Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics

lectures
Subject: Vector analysis.
2020-2021.
Stage: $2^{\text {st }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

vector spaces:

Definition (1): Let V be an arbitrary nonempty set of objects on which two operations are defined, addition and multiplication by scalars (numbers), that is If \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors in V and k, c are any scalars in \mathbb{R}, then if the addition of two vectors $\mathbf{u}+\mathbf{v}$ (is called the sum of \mathbf{u} and \mathbf{v}) and the scalar multiplication $k \mathbf{u}$ (is called the scalar multiple of \mathbf{u} by k) are defined then we call V (the set of vectors) or (V, \oplus, \odot) is a vector space if the following ten vector space axioms are satisfied.

The notations \oplus and \odot for vector addition and scalar multiplication to distinguish these operations from addition and multiplication of real numbers.

Five addition axioms:

1- If \mathbf{u} and \mathbf{v} are two vectors in V, then $\mathbf{u}+\mathbf{v} \in V$ (Closed under addition).
2- $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ (Commutative).
3- $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$ (Associative).
4- \exists zero vector $\mathbf{0}$ (an addition identity) in V such that, for all $\mathbf{u} \in V, \mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5- $\forall \mathbf{u} \in V, \exists-\mathbf{u} \in V$ (the negative (or an additive inverse) of \mathbf{u}) such that, $\mathbf{u}+(-\mathbf{u})=(-\mathbf{u})+\mathbf{u}=$ 0.

Five scalar multiplication axioms:

6- If k is any scalar $(k \in \mathbb{R})$ and $\mathbf{u} \in V$, then $k \mathbf{u} \in V$ (Closed under scalar multiplication).
7- $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v}$ (Distributive).
$8-(k+c) \mathbf{u}=k \mathbf{u}+c \mathbf{u}$.
9- $(k c) \mathbf{u}=k(c \mathbf{u})=c(k \mathbf{u})$.
$10-1 \mathbf{u}=\mathbf{u}$.
Note: Depending on the application, scalars may be real numbers or complex numbers. Vector spaces in which the scalars are complex numbers are called complex vector spaces, and those in which the scalars are real numbers are called real vector spaces, which are the subject of our study at the present time.

Examples of vector spaces:

- $\quad \mathbb{R}$ The set of real numbers.
- $\quad \mathbb{R}^{2}$ The set of all ordered pairs (or ordered 2-tuples) of real numbers (the vectors in the plane (2-space)).
- \mathbb{R}^{3} The set of all ordered triple (ordered 3-tuples) of real numbers (the vectors in 3-space).
- $\quad \mathbb{R}^{n}$ The set of all ordered n-tuples of real numbers.
- \mathbb{C}^{n} The set of all n-tuples of complex numbers.
- $\quad P_{n}$ The set of all polynomials of degree $\leq \mathrm{n}$.
- $\quad M_{m \times n}(\mathbb{R})$ The set of all $m \times n$ matrices.
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics
- $\quad M_{n}(\mathbb{R})$ The set of all $\mathrm{n} \times \mathrm{n}$

lectures Subject: Vector analysis. 2020-2021.
 Stage: $2^{\text {st }}$.
 The lecturer: Assist. Prof. Dr.
 Ali Rashid Ibrahim

square matrices.

- $\quad C^{k}[a, b]$ the set of all continuous functions defined on $[a, b]$ that have at least k continuous derivatives.

Example (1): Show that $V=P_{2}$ (the set of all real valued polynomials of degree ≤ 2) and $F=\mathbb{R}$ (real numbers) with standard definition and scalar multiplication, forms a vector space.

Solution (proof):
The vectors can be written in the form of polynomials with degree at most 2 , as $a_{0}+a_{1} x+a_{2} x^{2}$, where a_{2}, a_{1}, and $a_{0} \in \mathbb{R}$. Let $\boldsymbol{p}(x)$ and $\boldsymbol{q}(x)$ are two polynomials $\in \mathrm{P}_{2}$. At first we must show that the vector addition $\boldsymbol{p}+\boldsymbol{q}$ (polynomial addition) and scalar multiplication $k \boldsymbol{p}$ (multiplying a polynomial by a scalar) are defined, where k is any scalar in \mathbb{R}, and after that we show whether P_{2} is a vector space if and only if the five addition axioms and the five scalar multiplication are satisfied.

