

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

An orthogonal projection (Principle of vector analysis):

In many applications it is of interest to **decompose** a vector (as **u**) into a sum of two terms, one parallel to a specified nonzero vector (as **a**) and the perpendicular to **a**. if **u** and **a** are positioned so that their initial points coincide at a point Q, we can decompose the vector **u** as shown in (**figure 31**). Drop a perpendicular from the tip (**terminal point**) of the vector **u** to the line through **a**, and construct the vector **w**₁ from Q to the tail of this perpendicular. We not that the deference between two vectors **u** and **w**₁ forms a vector **perpendicular** (as **w**₂) to the vector **a**, which can be placed in the following formula:

$$w_2 = u - w_1 \dots (1)$$

Thus, the vector \mathbf{w}_1 is **parallel** to the vector \mathbf{a} , and the vector \mathbf{w}_2 is **perpendicular** to the vector \mathbf{a} , and this can be formulated as follows:

$$w_1 + w_2 = w_1 + (u - w_1) = u \dots (2)$$

The vector \mathbf{w}_1 is called the **orthogonal projection of u on a** or the **vector component of u along a** and it is denoted by:

$$\mathbf{w}_1 = \operatorname{proj}_{\mathbf{a}\mathbf{u}} \qquad \dots (\mathbf{3})$$

Also The vector \mathbf{w}_1 is denoted by the symbol \mathbf{u} .

The vector \mathbf{w}_2 is called the **vector component of u orthogonal to a** and since $\mathbf{w}_2 = \mathbf{u} - \mathbf{w}_1$, then the vector \mathbf{w}_2 is denoted by:

$$\mathbf{w}_2 = \mathbf{u} - \mathrm{proj}_{\mathbf{a}}\mathbf{u} \qquad \dots \qquad (4)$$

Also The vector \mathbf{w}_2 is denoted by the symbol $\mathbf{u} \perp$.

Figure 31

(The vector **u** is the sum of \mathbf{w}_1 and \mathbf{w}_2 , \mathbf{w}_1 is parallel to **a** and \mathbf{w}_2 is perpendicular to **a**)

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Now we take the theory through which we will get to know the formulas for calculating each of the two vectors \mathbf{w}_1 and \mathbf{w}_2 .

Theorem (3):

If **u** and **a** are two vectors in 2-or 3-space and $\mathbf{a} \neq 0$, then

proja
$$\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}$$
 (vector component of \mathbf{u} along \mathbf{a})

 $\mathbf{u} - \operatorname{proj}_{\mathbf{a}}\mathbf{u} = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a}$ (vector component of \mathbf{u} orthogonal to \mathbf{a}).

Proof:

Let $\mathbf{w}_1 = \text{proj}_{\mathbf{a}\mathbf{u}}$ and $\mathbf{w}_2 = \mathbf{u} - \text{proj}_{\mathbf{a}\mathbf{u}}$, since \mathbf{w}_1 is parallel to \mathbf{a} , it must be a scalar multiple of \mathbf{a} , so it can be written in the form $\mathbf{w}_1 = k\mathbf{a}$ (*k* any scalar). Thus

$$\mathbf{u} = \mathbf{w}_1 + \mathbf{w}_2 = k\mathbf{a} + \mathbf{w}_2 \quad \dots \quad (1)$$

Now we taking the dot product of both sides of (1) with **a**, we obtain:

Since \mathbf{w}_2 is perpendicular to the vector \mathbf{a} , thus \mathbf{w}_2 . $\mathbf{a} = 0$, and we rewrite (2) as follows:

$$k = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}$$

Since $\operatorname{proj}_{\mathbf{a}}\mathbf{u} = \mathbf{w}_1 = k\mathbf{a}$, we obtain

$$\operatorname{proj}_{\mathbf{a}\mathbf{u}} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} \qquad \dots (3)$$

(vector component of **u** along **a**)

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

and,

$$\mathbf{u} - \operatorname{proj}_{\mathbf{a}}\mathbf{u} = \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} \qquad \dots (4)$$

(vector component of **u** orthogonal to **a**)

 $u{=}\,u\|+u\bot$

$\mathbf{u} \parallel = \operatorname{proj}_{\mathbf{a}\mathbf{u}}$

$$\mathbf{u} \perp = \mathbf{u} - \operatorname{proj}_{\mathbf{a}}\mathbf{u}$$

Example (40): Find the vector component of **u** along **a** and the vector component of **u** orthogonal to **a**, if $\mathbf{u} = \langle 2, -1, 3 \rangle$ and $\mathbf{a} = \langle 4, -1, 2 \rangle$.

