Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $\mathbf{2}^{\text {st }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

Direction of cross product:

If \mathbf{u} and \mathbf{v} are two nonzero vectors in 3-space, then to determine the direction of $\mathbf{u} \times \mathbf{v}$, we can use the "right-hand rule" when $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v}. As shown in (figure 36) if θ is the angle between \mathbf{u} and \mathbf{v}, and if \mathbf{u} is rotated through the angle θ until it coincides with \mathbf{v} then the fingers of the right hand are cupped such that they point in the direction of rotation and the thumb indicate to the direction of $\mathbf{u} \times \mathbf{v}$.

Figure 36
The direction of $\mathbf{u} \times \mathbf{v}$

Example (49): (Relationships involving cross product and dot product)

Given the vectors $\mathbf{u}=\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\mathbf{v}=2 \mathbf{i}-\mathbf{j}-\mathbf{k}$.
a) Show that \mathbf{u} and \mathbf{v} are orthogonal (perpendicular).
b) Find a unit vector perpendicular to both \mathbf{u} and \mathbf{v}.

Solution:
a) If $\mathbf{u} . \mathbf{v}=0$, then \mathbf{u} and \mathbf{v} are perpendicular.
$\mathbf{u} \cdot \mathbf{v}=\langle 1,1,1\rangle .\langle 2,-1,-1\rangle$
$=0 \rightarrow \mathbf{u}$ and \mathbf{v} are perpendicular.
b) The cross product $\mathbf{u} \times \mathbf{v}$ is perpendicular to both \mathbf{u} and \mathbf{v}.

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{rrr}
\boldsymbol{i} & \mathbf{j} & \boldsymbol{k} \\
1 & 1 & 1 \\
2 & -1 & -1
\end{array}\right| & =\left|\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right| \mathbf{i}-\left|\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right| \mathbf{j}+\left|\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right| \mathbf{k} \\
& =(-1+1) \mathbf{i}-(-1-2) \mathbf{j}+(-1-2) \mathbf{k} \\
& =3 \mathbf{j}-3 \mathbf{k} .
\end{aligned}
$$

Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

Now, the unit vector of $\mathbf{u} \times \mathbf{v}$ also perpendicular to the vectors \mathbf{u} and \mathbf{v}, thus

$$
\mathbf{U}=\frac{\mathbf{u} \times \mathbf{v}}{\|\mathbf{u} \times \mathbf{v}\|}=\frac{\langle 3,-3\rangle}{\sqrt{3^{2}+(-3)^{2}}}=\frac{\langle 3,-3\rangle}{3 \sqrt{2}}=\left\langle\frac{3}{3 \sqrt{2}}, \frac{-3}{3 \sqrt{2}}\right\rangle=\left\langle\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right\rangle=\left\langle\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right\rangle .
$$

$\operatorname{Or} \mathbf{U}=\frac{\sqrt{2}}{2} \mathbf{j}-\frac{\sqrt{2}}{2} \mathbf{k}$ the unit vector that is perpendicular to both \mathbf{u} and \mathbf{v}.

Definition (13) (Scalar triple product u. ($\mathbf{v} \times \mathbf{w}$)):

If \mathbf{u}, \mathbf{v} and \mathbf{w} are three vectors in 3-space (3D), then $\mathbf{u} .(\mathbf{v} \times \mathbf{w})$ is called the scalar triple product of \mathbf{u}, \mathbf{v} and \mathbf{w} and denoted by the following formula:

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\left|\begin{array}{lll}
u_{1} & u_{2} & u_{3} \tag{3}\\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
$$