Let $\boldsymbol{p}(x)=a_{0}+a_{1} x+a_{2} x^{2}$ and $\boldsymbol{q}(x)=b_{0}+b_{1} x+b_{2} x^{2}$ are two polynomials in P_{2}, where $a_{0}, a_{1}, a_{2}, b_{0}$, b_{1}, and $b_{2} \in \mathbb{R}$, and let k is any scalar $\in \mathbb{R}$, then

$$
\boldsymbol{p}(x)+\boldsymbol{q}(x)=\boldsymbol{p}+\boldsymbol{q}(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2} .
$$

Since, $a_{0}+b_{0}, a_{1}+b_{1}$ and $a_{2}+b_{2}$ are scalars $\in \mathbb{R}$ and the set of all real valued polynomials of degree ≤ 2, then $\boldsymbol{p}+\boldsymbol{q} \in P_{2}$ for all these scalars. (Closed under addition)

$$
k \boldsymbol{p}(x)=k\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=k a_{0}+k a_{1} x+k a_{2} x^{2} .
$$

Since, $k a_{0}, k a_{1}$, and $k a_{2}$ are scalars $\in \mathbb{R}$, then $k p \in P_{2}$. (Closed under scalar multiplication)
Now we must show whether the 10 axioms are satisfied.

The five addition axioms:

1) $\boldsymbol{p}+\boldsymbol{q} \in P_{2}$? We showed it above.
2) $\boldsymbol{p}+\boldsymbol{q}=\boldsymbol{q}+\boldsymbol{p}$?
$\boldsymbol{p}+\boldsymbol{q}=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}$ $=\left(b_{0}+a_{0}\right)+\left(b_{1}+a_{1}\right) x+\left(b_{2}+a_{2}\right) x^{2}$ (The addition operation is commutative). $=\boldsymbol{q}+\boldsymbol{p}$.
3) If $\boldsymbol{r}(x)=r_{0}+r_{1} x+r_{2} x^{2}$ is any polynomial $\in P_{2}$, then

$$
(\boldsymbol{p}+\boldsymbol{q})+\boldsymbol{r}=\boldsymbol{p}+(\boldsymbol{q}+\boldsymbol{r}) ?
$$

$$
(\boldsymbol{p}+\boldsymbol{q})+\boldsymbol{r}=\left[\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}\right]+r_{0}+r_{1} x+r_{2} x^{2}
$$

$$
=\left(\left(a_{0}+b_{0}\right)+r_{0}\right)+\left(\left(a_{1}+b_{1}\right)+r_{1}\right) x+\left(\left(a_{2}+b_{2}\right)+r_{2}\right) x^{2}
$$

$$
=\left(a_{0}+\left(b_{0}+r_{0}\right)\right)+\left(a_{1}+\left(b_{1}+r_{1}\right)\right) x+\left(a_{2}+\left(b_{2}+r_{2}\right)\right) x^{2} \text { (Associative). }
$$

$$
=a_{0}+a_{1} x+a_{2} x^{2}+\left[\left(b_{0}+r_{0}\right)+\left(b_{1}+r_{1}\right) x+\left(b_{2}+r_{2}\right) x^{2}\right]
$$

$$
=p+(q+r)
$$

4) If $\mathbf{0}=d_{0}+d_{1} x+d_{2} x^{2}$ is a zero polynomial $\in P_{2}$, such that $d_{0}=d_{1}=d_{2}=0$, , then

Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics

$$
\begin{aligned}
& \mathbf{0}+\boldsymbol{p}(x)=\boldsymbol{p} ? \\
& \begin{aligned}
\mathbf{0}+\boldsymbol{p} & =\left(0+a_{0}\right)+\left(0+a_{1}\right) x+\left(0+a_{2}\right) x^{2} \\
& =a_{0}+a_{1} x+a_{2} x^{2} \\
& =\boldsymbol{p} .
\end{aligned} .
\end{aligned}
$$

