $\mathbf{u} \|$.
The vector \mathbf{w}_{2} is called the vector component of \mathbf{u} orthogonal to a and since $\mathbf{w}_{2}=\mathbf{u}-\mathbf{w}_{1}$, then the vector \mathbf{w}_{2} is denoted by:

$$
\begin{equation*}
\mathbf{w}_{2}=\mathbf{u}-\text { projau } \tag{4}
\end{equation*}
$$

Also The vector \mathbf{w}_{2} is denoted by the symbol $\mathbf{u} \perp$.

Figure 31
(The vector \mathbf{u} is the sum of \mathbf{w}_{1} and $\mathbf{w}_{2}, \mathbf{w}_{1}$ is parallel to \mathbf{a} and \mathbf{w}_{2} is perpendicular to a)

Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics

lectures

Subject: Vector analysis.

The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Now we take the theory through which we will get to know the formulas for calculating each of the two vectors \mathbf{w}_{1} and \mathbf{w}_{2}.

Theorem (3):

If \mathbf{u} and \mathbf{a} are two vectors in 2-or 3-space and $\mathbf{a} \neq 0$, then

$$
\begin{gathered}
\operatorname{proj} \mathbf{a u}=\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a} \quad(\text { vector component of } \mathbf{u} \text { along } \mathbf{a}) \\
\mathbf{u}-\operatorname{proj} \mathbf{a} \mathbf{u}=\mathbf{u}-\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a} \quad(\text { vector component of } \mathbf{u} \text { orthogonal to } \mathbf{a}) .
\end{gathered}
$$

Proof:

Let $\mathbf{w}_{1}=\operatorname{proj} \mathbf{a u}$ and $\mathbf{w}_{2}=\mathbf{u}-\operatorname{projau}$, since \mathbf{w}_{1} is parallel to \mathbf{a}, it must be a scalar multiple of \mathbf{a}, so it can be written in the form $\mathbf{w}_{1}=k \mathbf{a}$ (k any scalar). Thus

$$
\begin{equation*}
\mathbf{u}=\mathbf{w}_{1}+\mathbf{w}_{2}=k \mathbf{a}+\mathbf{w}_{2} \tag{1}
\end{equation*}
$$

Now we taking the dot product of both sides of (1) with a, we obtain:

$$
\begin{align*}
\mathbf{u} \cdot \mathbf{a} & =\left(k \mathbf{a}+\mathbf{w}_{2}\right) \cdot \mathbf{a} \\
& =k(\mathbf{a} \cdot \mathbf{a})+\mathbf{w}_{2} \cdot \mathbf{a} \\
& =k\|\mathbf{a}\|^{2}+\mathbf{w}_{2} \cdot \mathbf{a} \tag{2}
\end{align*}
$$

Since \mathbf{w}_{2} is perpendicular to the vector \mathbf{a}, thus $\mathbf{w}_{2} . \mathbf{a}=0$, and we rewrite (2) as follows:

$$
k=\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}}
$$

Since $\operatorname{projau}=\mathbf{w}_{1}=k \mathbf{a}$, we obtain

$$
\begin{equation*}
\operatorname{proj} \mathbf{a} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a} \tag{3}
\end{equation*}
$$

(vector component of \mathbf{u} along \mathbf{a})

Ministry of Higher Education
\& Scientific Research
University of Anbar College of Science
Department of Applied
Mathematics

lectures

Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim
and,

$$
\begin{equation*}
\mathbf{u}-\operatorname{proj} \mathbf{a} \mathbf{u}=\mathbf{u}-\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a} \tag{4}
\end{equation*}
$$

(vector component of \mathbf{u} orthogonal to \mathbf{a})

$$
\begin{gathered}
\mathbf{u}=\mathbf{u} \|+\mathbf{u} \perp \\
\mathbf{u} \|=\text { projau } \\
\mathbf{u} \perp=\mathbf{u}-\operatorname{projau}
\end{gathered}
$$

Example (40): Find the vector component of \mathbf{u} along a and the vector component of \mathbf{u} orthogonal to \mathbf{a}, if $\mathbf{u}=\langle 2,-1,3\rangle$ and $\mathbf{a}=\langle 4,-1,2\rangle$.