Solution:

The vector component of **u** along **a** (**u**||) is $\text{proj}_{\mathbf{a}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}\mathbf{a}$, So in the beginning we should find both **u** · **a** and $\|\mathbf{a}\|^2$.

u . **a** = (2)(4) + (-1)(--1) + (3)(2)= 15;

$$\|\mathbf{a}\|^2 = 4^2 + (-1)^2 + 2^2 = 21;$$

projau = $\frac{15}{21} < 4, -1, 2 >$
= $<\frac{20}{7}, \frac{-5}{7}, \frac{10}{7} >.$

The vector component of **u** orthogonal to **a** (**u** \perp) is **u** – proj_{**a**}**u**= **u** – $\frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2}$ **a**, thus

$$\mathbf{u} - \text{proj}_{\mathbf{a}}\mathbf{u} = \langle 2, -1, 3 \rangle - \langle \frac{20}{7}, \frac{-5}{7}, \frac{10}{7} \rangle$$
$$= \langle \frac{-6}{7}, \frac{-2}{7}, \frac{11}{7} \rangle.$$

We can check the solution as follow:

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Using the vector addition principle:

u= **u**|| + **u**⊥ = $\langle \frac{20}{7}, \frac{-5}{7}, \frac{10}{7} \rangle + \langle \frac{-6}{7}, \frac{-2}{7}, \frac{11}{7} \rangle$. = $\langle 2, -1, 3 \rangle$ = **u**.

Also, we can use the concepts of parallelism and orthogonality to validate the solution as shown below:

Using the principle of parallelism:

The vector component of **u** along **a**, it means that the two vectors $\text{proj}_{\mathbf{a}}\mathbf{u}$ and **a** are parallel and this is true if and only if $\text{proj}_{\mathbf{a}}\mathbf{u} \cdot \mathbf{a} = \|\text{proj}_{\mathbf{a}}\mathbf{u}\| \|\mathbf{a}\|$, when the two vectors are parallel and in the same direction, and if and only if $|\text{proj}_{\mathbf{a}}\mathbf{u} \cdot \mathbf{a}| = \|\text{proj}_{\mathbf{a}}\mathbf{u}\| \|\mathbf{a}\|$ when the two vectors are parallel and in the and in the opposite direction.

Now,
$$\operatorname{proj}_{\mathbf{a}\mathbf{u}} \cdot \mathbf{a} = \langle \frac{20}{7}, \frac{-5}{7}, \frac{10}{7} \rangle \cdot \langle 4, -1, 2 \rangle = 15;$$

 $\|\mathbf{a}\|^2 = 21 \rightarrow \|\mathbf{a}\| = \sqrt{21}, \quad \|\operatorname{proj}_{\mathbf{a}\mathbf{u}}\| = \sqrt{(\frac{20}{7})^2 + (\frac{-5}{7})^2 + (\frac{10}{7})^2} = \sqrt{10.714}$

Since $proj_a u = \|proj_a u\| \|a\|$, then the two vectors are **parallel and in the same direction**.

Also we can use this principle "two nonzero vectors are **parallel** if they are scalar multiples of one another" to check whether the two vectors $proj_a u$ and **a** are parallel.

Using the principle of orthogonality:

The vector component of **u** orthogonal to **a**, it means that the two vectors $\mathbf{u} - \text{proj}_{\mathbf{a}}\mathbf{u}$ and **a** are orthogonal, and this is true if and only if $(\mathbf{u} - \text{proj}_{\mathbf{a}}\mathbf{u}) \cdot \mathbf{a} = 0$.

$$(\mathbf{u} - \text{proj}_{\mathbf{a}}\mathbf{u}) \cdot \mathbf{a} = \langle \frac{-6}{7}, \frac{-2}{7}, \frac{11}{7} \rangle \cdot \langle 4, -1, 2 \rangle$$

= 0, Thus the two vectors $\mathbf{u} - \text{proj}_{\mathbf{a}}\mathbf{u}$ and \mathbf{a} are orthogonal.

Also, we can verify by the dot product of the vectors $\text{proj}_{\mathbf{a}}\mathbf{u}$ and $\mathbf{u} - \text{proj}_{\mathbf{a}}\mathbf{u}$, because the product of their dot product must be zero if the solution is correct.

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Example (41): find the vector component of the vector **v** along **u** and the vector component of **v** orthogonal to **u**, if $\mathbf{v} = \langle 2, -1, 4 \rangle$ and $\mathbf{u} = \langle 1, 2, 3 \rangle$.

Solution:

projuv = $\frac{\mathbf{v} \cdot \mathbf{u}}{\|\mathbf{u}\|^2}$ u, v · u = 12, $\|\mathbf{u}\| = \sqrt{14} \rightarrow \|\mathbf{u}\|^2 = 14$ projuv = $\frac{12}{14} < 1, 2, 3 > = <\frac{6}{7}, \frac{12}{7}, \frac{18}{7} >$ the vector component of v along u (v|). v - projuv = <2, -1, 4> - <\frac{6}{7}, \frac{12}{7}, \frac{18}{7} > = $<\frac{8}{7}, \frac{-19}{7}, \frac{10}{7} >$ the vector component of v orthogonal to u (v⊥).