Proof this formula:
We know that $\mathbf{v} \times \mathbf{w}=\left|\begin{array}{ccc}\boldsymbol{i} & \mathbf{j} & \boldsymbol{k} \\ v_{1} & v_{2} & v_{3} \\ w_{1} & w_{2} & w_{3}\end{array}\right|=\left|\begin{array}{cc}v_{2} & v_{3} \\ w_{2} & w_{3}\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}v_{1} & v_{3} \\ w_{1} & w_{3}\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}v_{1} & v_{2} \\ w_{1} & w_{2}\end{array}\right| \mathbf{k}$;
Thus, $\quad \mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\mathbf{u} \cdot\left(\left|\begin{array}{cc}v_{2} & v_{3} \\ w_{2} & w_{3}\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}v_{1} & v_{3} \\ w_{1} & w_{3}\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}v_{1} & v_{2} \\ w_{1} & w_{2}\end{array}\right| \mathbf{k}\right)$

$$
\begin{aligned}
& =\left|\begin{array}{cc}
v_{2} & v_{3} \\
w_{2} & w_{3}
\end{array}\right| u_{1}-\left|\begin{array}{cc}
v_{1} & v_{3} \\
w_{1} & w_{3}
\end{array}\right| u_{2}+\left|\begin{array}{cc}
v_{1} & v_{2} \\
w_{1} & w_{2}
\end{array}\right| u_{3} \\
& =\left|\begin{array}{ccc}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
\end{aligned}
$$

Example (50): Calculate the scalar triple product $\mathbf{u} .(\mathbf{v} \times \mathbf{w})$, where $\mathbf{u}=3 \mathbf{i}-2 \mathbf{j}-5 \mathbf{k}, \mathbf{v}=\mathbf{i}+4 \mathbf{j}$ $-4 \mathbf{k}$, and $\mathbf{w}=3 \mathbf{j}+2 \mathbf{k}$.

Solution:

$$
\begin{aligned}
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) & =\left|\begin{array}{rrr}
3 & -2 & -5 \\
1 & 4 & -4 \\
0 & 3 & 2
\end{array}\right| \\
& =3\left|\begin{array}{rr}
4 & -4 \\
3 & 2
\end{array}\right|-(-2)\left|\begin{array}{rr}
1 & -4 \\
0 & 2
\end{array}\right|+(-5)\left|\begin{array}{ll}
1 & 4 \\
0 & 3
\end{array}\right|
\end{aligned}
$$

Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $\mathbf{2}^{\text {st }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

$$
\begin{aligned}
& =60+4-15 \\
& =49
\end{aligned}
$$

Note: The symbol ($\mathbf{u} . \mathbf{v}$) $\times \mathbf{w}$ makes no sense because we cannot form the cross product of a scalar and a vector. Thus no problem arises if we write $\mathbf{u} . \mathbf{v} \times \mathbf{w}$ rather than $\mathbf{u} .(\mathbf{v} \cdot \mathbf{w})$.

Thus we can write the formula (3) in definition (13) (Scalar triple product) as follows:

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})=\mathbf{v} \cdot(\mathbf{w} \times \mathbf{u})
$$

$$
\text { or }(\mathbf{u} \times \mathbf{v}) . \mathbf{w}=\mathbf{u} .(\mathbf{v} \times \mathbf{w}) \text { (Dot product is Commutative process) }
$$

Example (51): If $\mathbf{u}=\langle 1,2,3\rangle, \mathbf{v}=\langle 2,1,1\rangle$, and $\mathbf{w}=\langle 1,1,0\rangle$, find each of the following separately to show that they are equal in all cases.

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}) ; \mathbf{w} \cdot(\mathbf{u} \times \mathbf{v}) ; \mathbf{v} \cdot(\mathbf{w} \times \mathbf{u})
$$

Solution:

$$
\begin{aligned}
& \mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\left|\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 1 \\
1 & 1 & 0
\end{array}\right|=4 \\
& \mathbf{w} \cdot(\mathbf{u} \times \mathbf{v})=4 \\
& (\text { Check }) \\
& \mathbf{v} \cdot(\mathbf{w} \times \mathbf{u})=4 \\
& \text { (Check) }
\end{aligned}
$$

Proof of Lagrange's identity:

Now we can proof Lagrange's identity (part c) in theorem (4) (Relationships involving cross product and dot product).

$$
\|\mathbf{u} \times \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2}
$$