Solution:
The vector component of \mathbf{u} along $\mathbf{a}(\mathbf{u} \|)$ is projau $=\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a}$, So in the beginning we should find both $\mathbf{u} . \mathbf{a}$ and $\|\mathbf{a}\|^{2}$.

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{a} & =(2)(4)+(-1)(--1)+(3)(2)=15 \\
\|\mathbf{a}\|^{2} & =4^{2}+(-1)^{2}+2^{2}=21 \\
\operatorname{proj} \mathbf{a} \mathbf{u} & =\frac{15}{21}\langle 4,-1,2\rangle \\
& =\left\langle\frac{20}{7}, \frac{-5}{7}, \frac{10}{7}\right\rangle .
\end{aligned}
$$

The vector component of \mathbf{u} orthogonal to $\mathbf{a}(\mathbf{u} \perp)$ is $\mathbf{u}-\operatorname{proj} \mathbf{a} \mathbf{u}=\mathbf{u}-\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a}$, thus

$$
\begin{aligned}
\mathbf{u}-\operatorname{proja} \mathbf{u} & =\langle 2,-1,3\rangle-\left\langle\frac{20}{7}, \frac{-5}{7}, \frac{10}{7}\right\rangle \\
& =\left\langle\frac{-6}{7}, \frac{-2}{7}, \frac{11}{7}\right\rangle .
\end{aligned}
$$

We can check the solution as follow:

Ministry of Higher Education \& Scientific Research University of Anbar College of Science Department of Applied Mathematics

lectures

Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st. }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Using the vector addition principle:

$$
\begin{aligned}
\mathbf{u} & =\mathbf{u} \|+\mathbf{u} \perp \\
& =\left\langle\frac{20}{7}, \frac{-5}{7}, \frac{10}{7}\right\rangle+\left\langle\frac{-6}{7}, \frac{-2}{7}, \frac{11}{7}\right\rangle . \\
& =\langle 2,-1,3\rangle=\mathbf{u} .
\end{aligned}
$$

Also, we can use the concepts of parallelism and orthogonality to validate the solution as shown below:

Using the principle of parallelism:

The vector component of \mathbf{u} along \mathbf{a}, it means that the two vectors projau and a are parallel and this is true if and only if projau . $\mathbf{a}=\left\|\operatorname{proj}_{\mathbf{a}} \mathbf{u}\right\|\|\mathbf{a}\|$, when the two vectors are parallel and in the same direction, and if and only if $\left|\operatorname{proj}_{\mathbf{a}} \mathbf{u} \cdot \mathbf{a}\right|=\left\|\operatorname{proj}_{\mathbf{a}}^{\mathbf{u}}\right\|\| \| \mathbf{a} \|$ when the two vectors are parallel and in the opposite direction.

Now, projau . $\mathbf{a}=\left\langle\frac{20}{7}, \frac{-5}{7}, \frac{10}{7}\right\rangle .\langle 4,-1,2\rangle=15$;

$$
\|\mathbf{a}\|^{2}=21 \rightarrow\|\mathbf{a}\|=\sqrt{21}, \quad\left\|\operatorname{proj}_{\mathbf{a}} \mathbf{u}\right\|=\sqrt{\left(\frac{20}{7}\right)^{2}+\left(\frac{-5}{7}\right)^{2}+\left(\frac{10}{7}\right)^{2}}=\sqrt{10.714}
$$

Since $\operatorname{proj}_{\mathbf{a} \mathbf{u}} . \mathbf{a}=\left\|\operatorname{proj}_{\mathbf{a}} \mathbf{u}\right\|\|\mathbf{a}\|$, then the two vectors are parallel and in the same direction.
Also we can use this principle "two nonzero vectors are parallel if they are scalar multiples of one another" to check whether the two vectors projau and a are parallel.

