

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Direction of cross product:

If **u** and **v** are two nonzero vectors in 3-space, then to determine the direction of $\mathbf{u} \times \mathbf{v}$, we can use the "right-hand rule" when $\mathbf{u} \times \mathbf{v}$ is orthogonal to both **u** and **v**. As shown in (**figure 36**) if θ is the angle between **u** and **v**, and if **u** is rotated through the angle θ until it coincides with **v** then the fingers of the right hand are cupped such that they point in the direction of rotation and the thumb indicate to the direction of $\mathbf{u} \times \mathbf{v}$.

Example (49): (Relationships involving cross product and dot product)

Given the vectors $\mathbf{u} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{v} = 2\mathbf{i} - \mathbf{j} - \mathbf{k}$.

- a) Show that **u** and **v** are orthogonal (perpendicular).
- b) Find a unit vector perpendicular to both **u** and **v**.

Solution:

a) If $\mathbf{u} \cdot \mathbf{v} = 0$, then \mathbf{u} and \mathbf{v} are perpendicular.

u . **v**= <1, 1, 1> . <2, -1, -1>

 $= 0 \rightarrow \mathbf{u}$ and \mathbf{v} are perpendicular.

b) The cross product $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v} .

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 2 & -1 & -1 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ -1 & -1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} \mathbf{k}$$
$$= (-1+1)\mathbf{i} - (-1-2)\mathbf{j} + (-1-2)\mathbf{k}$$
$$= 3\mathbf{j} - 3\mathbf{k}.$$

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Now, the unit vector of $\mathbf{u} \times \mathbf{v}$ also perpendicular to the vectors \mathbf{u} and \mathbf{v} , thus

$$\mathbf{U} = \frac{\mathbf{u} \times \mathbf{v}}{\|\mathbf{u} \times \mathbf{v}\|} = \frac{\langle 3, -3 \rangle}{\sqrt{3^2 + (-3)^2}} = \frac{\langle 3, -3 \rangle}{3\sqrt{2}} = \langle \frac{3}{3\sqrt{2}}, \frac{-3}{3\sqrt{2}} \rangle = \langle \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}} \rangle = \langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \rangle.$$

Or $\mathbf{U} = \frac{\sqrt{2}}{2} \mathbf{j} - \frac{\sqrt{2}}{2} \mathbf{k}$ the unit vector that is perpendicular to both \mathbf{u} and \mathbf{v} .

Definition (13) (Scalar triple product u . (v×w)):

If \mathbf{u} , \mathbf{v} and \mathbf{w} are three vectors in 3-space (3D), then $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ is called the scalar triple product of \mathbf{u} , \mathbf{v} and \mathbf{w} and denoted by the following formula:

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} \qquad \dots (3)$$

Proof this formula:

We know that
$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \mathbf{k};$$

Thus, $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{u} \cdot \left(\begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \mathbf{k} \right)$
 $= \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} u_1 - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} u_2 + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} u_3$
 $= \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$

Example (50): Calculate the scalar triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$, where $\mathbf{u} = 3\mathbf{i} - 2\mathbf{j} - 5\mathbf{k}$, $\mathbf{v} = \mathbf{i} + 4\mathbf{j} - 4\mathbf{k}$, and $\mathbf{w} = 3\mathbf{j} + 2\mathbf{k}$.

Solution:

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} 3 & -2 & -5 \\ 1 & 4 & -4 \\ 0 & 3 & 2 \end{vmatrix}$$
$$= 3 \begin{vmatrix} 4 & -4 \\ 3 & 2 \end{vmatrix} - (-2) \begin{vmatrix} 1 & -4 \\ 0 & 2 \end{vmatrix} + (-5) \begin{vmatrix} 1 & 4 \\ 0 & 3 \end{vmatrix}$$

= 60 + 4 - 15

= 49

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

<u>Note</u>: The symbol $(\mathbf{u} \cdot \mathbf{v}) \times \mathbf{w}$ makes no sense because we cannot form the cross product of a scalar and a vector. Thus no problem arises if we write $\mathbf{u} \cdot \mathbf{v} \times \mathbf{w}$ rather than $\mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w})$.