5) If $-\boldsymbol{p}(x)=-a_{0}-a_{1} x-a_{2} x^{2}$ is any polynomial $\in \mathrm{P}_{2}$, then

$$
\boldsymbol{p}(x)+(-\boldsymbol{p}(x))=\mathbf{0} ?
$$

$$
\boldsymbol{p}(x)+(-\boldsymbol{p}(x))=\left(a_{0}-a_{0}\right)+\left(a_{1}-a_{1}\right) x+\left(a_{2}-a_{2}\right) x^{2}
$$

$$
\text { = } \mathbf{0} \text { zero polynomial. }
$$

Five scalar multiplication axioms:

6) For all $k \in \mathbb{R}$ and $\boldsymbol{p}(x) \in \mathrm{P}_{2}, k \boldsymbol{p}(x) \in P_{2}$? We showed it above.
7) $k(\boldsymbol{p}+\boldsymbol{q})=k \boldsymbol{p}+k \boldsymbol{q}$? $(k$ is any scalar $\in \mathbb{R})$

$$
\begin{aligned}
k(\boldsymbol{p}+\boldsymbol{q}) & =k\left[\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}\right] \\
& =k\left(a_{0}+b_{0}\right)+k\left(a_{1}+b_{1}\right) x+k\left(a_{2}+b_{2}\right) x^{2} \\
& =\left(k a_{0}+k b_{0}\right)+\left(k a_{1}+k b_{1}\right) x+\left(k a_{2}+k b_{2}\right) x^{2} \\
& =\left(k a_{0}+k a_{1} x+k a_{2} x^{2}\right)+\left(k b_{0}+k b_{1} x+k b_{2} x^{2}\right) \\
& =k \boldsymbol{p}+k \boldsymbol{q} .
\end{aligned}
$$

8) If k and c are any scalars $\in \mathbb{R}$, then $(k+c) \boldsymbol{p}(x)=k \boldsymbol{p}(x)+c \boldsymbol{p}(x)$?

$$
\begin{aligned}
(k+c) \boldsymbol{p}(x) & =(k+c)\left(a_{0}+a_{1} x+a_{2} x^{2}\right) \\
& =(k+c) a_{0}+(k+c) a_{1} x+(k+c) a_{2} x^{2} \\
& =k a_{0}+c a_{0}+k a_{1} x+c a_{1} x+k a_{2} x^{2}+c a_{2} x^{2} \\
& =\left(k a_{0}+k a_{1} x+k a_{2} x^{2}\right)+\left(c a_{0}+c a_{1} x+c a_{2} x^{2}\right) \\
& =k \boldsymbol{p}(x)+c \boldsymbol{p}(x) .
\end{aligned}
$$

9) $(k c) \boldsymbol{p}(x)=k(c \boldsymbol{p}(x))$?

$$
\begin{aligned}
(k c) \boldsymbol{p}(x) & =k c\left(a_{0}+a_{1} x+a_{2} x^{2}\right) \\
& =k\left(c a_{0}+c a_{1} x+c a_{2} x^{2}\right) \\
& =k(c \boldsymbol{p}(x)) .
\end{aligned}
$$

10) $1 \boldsymbol{p}(x)=\boldsymbol{p}(x)$?

$$
\begin{aligned}
1 \boldsymbol{p}(x) & =1\left(a_{0}+a_{1} x+a_{2} x^{2}\right) \\
& =a_{0}+a_{1} x+a_{2} x^{2} \\
& =\boldsymbol{p}(x) .
\end{aligned}
$$

The 10 axioms are satisfied, therefore P_{2} is a vector space.
Example (2): Determine whether the set V of all vectors in \mathbb{R}^{2} (2-space) of the form $\left[\begin{array}{l}x \\ x\end{array}\right]$ with the usual definition of vector addition and scalar multiplication is a vector space.

Proof:
Let $\mathbf{u}=\left[\begin{array}{l}x \\ x\end{array}\right]=, \mathbf{v}=\left[\begin{array}{l}y \\ y\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}z \\ z\end{array}\right]$ are vectors $\in V, k$ and c are any scalars $\in \mathbb{R}$.