Using the principle of orthogonality:

The vector component of \mathbf{u} orthogonal to \mathbf{a}, it means that the two vectors \mathbf{u} - projau and \mathbf{a} are orthogonal, and this is true if and only if ($\mathbf{u}-\operatorname{projau} \mathbf{u}) . \mathbf{a}=0$.

$$
(\mathbf{u}-\operatorname{projau}) . \mathbf{a}=\left\langle\frac{-6}{7}, \frac{-2}{7}, \frac{11}{7}\right\rangle .\langle 4,-1,2\rangle
$$

$$
=0 \text {, Thus the two vectors } \mathbf{u}-\text { projau and } \mathbf{a} \text { are orthogonal. }
$$

Also, we can verify by the dot product of the vectors projau and \mathbf{u} - projau, because the product of their dot product must be zero if the solution is correct.

Ministry of Higher Education
\& Scientific Research
University of Anbar College of Science
Department of Applied
Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st. }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Example (41): find the vector component of the vector \mathbf{v} along \mathbf{u} and the vector component of \mathbf{v} orthogonal to \mathbf{u}, if $\mathbf{v}=\langle 2,-1,4\rangle$ and $\mathbf{u}=\langle 1,2,3\rangle$.

Solution:

$$
\begin{aligned}
& \operatorname{projuv}=\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{u}\|^{2}} \mathbf{u}, \mathbf{v} \cdot \mathbf{u}=12,\|\mathbf{u}\|=\sqrt{14} \rightarrow\|\mathbf{u}\|^{2}=14 \\
& \begin{aligned}
\operatorname{proj} \mathbf{u} v= & \frac{12}{14}\langle 1,2,3\rangle=\left\langle\frac{6}{7}, \frac{12}{7}, \frac{18}{7}\right\rangle \text { the vector component of } \mathbf{v} \text { along } \mathbf{u}(\mathbf{v} \|) . \\
\mathbf{v}-\operatorname{proj} \mathbf{u} \mathbf{v} & =\langle 2,-1,4\rangle-\left\langle\frac{6}{7}, \frac{12}{7}, \frac{18}{7}\right\rangle \\
& =\left\langle\frac{8}{7}, \frac{-19}{7}, \frac{10}{7}\right\rangle \text { the vector component of } \mathbf{v} \text { orthogonal to } \mathbf{u}(\mathbf{v} \perp) .
\end{aligned}
\end{aligned}
$$

It is possible to verify the validity of the solution by using one of the properties we mentioned in the previous example.

Example (42): If the vector $\mathbf{u}=2 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}$, is the sum of vectors parallel and perpendicular to $\mathbf{v}=$ $\mathbf{i}+2 \mathbf{j}-\mathbf{k}$, find the vector component of \mathbf{u} along \mathbf{v} and the vector component of \mathbf{u} orthogonal to \mathbf{v} then check that the solution is correct. (or find the parallel and perpendicular vectors).

Solution:

We must find the parallel vector projvu and the perpendicular vector \mathbf{u} - projvu.

$$
\begin{aligned}
& \mathbf{u} \cdot \mathbf{v}=(2)(1)+(4)(2)+(2)(-1)=8, \quad\|\mathbf{v}\|^{2}=1^{2}+2^{2}+(-1)^{2}=6 ; \\
& \text { proj} \mathbf{v} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}} \mathbf{v}=\frac{4}{3}(\mathbf{i}+2 \mathbf{j}-\mathbf{k}) \text { or } \frac{4}{3}\langle 1,2,-1\rangle \text { the vector component of } \mathbf{u} \text { along } \mathbf{v}(\mathbf{u} \|) . \\
& \mathbf{u}-\operatorname{proj} \mathbf{v} \mathbf{u}=(2 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k})-\frac{4}{3}(\mathbf{i}+2 \mathbf{j}-\mathbf{k}) \\
& \text { or } \quad=\langle 2,4,2\rangle-\frac{4}{3}\langle 1,2,-1\rangle \\
& \quad=\frac{2}{3} \mathbf{i}+\frac{4}{3} \mathbf{j}+\frac{10}{3} \mathbf{k}=\frac{2}{3}(\mathbf{i}+2 \mathbf{j}+5 \mathbf{k}) \text { or }=\frac{2}{3}\langle 1,2,5\rangle \text {. the vector component of } \mathbf{u}
\end{aligned}
$$

orthogonal to $\mathbf{v}(\mathbf{u} \perp)$.
Now to verify the correctness of the solution, we can perform the dot product of the two vectors projvu and $\mathbf{u}-$ projvu.