Thus we can write the formula (3) in definition (13) (Scalar triple product) as follows:

 $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u})$

or $(\mathbf{u} \times \mathbf{v})$. $\mathbf{w} = \mathbf{u}$. $(\mathbf{v} \times \mathbf{w})$ (Dot product is Commutative process)

Example (51): If $\mathbf{u} = \langle 1, 2, 3 \rangle$, $\mathbf{v} = \langle 2, 1, 1 \rangle$, and $\mathbf{w} = \langle 1, 1, 0 \rangle$, find each of the following separately to show that they are equal in all cases.

$$\mathbf{u} . (\mathbf{v} \times \mathbf{w}); \mathbf{w} . (\mathbf{u} \times \mathbf{v}); \mathbf{v} . (\mathbf{w} \times \mathbf{u})$$

Solution:

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{vmatrix} = 4$$
$$\mathbf{w} \cdot (\mathbf{u} \times \mathbf{v}) = 4 \quad \text{(Check)}$$
$$\mathbf{v} \cdot (\mathbf{w} \times \mathbf{u}) = 4 \quad \text{(Check)}$$

Proof of Lagrange's identity:

Now we can proof **Lagrange's identity** (part c) in theorem (4) (**Relationships involving cross product and dot product**).

$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2$$

Proof:

We know if **v** is any vector (in 2-or 3-space), then the dot product $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2$.

Thus, $\|\mathbf{u} \times \mathbf{v}\|^2 = (\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{u} \times \mathbf{v}).$

Since, $(\mathbf{u} \times \mathbf{v})$. $\mathbf{w} = \mathbf{u}$. $(\mathbf{v} \times \mathbf{w})$; (scalar triple product)

Thus, $(\mathbf{u} \times \mathbf{v})$. $(\mathbf{u} \times \mathbf{v}) = \mathbf{u}$. $[\mathbf{v} \times (\mathbf{u} \times \mathbf{v})]$;

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Since, $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$ (*relationships between cross and dot product*) (part 4 theorem 4).

Thus, $(\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{u} \cdot [\mathbf{v} \times (\mathbf{u} \times \mathbf{v})]$

$$= \mathbf{u} \cdot [(\mathbf{v} \cdot \mathbf{v})\mathbf{u} - (\mathbf{v} \cdot \mathbf{u})\mathbf{v}]$$

= $(\mathbf{v} \cdot \mathbf{v})(\mathbf{u} \cdot \mathbf{u}) - (\mathbf{v} \cdot \mathbf{u})(\mathbf{v} \cdot \mathbf{u})$
= $||\mathbf{u}||^2 ||\mathbf{v}||^2 - (\mathbf{v} \cdot \mathbf{u})^2$.

Geometric interpretation of cross product:

If **u** and **v** are two nonzero vectors in 3-space(3D), then the **norm** of $\mathbf{u} \times \mathbf{v}$ has a useful geometric explanation.

The magnitude (norm) or length of **u** × **v**:

Using LaGrange's identity,

$$\|\mathbf{u} \times \mathbf{v}\|^2 = \|\mathbf{u}\|^2 \|\mathbf{v}\|^2 - (\mathbf{u} \cdot \mathbf{v})^2 \dots (1)$$

If θ denotes the angle between two vectors **u** and **v**, then

The dot product of the two vectors **u** and **v** is,

u . **v**=
$$||\mathbf{u}|| ||\mathbf{v}|| \cos \theta$$
 ... (2)

(1) in (2) we obtain:

$$\|\mathbf{u} \times \mathbf{v}\|^{2} = \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} - \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} \cos^{2} \theta$$
$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} (1 - \cos^{2} \theta)$$
$$= \|\mathbf{u}\|^{2} \|\mathbf{v}\|^{2} \sin^{2} \theta \dots (3)$$

Since $0 \le \theta \le \pi$, it is follows that $\sin \theta \ge 0$.