Proof:
We know if \mathbf{v} is any vector (in 2-or 3-space), then the dot product $\mathbf{v} . \mathbf{v}=\|\mathbf{v}\|^{2}$.
Thus, $\|\mathbf{u} \times \mathbf{v}\|^{2}=(\mathbf{u} \times \mathbf{v}) .(\mathbf{u} \times \mathbf{v})$.
Since, $(\mathbf{u} \times \mathbf{v}) . \mathbf{w}=\mathbf{u} .(\mathbf{v} \times \mathbf{w}) ;($ scalar triple product $)$
Thus, $(\mathbf{u} \times \mathbf{v}) .(\mathbf{u} \times \mathbf{v})=\mathbf{u} \cdot[\mathbf{v} \times(\mathbf{u} \times \mathbf{v})]$;

Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $\mathbf{2}^{\text {st }}$.
The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Since, $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})=(\mathbf{u} \cdot \mathbf{w}) \mathbf{v}-(\mathbf{u} \cdot \mathbf{v}) \mathbf{w} \quad$ (relationships between cross and dot product) (part 4 theorem 4).

Thus, $(\mathbf{u} \times \mathbf{v}) \cdot(\mathbf{u} \times \mathbf{v})=\mathbf{u} \cdot[\mathbf{v} \times(\mathbf{u} \times \mathbf{v})]$

$$
\begin{aligned}
& =\mathbf{u} \cdot[(\mathbf{v} \cdot \mathbf{v}) \mathbf{u}-(\mathbf{v} \cdot \mathbf{u}) \mathbf{v}] \\
& =(\mathbf{v} \cdot \mathbf{v})(\mathbf{u} \cdot \mathbf{u})-(\mathbf{v} \cdot \mathbf{u})(\mathbf{v} \cdot \mathbf{u}) \\
& =\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{v} \cdot \mathbf{u})^{2} .
\end{aligned}
$$

Geometric interpretation of cross product:

If \mathbf{u} and \mathbf{v} are two nonzero vectors in 3-space(3D), then the norm of $\mathbf{u} \times \mathbf{v}$ has a useful geometric explanation.

The magnitude (norm) or length of $u \times v$:
Using LaGrange's identity,

$$
\begin{equation*}
\|\mathbf{u} \times \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-(\mathbf{u} \cdot \mathbf{v})^{2} \tag{1}
\end{equation*}
$$

If θ denotes the angle between two vectors \mathbf{u} and \mathbf{v}, then
The dot product of the two vectors \mathbf{u} and \mathbf{v} is,

$$
\begin{equation*}
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta \tag{2}
\end{equation*}
$$

(1) in (2) we obtain:

$$
\begin{aligned}
\|\mathbf{u} \times \mathbf{v}\|^{2} & =\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}-\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2} \cos ^{2} \theta \\
& =\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2}\left(1-\cos ^{2} \theta\right) \\
& =\|\mathbf{u}\|^{2}\|\mathbf{v}\|^{2} \sin ^{2} \theta \quad \ldots(3)
\end{aligned}
$$

Since $0 \leq \theta \leq \pi$, it is follows that $\sin \theta \geq 0$.
Taking the square root for two sides of (3), we obtain:

$$
\begin{equation*}
\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta \tag{4}
\end{equation*}
$$

We note that the two vectors \mathbf{u} and \mathbf{v} are parallel if and only if $\mathbf{u} \times \mathbf{v}=0$, because by the formula (4) we obtain:

Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $\mathbf{2}^{\text {st }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim
$\sin \theta=\frac{\|\mathbf{u} \times \mathbf{v}\|}{\|\mathbf{u}\|\|\mathbf{v}\|},\|\mathbf{u}\|\|\mathbf{v}\|>0$ because \mathbf{u} and \mathbf{v} are nonzero vectors.
Thus $\sin \theta=0 \rightarrow \theta=0$ and the two vectors are parallel.

The norm of $u \times v$ and applications:

In the figure (37) below, we easily note that $\|\mathbf{v}\| \sin \theta$ is the altitude (height) of the parallelogram determined by \mathbf{u} and \mathbf{v}.