Ministry of Higher Education
\& Scientific Research
University of Anbar College of Science
Department of Applied
Mathematics

lectures

Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st. }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

$$
\begin{aligned}
\mathbf{u} \| \cdot \mathbf{u} \perp= \\
\text { or } \quad \begin{aligned}
\text { projvu. }(\mathbf{u}-\operatorname{proj} \mathbf{v} \mathbf{u}) & = \\
& \frac{4}{3}\langle 1,2,-1\rangle \cdot \frac{2}{3}\langle 1,2,5\rangle \\
& =0, \text { So } \mathbf{u} \| \text { and } \mathbf{u} \perp \text { are orthogonal vectors. }
\end{aligned} . \begin{aligned}
\\
\text {. }
\end{aligned}
\end{aligned}
$$

Example (43): If $\mathbf{u}=\langle 2,4\rangle$ and $\mathbf{v}=\langle-1,2\rangle$, then:
1- find projvu.
2- analyze \mathbf{u} into \mathbf{u}_{1} and \mathbf{u}_{2}, where \mathbf{u}_{1} is parallel to \mathbf{v} and \mathbf{u}_{2} is orthogonal to \mathbf{v} (perpendicular).
(Homework).

A formula for the length of the vector component of any vector along another vector:

If \mathbf{u} and \mathbf{a} are two nonzero vector, then the formula for the length of the vector component of \mathbf{u} along a can be obtained as following:
$\left\|\operatorname{proj}_{\mathbf{a}} \mathbf{u}\right\|=\left\|\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a}\right\|$

$$
\begin{aligned}
& =\left|\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}}\right|\|\boldsymbol{a}\| \quad\left\{\text { the length of the vector } \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a} \text { is }\left|\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}}\right| \text { times the length of } \mathbf{a}\right\} \\
& =\frac{|\mathbf{u} \cdot \mathbf{a}|}{\|\mathbf{a}\|^{2}}\|\boldsymbol{a}\|\left\{\text { Since }\|\mathbf{a}\|^{2} \geq 0\right\}
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\left\|\operatorname{proj}_{\mathrm{a}} \mathbf{u}\right\|=\frac{|\mathbf{u} \cdot \mathbf{a}|}{\|\boldsymbol{a}\|} \tag{1}
\end{equation*}
$$

We know if θ is the angle between the two vectors \mathbf{u} and \mathbf{a}, then the dot product $\mathbf{u} . \mathbf{a}=$ $\|\mathbf{u}\|\|\boldsymbol{a}\| \cos \theta$, thus we can write (1) as:

$$
\begin{equation*}
\left\|\operatorname{proj}_{\mathbf{a}} \mathbf{u}\right\|=\|\mathbf{u}\||\cos \theta| \tag{2}
\end{equation*}
$$

The figure (32) below shows the geometric explanation of this result.

Ministry of Higher Education \& Scientific Research University of Anbar College of Science Department of Applied Mathematics

lectures

Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st. }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

$$
0 \leq \theta<\pi / 2
$$

$\pi / 2<\theta \leq \pi$

Figure 32
The geometric explanation for the length of the vector component of \mathbf{u} along \mathbf{a}, if θ is the angle between them

References

1- Introductory linear algebra with applications, Bernard Kolman, first edition, 1976.

2- Elementary Linear Algebra Subsequent Edition, Arthur Wayne Roberts,1985.
3- Elementary Linear Algebra, Ninth Edition, Howard Anton, Chris Rorres, 2005.
4- Student Solutions Manuals for use with College Algebra with Trigonometry: graphs and models, by Raymond A. Barnett, Michael R. Ziegler and Karl E. Byleen, 2005.