Taking the square root for two sides of (3), we obtain:

$$\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta \qquad \dots (4)$$

We note that the two vectors **u** and **v** are parallel if and only if $\mathbf{u} \times \mathbf{v} = 0$, because by the formula (4) we obtain:

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

 $\sin \theta = \frac{\|\mathbf{u} \times \mathbf{v}\|}{\|\mathbf{u}\| \|\mathbf{v}\|}$, $\|\mathbf{u}\| \|\mathbf{v}\| > 0$ because \mathbf{u} and \mathbf{v} are nonzero vectors.

Thus $\sin \theta = 0 \rightarrow \theta = 0$ and the two vectors are parallel.

The norm of $\mathbf{u} \times \mathbf{v}$ and applications:

In the figure (37) below, we easily note that $\|\mathbf{v}\| \sin \theta$ is the altitude (height) of the parallelogram determined by **u** and **v**.

Figure 37

 $\|\mathbf{v}\| \sin \theta$ is the altitude of the parallelogram.

Thus, the formula (4) above represent the area A of the parallelogram.

The area of the parallelogram $(A_P) = (base)(altitude) = ||\mathbf{u}|| ||\mathbf{v}|| \sin \theta = ||\mathbf{u} \times \mathbf{v}||$.

Therefore we note that the area of the parallelogram determined by **u** and **v** is zero when these vectors are parallel (or collinear) because $\theta = 0$ and this leads to $\mathbf{u} \times \mathbf{v} = 0$.

Applications of cross product:

1) To find the area of the parallelogram.

Theorem (5): The area of parallelogram determined by two vectors in 3-space, is the magnitude (length) of the cross product of these vectors.

Or (if **u** and **v** are vectors in 3-space, then $||\mathbf{u} \times \mathbf{v}||$ is equal to the area of the parallelogram determined by **u** and **v**.

If we have the parallelogram denoted by the vectors $\overrightarrow{P_1P_2}$ and $\overrightarrow{P_1P_3}$ as shown in (figure 38):

lectures Subject: Vector analysis. 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. **Ali Rashid Ibrahim**

The parallelogram determined by two vectors

We know that the area of the parallelogram $A_{\rm P}$ = (base)(altitude)= bh.

The length of the vector $\overrightarrow{P_1P_2}$ represents the base of the parallelogram, thus

 $A_{\mathrm{P}} = \left\| \overrightarrow{P_1 P_2} \right\| h, \quad \left(\left\| \overrightarrow{P_1 P_2} \right\| = \left\| P_2 - P_1 \right\| \right)$ Since, $\sin \theta = \frac{h}{\|\overline{P_1 P_3}\|} \rightarrow h = \|\overline{P_1 P_3}\| \sin \theta$, $(\|\overline{P_1 P_3}\| = \|P_3 - P_1\|)$ $A_{\rm P} = \|\overrightarrow{P_1P_2}\| \|\overrightarrow{P_1P_3}\| \sin \theta$

Therefore,

Since $\|\overline{P_1P_2}\|\|\overline{P_1P_3}\| \sin \theta$ represents the length (magnitude) of $\overline{P_1P_2} \times \overline{P_1P_3}$, according to the formula (4), then the area of the parallelogram is:

2) To find the area of tr $A_{\rm P} = \|\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3}\|$

If we have the triangle determined by the points P_1 , P_2 , and P_3 as shown in figure (39), then we can find the area of this triangle using the concepts of vectors.