Figure 37

$$
\|\mathbf{v}\| \sin \theta \text { is the altitude of the parallelogram. }
$$

Thus, the formula (4) above represent the area A of the parallelogram.
The area of the parallelogram $\left(A_{\mathrm{P}}\right)=($ base $)$ (altitude $)=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta=\|\mathbf{u} \times \mathbf{v}\|$.
Therefore we note that the area of the parallelogram determined by \mathbf{u} and \mathbf{v} is zero when these vectors are parallel (or collinear) because $\theta=0$ and this leads to $\mathbf{u} \times \mathbf{v}=0$.

Applications of cross product:

1) To find the area of the parallelogram.

Theorem (5): The area of parallelogram determined by two vectors in 3-space, is the magnitude (length) of the cross product of these vectors.

Or (if \mathbf{u} and \mathbf{v} are vectors in 3-space, then $\|\mathbf{u} \times \mathbf{v}\|$ is equal to the area of the parallelogram determined by \mathbf{u} and \mathbf{v}.

If we have the parallelogram denoted by the vectors $\overrightarrow{P_{1} P_{2}}$ and $\overrightarrow{P_{1} P_{3}}$ as shown in (figure 38):

Ministry of Higher Education \& Scientific Research University of Anbar College of Science
Department of Applied
Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $\mathbf{2}^{\text {st }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

Figure 38
The parallelogram determined by two vectors

We know that the area of the parallelogram $A_{\mathrm{P}}=($ base $)($ altitude $)=b h$.
The length of the vector $\overrightarrow{P_{1} P_{2}}$ represents the base of the parallelogram, thus

$$
A_{\mathrm{P}}=\left\|\overrightarrow{P_{1} P_{2}}\right\| h, \quad\left(\left\|\overrightarrow{P_{1} P_{2}}\right\|=\left\|P_{2}-P_{1}\right\|\right)
$$

Since, $\sin \theta=\frac{h}{\left\|\overrightarrow{P_{1} P_{3}}\right\|} \rightarrow h=\left\|\overrightarrow{P_{1} P_{3}}\right\| \sin \theta, \quad\left(\left\|\overrightarrow{P_{1} P_{3}}\right\|=\left\|P_{3}-P_{1}\right\|\right)$
Therefore,

$$
A_{\mathrm{P}}=\left\|\overrightarrow{P_{1} P_{2}}\right\|\left\|\overrightarrow{P_{1} P_{3}}\right\| \sin \theta
$$

Since $\left\|\overrightarrow{P_{1} P_{2}}\right\|\left\|\overrightarrow{P_{1} P_{3}}\right\| \sin \theta$ represents the length (magnitude) of $\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}$, according to the formula (4), then the area of the parallelogram is:
2) To find the area of $\operatorname{tr} A_{\mathrm{P}}=\left\|\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}\right\|$

If we have the triangle determined by the points P_{1}, P_{2}, and P_{3} as shown in figure (39), then we can find the area of this triangle using the concepts of vectors.

Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

Figure 39
The area of the triangle $A_{\mathrm{T}}=\frac{1}{2}$ (base)(height)

$$
=\frac{1}{2} b h
$$

The length of the vector $\overrightarrow{P_{1} P_{2}}$ represents the base of the triangle, thus

$$
A_{\mathrm{T}}=\frac{1}{2}\left\|\overrightarrow{P_{1} P_{2}}\right\| h,\left\|\overrightarrow{P_{1} P_{2}}\right\|=\left\|P_{2}-P_{1}\right\|
$$

Since, $\sin \theta=\frac{h}{\left\|\overrightarrow{P_{1} P_{3}}\right\|} \rightarrow h=\left\|\overrightarrow{P_{1} P_{3}}\right\| \sin \theta, \quad\left\|\overrightarrow{P_{1} P_{3}}\right\|=\left\|P_{3}-P_{1}\right\|$
Thus,

$$
A_{\mathrm{T}}=\frac{1}{2}\left\|\overrightarrow{P_{1} P_{2}}\right\|\left\|\overrightarrow{P_{1} P_{3}}\right\| \sin \theta
$$