Ministry of Higher Education

\& Scientific Research
lectures
University of Anbar
College of Science
Department of Applied
Mathematics
$\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}x+y \\ x+y\end{array}\right] \in V . \underline{(\text { Closed }}$

Subject: Vector analysis.
2020-2021.
Stage: $\mathbf{2}^{\text {st. }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim
$k \mathbf{u}=k\left[\begin{array}{l}x \\ x\end{array}\right]=\left[\begin{array}{l}k x \\ k x\end{array}\right] \in V .\left(\begin{array}{l}\text { (Closed under scalar multiplication })\end{array}\right.$

1) $\mathbf{u}+\mathbf{v} \in V$ as shown above.
2) $\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}x+y \\ x+y\end{array}\right]=\left[\begin{array}{l}y+x \\ y+x\end{array}\right]=\mathbf{v}+\mathbf{u}$.
3) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\left[\begin{array}{l}x+y \\ x+y\end{array}\right]+\left[\begin{array}{l}z \\ z\end{array}\right]=\left[\begin{array}{l}(x+y)+z \\ (x+y)+z\end{array}\right]=\left[\begin{array}{l}x+(y+z) \\ x+(y+z)\end{array}\right]=\left[\begin{array}{l}x \\ x\end{array}\right]+\left[\begin{array}{l}y+z \\ y+z\end{array}\right]=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
4) If $\mathbf{0}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, then $\mathbf{u}+\mathbf{0}=\left[\begin{array}{l}x+0 \\ x+0\end{array}\right]=\left[\begin{array}{l}x \\ x\end{array}\right]=\mathbf{u}$.
5) For every $\mathbf{u} \in V \exists-\mathbf{u}$, such that $\mathbf{u}+(-\mathbf{u})=\left[\begin{array}{l}x \\ x\end{array}\right]+\left[\begin{array}{l}-x \\ -x\end{array}\right]=\left[\begin{array}{l}x-x \\ x-x\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]=\mathbf{0}$ zero vector.
6) $k \mathbf{u} \in V$ as shown above.
7) $k(\mathbf{u}+\mathbf{v})=k\left[\begin{array}{l}x+y \\ x+y\end{array}\right]=\left[\begin{array}{l}k(x+y) \\ k(x+y)\end{array}\right]=\left[\begin{array}{l}k x+k y \\ k x+k y\end{array}\right]=\left[\begin{array}{l}k x \\ k x\end{array}\right]+\left[\begin{array}{l}k y \\ k y\end{array}\right]=k \mathbf{u}+k \mathbf{v}$.
8) $(k+c) \mathbf{u}=(k+c)\left[\begin{array}{l}x \\ x\end{array}\right]=\left[\begin{array}{l}(k+c) x \\ (k+c) x\end{array}\right]=\left[\begin{array}{l}k x+c x \\ k x+c x\end{array}\right]=\left[\begin{array}{l}k x \\ k x\end{array}\right]+\left[\begin{array}{l}c x \\ c x\end{array}\right]=k \mathbf{u}+c \mathbf{u}$.
9) $k(c \mathbf{u})=k\left[\begin{array}{l}c x \\ c x\end{array}\right]=\left[\begin{array}{l}k(c x) \\ k(c x)\end{array}\right]=\left[\begin{array}{l}(k c) x) \\ (k c) x)\end{array}\right]=k c\left[\begin{array}{l}x \\ x\end{array}\right]=(k c) \mathbf{u}$.
10) $1 \mathbf{u}=1\left[\begin{array}{l}x \\ x\end{array}\right]=\left[\begin{array}{l}x \\ x\end{array}\right]=\mathbf{u}$.

The 10 axioms are satisfied; therefore, V is a vector space.
Example (3): Show whether $V=\left\{\left[\begin{array}{l}x \\ x\end{array}\right]: x \geq 0\right.$ and $\left.y \geq 0\right\}$ is a vector space.
Proof:
Let $\mathbf{u}=\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right], \mathbf{v}=\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right] \in V$, such that x_{1}, y_{1}, x_{2} and $y_{2} \geq 0$, then

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]+\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+x_{2} \\
y_{1}+y_{2}
\end{array}\right] \in V \text {, because } x_{1}+x_{2} \text { and } y_{1}+y_{2} \geq 0
$$

Therefore, V is closed under addition.
Let k any scalar $\in \mathbb{R}$, then

$$
k \mathbf{u}=k\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]=\left[\begin{array}{l}
k x_{1} \\
k y_{1}
\end{array}\right] \notin V \text {, because } k x_{1}, k y_{1}<0 \text { when } k \text { is negative. }
$$

Therefore, V is not closed under multiplication by scalar, hence V is not a vector space.