It is possible to verify the validity of the solution by using one of the properties we mentioned in the previous example.

Example (42): If the vector $\mathbf{u} = 2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}$, is the sum of vectors parallel and perpendicular to $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$, find the vector component of \mathbf{u} along \mathbf{v} and the vector component of \mathbf{u} orthogonal to \mathbf{v} then check that the solution is correct. (*or find the parallel and perpendicular vectors*).

Solution:

We must find the parallel vector $proj_v u$ and the perpendicular vector $u - proj_v u$.

$$\mathbf{u} \cdot \mathbf{v} = (2)(1) + (4)(2) + (2)(-1) = 8, \quad \|\mathbf{v}\|^2 = 1^2 + 2^2 + (-1)^2 = 6;$$

proj_v $\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v} = \frac{4}{3} (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \text{ or } \frac{4}{3} < 1, 2, -1 > \text{ the vector component of } \mathbf{u} \text{ along } \mathbf{v} (\mathbf{u} \|).$

$$\mathbf{u} - \text{proj}_{\mathbf{v}}\mathbf{u} = (2\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}) - \frac{4}{3} (\mathbf{i} + 2\mathbf{j} - \mathbf{k})$$

or $= <2, 4, 2 > -\frac{4}{3} < 1, 2, -1 >$
 $= \frac{2}{3}\mathbf{i} + \frac{4}{3}\mathbf{j} + \frac{10}{3}\mathbf{k} = \frac{2}{3} (\mathbf{i} + 2\mathbf{j} + 5\mathbf{k}) \text{ or } = \frac{2}{3} < 1, 2, 5 > \text{. the vector component of } \mathbf{u}$
orthogonal to $\mathbf{v} (\mathbf{u} \perp).$

Now to verify the correctness of the solution, we can perform the dot product of the two vectors projvu and u - projvu.

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

u|| . **u**⊥=
or proj_v**u** . (**u** – proj_v**u**)=
$$\frac{4}{3}$$
 <1, 2, -1> . $\frac{2}{3}$ <1, 2, 5>
= 0, So **u**|| and **u**⊥ are orthogonal vectors.

Example (43): If **u**= <2, 4> and **v**= <-1, 2>, then:

- 1- find projvu.
- 2- analyze \mathbf{u} into \mathbf{u}_1 and \mathbf{u}_2 , where \mathbf{u}_1 is parallel to \mathbf{v} and \mathbf{u}_2 is orthogonal to \mathbf{v} (perpendicular). (Homework).

A formula for the length of the vector component of any vector along another vector:

If **u** and **a** are two nonzero vector, then the formula for the length of the vector component of **u** along **a** can be obtained as following:

$$\|\operatorname{proj}_{\mathbf{a}}\mathbf{u}\| = \left\| \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a} \right\|$$

$$= \left| \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \right| \|\mathbf{a}\| \quad \{ \text{ the length of the vector } \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \mathbf{a} \text{ is } \left| \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^{2}} \right| \text{ times the length of } \mathbf{a} \}$$

$$= \frac{|\mathbf{u} \cdot \mathbf{a}|}{\|\mathbf{a}\|^{2}} \|\mathbf{a}\| \quad \{ \text{ Since } \|\mathbf{a}\|^{2} \ge 0 \}$$
Thus,
$$\|\operatorname{proj}_{\mathbf{a}}\mathbf{u}\| = \frac{|\mathbf{u} \cdot \mathbf{a}|}{\|\mathbf{a}\|} \qquad \dots (1)$$

We know if θ is the angle between the two vectors **u** and **a**, then the dot product **u** . **a**= $\|\mathbf{u}\|\|\boldsymbol{a}\|\cos\theta$, thus we can write (1) as:

$$\|\operatorname{proj}_{\mathbf{a}}\mathbf{u}\| = \|\mathbf{u}\| |\cos \theta| \qquad \dots (2)$$

The figure (32) below shows the geometric explanation of this result.

The geometric explanation for the length of the vector component of **u** along **a**, if θ is the angle between them

References

1- Introductory linear algebra with applications, Bernard Kolman, first edition, 1976.

2- Elementary Linear Algebra Subsequent Edition, Arthur Wayne Roberts, 1985.

3- Elementary Linear Algebra, Ninth Edition, Howard Anton, Chris Rorres, 2005.

4- Student Solutions Manuals for use with College Algebra with Trigonometry: graphs and models, by Raymond A. Barnett, Michael R. Ziegler and Karl E. Byleen, 2005.