Since $\left\|\overrightarrow{P_{1} P_{2}}\right\|\left\|\overrightarrow{P_{1} P_{3}}\right\| \sin \theta$ represents the length (magnitude) of $\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}$, according to the formula (4), then, the area of the triangle is:

$$
A_{\mathrm{T}}=\frac{1}{2}\left\|\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}\right\|
$$

We note that the area of the parallelogram A_{P} is equal multiple the area of the triangle and that means,

$$
A_{\mathrm{P}}=2 A_{\mathrm{T}}
$$

Example (52): Find the area of the parallelogram determined by $\overrightarrow{P_{1} P_{2}}$ and $\overrightarrow{P_{1} P_{3}}$, if $P_{1}=(2,2,0)$, $P_{2}=(-1,0,2)$ and $P_{3}=(0,4,3)$.

Solution: we must find the area of the parallelogram in figure (40).

Ministry of Higher Education \& Scientific Research University of Anbar
College of Science
Department of Applied
Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $\mathbf{2}^{\text {st. }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

Figure 40
$A_{\mathrm{P}}=\left\|\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}\right\|$
$\overrightarrow{P_{1} P_{2}}=P_{2}-P_{1}=(-1,0,2)-(2,2,0)=\langle-3,-2,2\rangle ;$
$\overrightarrow{P_{1} P_{3}}=P_{3}-P_{1}=(0,4,3)-(2,2,0)=\langle-2,2,3\rangle ;$
Now we must find $\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}$.

$$
\begin{aligned}
\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}=\left|\begin{array}{rrr}
\mathbf{i} & \mathbf{j} & \boldsymbol{k} \\
-3 & -2 & 2 \\
-2 & 2 & 3
\end{array}\right| & =\left|\begin{array}{rr}
-2 & 2 \\
2 & 3
\end{array}\right| \mathbf{i}-\left|\begin{array}{ll}
-3 & 2 \\
-2 & 3
\end{array}\right| \mathbf{j}+\left|\begin{array}{lr}
-3 & -2 \\
-2 & 2
\end{array}\right| \mathbf{k} \\
& =(-6-4) \mathbf{i}-(-9+4) \mathbf{j}+(-6-4) \mathbf{k} \\
& =-10 \mathbf{i}+5 \mathbf{j}-10 \mathbf{k} \\
\mathrm{Or} & =\langle-10,5,-10\rangle \\
A_{\mathrm{P}} & =\left\|\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}\right\| \\
& =\sqrt{(-10)^{2}+5^{2}+(-10)^{2}} \\
& =\sqrt{225} \\
& =15 \text { the area of the parallelogram. }
\end{aligned}
$$

Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: $2^{\text {st }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

Example (53): Find the area of the triangle determined by the points, $P_{1}=(2,2,0), P_{2}=(-1,0$, 2) and $P_{3}=(0,4,3)$.

Solution:

$$
A_{\mathrm{T}}=\frac{1}{2}\left\|\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}\right\|
$$

Since we use the same points in example (52), therefore $\left\|\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}\right\|=15$, and

$$
A_{\mathrm{T}}=\frac{1}{2}\left\|\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}\right\|=\frac{1}{2}(15)=7.5 \text { the area of the triangle. }
$$

Or directly using the formula, $A_{\mathrm{P}}=2 A_{\mathrm{T}} \rightarrow A_{\mathrm{T}}=\frac{1}{2} A_{\mathrm{P}}$, if it is required for the same points to find the area of the tringle and parallelogram.

Now we can formulate the following questions:
Question (1): Derive the formula that used to find the area of the parallelogram determined by two vectors.

Question (2): Derive the formula that used to find the area of the triangle determined by three points.

References

1- Introductory linear algebra with applications, Bernard Kolman, first edition, 1976.
2- Elementary Linear Algebra Subsequent Edition, Arthur Wayne Roberts,1985.
3- Elementary Linear Algebra, Ninth Edition, Howard Anton, Chris Rorres, 2005.
4- Student Solutions Manuals for use with College Algebra with Trigonometry: graphs and models, by Raymond A. Barnett, Michael R. Ziegler and Karl E. Byleen, 2005.