Ministry of Higher Education

\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics
Example (4): Determine, whether

lectures
Subject: Vector analysis.
2020-2021.
Stage: $\mathbf{2}^{\text {st. }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim
the set S of all 2-nd degree polynomials (degree only 2), is a vector space.

Proof:

Let $\boldsymbol{p}(x)=a_{0}+a_{1} x+a_{2} x^{2}$ and $\boldsymbol{q}(x)=b_{0}+b_{1} x+b_{2} x^{2}$ are two polynomials in P_{2}, where $a_{0}, a_{1}, a_{2}, b_{0}$, b_{1}, and $b_{2} \in \mathbb{R}$, then

$$
\boldsymbol{p}(x)+\boldsymbol{q}(x)=\boldsymbol{p}+\boldsymbol{q}(x)=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2} .
$$

Since, $a_{0}+b_{0}, a_{1}+b_{1}$ and $a_{2}+b_{2}$ are scalars $\in \mathbb{R}$ and S is the set of all real valued polynomials of second degree, then $\boldsymbol{p}+\boldsymbol{q} \notin P_{2}$ for all these scalars because, if $a_{2}=-b_{2}$, then we obtain a polynomial that is not from the second degree but, from the first degree, therefore, the set S is not Closed under addition, hence S is not a vector space.

For example: If $\boldsymbol{p}(x)=2 x^{2}+x+5$ and $\boldsymbol{q}(x)=-2 x^{2}+3 x-7$ are two polynomials in S, then

$$
\begin{aligned}
\boldsymbol{p}(x)+\boldsymbol{q}(x) & =2 x^{2}+x+5+\left(-2 x^{2}+3 x-7\right) \\
& =4 x-2 \notin S .
\end{aligned}
$$

Example (5): Let $M=\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \in \mathbb{R}^{3}:(a-b) c=0\right\}$, find two nonzero elements (vectors) of M and show M is not closed under vector addition.

Solution:
Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$ are two vectors in M, such that $(1-1) 1=0$ and $(1-2) 0=0$.

$$
\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right] \notin M \text {, since }(2-3) 1=-1 \neq 0
$$

Therefore, M is not closed under vector addition.
Example (6): Let $S=\left\{\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3}: 2 x_{1}-3 x_{2}^{3}+4 x_{3}^{2}=0\right\}$, find nonzero vectors of S to show whether S is not a vector space.

Solution:
Let $\mathbf{u}=\left[\begin{array}{l}4 \\ 2 \\ 2\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right] \in S$, such that

Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics
$2(4)-3(2)^{3}+4(2)^{2}=0$ and

lectures
Subject: Vector analysis.
2020-2021.
Stage: $\mathbf{2}^{\text {st }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim
$\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}4 \\ 2 \\ 2\end{array}\right]+\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 2 \\ 3\end{array}\right] \notin M$, since $2(2)-3(2)^{3}+4(3)^{2}=16 \neq 0$.
Therefore, S is not closed under vector addition, hence S is not a vector space.
Example (7): Let $S=\left\{\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3}: 2 x_{1}-3 x_{2}^{3}+4 x_{3}^{2}=0\right\}$, find nonzero vector of S to show S is not closed under multiplication by scalar. (Homework).

Example (8): If V the set of all vectors of the form $\left[\begin{array}{l}x \\ y\end{array}\right]$ in \mathbb{R}^{2} (2-space or $x y$-plane), such that $x y \geq 0$, find nonzero vector of V to show whether V is a vector space. (Homework).

Example (9): Show that the set V of all 2×2 matrices with real entries is a vector space if addition is defined to be matrix addition and scalar multiplication is defined to be matrix scalar multiplication. (Homework).

Example (10): Show that \mathbb{R}^{n} is a vector space. (Homework).

Subspaces:

Definition (2): A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and scalar multiplication defined on V.

Theorem (11): If W is a set of one or more vectors from a vector space V, then W is a subspace of V if and only if the following conditions holds.
a) If \mathbf{u} and \mathbf{v} are vectors in W, then $\mathbf{u}+\mathbf{v} \in W$.
b) If k is any scalar $\in \mathbb{R}$ and \mathbf{u} is any vector $\in W$, then $k \mathbf{u} \in W$.