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Figure 39

The area of the triangle $A_{\rm T} = \frac{1}{2}$ (base)(height)

 $=\frac{1}{2}bh$

The length of the vector $\overrightarrow{P_1P_2}$ represents the base of the triangle, thus

$$A_{\mathrm{T}} = \frac{1}{2} \| \overline{P_1 P_2} \| h, \| \overline{P_1 P_2} \| = \| P_2 - P_1 \|$$

Since, $\sin \theta = \frac{h}{\| \overline{P_1 P_3} \|} \rightarrow h = \| \overline{P_1 P_3} \| \sin \theta, \| \overline{P_1 P_3} \| = \| P_3 - P_1 \|$
Thus, $A_{\mathrm{T}} = \frac{1}{2} \| \overline{P_1 P_2} \| \| \overline{P_1 P_3} \| \sin \theta,$

Since $\|\overline{P_1P_2}\|\|\overline{P_1P_3}\| \sin \theta$ represents the length (magnitude) of $\overline{P_1P_2} \times \overline{P_1P_3}$, according to the formula (4), then, **the area of the triangle is**:

$$A_{\mathrm{T}} = \frac{1}{2} \left\| \overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_3} \right\|$$

We note that the area of the parallelogram A_P is equal multiple the area of the triangle and that means,

Example (52): Find the area of the parallelogram determined by $\overrightarrow{P_1P_2}$ and $\overrightarrow{P_1P_3}$, if $P_1 = (2, 2, 0)$, $P_2 = (-1, 0, 2)$ and $P_3 = (0, 4, 3)$.

Solution: we must find the area of the parallelogram in figure (40).

lectures Subject: Vector analysis. 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

 $A_{\rm P} = \left\| \overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_3} \right\|$ $\overrightarrow{P_1P_2} = P_2 - P_1 = (-1, 0, 2) - (2, 2, 0) = \langle -3, -2, 2 \rangle;$ $\overrightarrow{P_1P_3} = P_3 - P_1 = (0, 4, 3) - (2, 2, 0) = \langle -2, 2, 3 \rangle;$

Now we must find $\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3}$.

$$\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & -2 & 2 \\ -2 & 2 & 3 \end{vmatrix} = \begin{vmatrix} -2 & 2 \\ 2 & 3 \end{vmatrix} = \begin{vmatrix} -2 & 2 \\ -2 & 3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} -3 & 2 \\ -2 & 3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} -3 & -2 \\ -2 & 2 \end{vmatrix} \mathbf{k}$$
$$= (-6 - 4)\mathbf{i} - (-9 + 4)\mathbf{j} + (-6 - 4)\mathbf{k}$$
$$= -10\mathbf{i} + 5\mathbf{j} - 10\mathbf{k}$$
Or = <-10, 5, -10>
$$A_{\rm P} = \|\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3}\|$$
$$= \sqrt{(-10)^2 + 5^2 + (-10)^2}$$
$$= \sqrt{225}$$
$$= 15 \text{ the area of the parallelogram}$$

15 the area of the parallelogram.

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Example (53): Find the area of the triangle determined by the points, $P_1 = (2, 2, 0)$, $P_2 = (-1, 0, 2)$ and $P_3 = (0, 4, 3)$.

Solution:

$$A_{\mathrm{T}} = \frac{1}{2} \left\| \overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_3} \right\|$$

Since we use the same points in example (52), therefore $\|\overrightarrow{P_1P_2} \times \overrightarrow{P_1P_3}\| = 15$, and

 $A_{\rm T} = \frac{1}{2} \| \overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_3} \| = \frac{1}{2} (15) = 7.5$ the area of the triangle.

Or directly using the formula, $A_P = 2A_T \rightarrow A_T = \frac{1}{2}A_P$, if it is required for the same points to find the area of the tringle and parallelogram.

Now we can formulate the following questions:

Question (1): Derive the formula that used to find the area of the parallelogram determined by two vectors.

Question (2): Derive the formula that used to find the area of the triangle determined by three points.

References

1- Introductory linear algebra with applications, Bernard Kolman, first edition, 1976.

2- Elementary Linear Algebra Subsequent Edition, Arthur Wayne Roberts, 1985.

3- Elementary Linear Algebra, Ninth Edition, Howard Anton, Chris Rorres, 2005.

4- Student Solutions Manuals for use with College Algebra with Trigonometry: graphs and models, by Raymond A. Barnett, Michael R. Ziegler and Karl E. Byleen, 2005.