That means the subset W is closed under addition and closed under scalar multiplication.
Example (11): Let W be the subset of a vector space V, which is consist of all 2×3 matrices of the form $\left[\begin{array}{lll}a & b & 0 \\ 0 & c & d\end{array}\right]$, where a, b, c, and $d \in \mathbb{R}$, prove that W is a subspace of V.

Proof:

1) Let $\mathbf{u}=\left[\begin{array}{ccc}a_{1} & b_{1} & 0 \\ 0 & c_{1} & d_{1}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{ccc}a_{2} & b_{2} & 0 \\ 0 & c_{2} & d_{2}\end{array}\right]$ are any two vectors in W, then we must show that $\mathbf{u}+\mathbf{v} \in W$.
$\mathbf{u}+\mathbf{v}=\left[\begin{array}{ccc}a_{1}+a_{2} & b_{1}+b_{2} & 0+0 \\ 0+0 & c_{1}+c_{2} & d_{1}+d_{2}\end{array}\right]=\left[\begin{array}{ccc}a_{1}+a_{2} & b_{1}+b_{2} & 0 \\ 0 & c_{1}+c_{2} & d_{1}+d_{2}\end{array}\right] ;$

Ministry of Higher Education
\& Scientific Research
University of Anbar
College of Science
Department of Applied
Mathematics
Since, $a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+$

lectures
Subject: Vector analysis.
2020-2021.
Stage: $2^{\text {st. }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim
c_{2}, and $d_{1}+d_{2}$ are scalars $\in \mathbb{R}$ and the vector form resulting from the sum of the two vectors in W has the same form as the vectors in W. Therefore, $\mathbf{u}+\mathbf{v} \in W$, hence, W is closed under addition.
2) Let k is any scalar $\in \mathbb{R}$ and $\mathbf{u} \in W$, then we must show that $k \mathbf{u} \in W$.

$$
k \mathbf{u}=k\left[\begin{array}{ccc}
a_{1} & b_{1} & 0 \\
0 & c_{1} & d_{1}
\end{array}\right]=\left[\begin{array}{ccc}
k a_{1} & k b_{1} & 0 \\
0 & k c_{1} & k d_{1}
\end{array}\right]
$$

Since, $k a_{1}, k b_{1}, k c_{1}$, and $k d_{1}$ are scalars $\in \mathbb{R}$ and the vector form resulting from the multiplication of the vector in W by scalar has the same form as the vectors in W, then $k \mathbf{u} \in W$. Thus, W is closed under scalar multiplication. Hence, W is a subspace of V.

Example (12): Let S be the subset of \mathbb{R}^{3}, which is consisting from all the vectors of the form $<a$, $b, 1>$, where $a, b \in \mathbb{R}$, show whether the subset S is a subspace of \mathbb{R}^{3}.

Or: $S=\left\{<a, b, 1>\in \mathbb{R}^{3}: a, b, \in \mathbb{R}\right\}$
Proof:

1) Let $\mathbf{u}=\left\langle a_{1}, b_{1}, 1\right\rangle$ and $\mathbf{v}=\left\langle a_{2}, b_{2}, 1\right\rangle \in S$, then we must show that $\mathbf{u}+\mathbf{v} \in S$.
$\mathbf{u}+\mathbf{v}=\left\langle a_{1}, b_{1}, 1\right\rangle+\left\langle a_{2}, b_{2}, 1\right\rangle=\left\langle a_{1}+a_{2}, b_{1}+b_{2}, 2\right\rangle$
$a_{1}+a_{2}$ and $b_{1}+b_{2} \in \mathbb{R}$, but the vector form resulting from the sum of the two vectors in S
does not have the same form as the vectors in S, because the third component is not equal to 1 , thus $\mathbf{u}+\mathbf{v} \notin S$, therefore, S is not closed under addition.
Hence, S is not a subspace of \mathbb{R}^{3}.

References

1- Introductory linear algebra with applications, Bernard Kolman, first edition, 1976.
2- Elementary Linear Algebra Subsequent Edition, Arthur Wayne Roberts,1985.
3- Elementary Linear Algebra, Ninth Edition, Howard Anton, Chris Rorres, 2005.
4- Student Solutions Manuals for use with College Algebra with Trigonometry: graphs and models, by Raymond A. Barnett, Michael R. Ziegler and Karl E. Byleen, 2005.

