

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Linear combination:

Definition (3): A vector *W* is called **linear combination** of the vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r$, if it can be expressed in the following form,

 $W = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \ldots + k_r \mathbf{v}_r \quad \ldots \quad (1)$

Where, k_1, k_2, \ldots, k_r , are scalars ($\in \mathbb{R}$).

<u>Note</u>: If r=1, then the equation (1), reduced to $W=k_1\mathbf{v}_1$, W is a linear combination of a single vector \mathbf{v}_1 if it a scalar multiple of \mathbf{v}_1 .

(Vectors in \mathbb{R}^3 are a linear combination of i, j, and k.)

Every vector $\mathbf{v} = \langle a, b, c \rangle$ in \mathbb{R}^3 is expressible as a linear combination of the standard basis vectors $\mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{j} = \langle 0, 1, 0 \rangle$, and $\mathbf{k} = \langle 0, 0, 1 \rangle$

$$\mathbf{v} = \langle a, b, c \rangle = a \langle 1, 0, 0 \rangle + b \langle 0, 1, 0 \rangle + c \langle 0, 0, 1 \rangle$$

= $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$

Also for the vectors in \mathbb{R}^2 .

 $\mathbf{v} = \langle a, b \rangle = a \langle 1, 0 \rangle + b \langle 0, 1 \rangle$ = $a\mathbf{i} + b\mathbf{j}$

Example (1): Show that the vector $\mathbf{w}_1 = \langle 9, 2, 7 \rangle$ is a linear combination of the vectors $\mathbf{u} = \langle 1, 2, -1 \rangle$ and $\mathbf{v} = \langle 6, 4, 2 \rangle$ in \mathbb{R}^3 , and $\mathbf{w}_2 = \langle 4, -1, 8 \rangle$ is not a linear combination of these vectors.

Solution:

 $\mathbf{w}_1 = k_1 \mathbf{u} + k_2 \mathbf{v}, k_1 \text{ and } k_2 \in \mathbb{R}.$

<9, 2, 7>=
$$k_1$$
<1, 2, -1> + k_2 <6, 4, 2>
= $\langle k_1, 2k_1, -k_1 \rangle$ + $\langle 6 k_2, 4k_2, 2 k_2 \rangle$
= $\langle k_1 + 6 k_2, 2k_1 + 4k_2, -k_1 + 2 k_2 \rangle$

and, $k_1 + 6 k_2 = 9$

$$2k_1 + 4k_2 = 2$$

 $-k_1 + 2 k_2 = 7$

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

We obtain a system of linear equations and we can solve this system using Gauss-Jordan elimination method.

$$\begin{bmatrix} 1 & 6 & 9 \\ 2 & 4 & 2 \\ -1 & 2 & 7 \end{bmatrix} -R_1 + R_2 \rightarrow R_2, \text{ and } R_1 + R_3 \rightarrow R_3 \sim \begin{bmatrix} 1 & 6 & 9 \\ 0 & -8 & -16 \\ 0 & 8 & 16 \end{bmatrix} - \frac{1}{8}R_2 \rightarrow R_2$$
$$\begin{bmatrix} 1 & 6 & 9 \\ 0 & 1 & 2 \\ 0 & 8 & 16 \end{bmatrix} - 6R_2 + R_1 \rightarrow R_1 \text{ and } -8R_2 + R_3 \rightarrow R_3 \sim \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$
$$k_1 = -3, \text{ and } k_2 = 2$$

Thus, \mathbf{w}_1 is a linear combination of the vectors \mathbf{u} and \mathbf{v} .

$$\mathbf{w}_{1} = k_{1}\mathbf{u} + k_{2}\mathbf{v} = -3 < 1, 2, -1 > + 2 < 6, 4, 2 >$$

$$= <-3, -6, 3 > + < 12, 8, 4 >$$

$$= <9, 2, 7 >$$

$$= \mathbf{w}_{1}$$

Similarly, for \mathbf{w}_2 and we obtain

[1	0	$\frac{-11}{4}$
0	1	9 8 2
Lo	0	3

We note this system of linear equation is inconsistent, because the third equation 0 + 0 = 3, and this system has no solution. Therefore, both k_1 and k_2 do not exist.

Hence, \mathbf{w}_2 is not a linear combination of the vectors \mathbf{u} and \mathbf{v} .

Example (2): Show that the vector $\mathbf{x} = \langle 2, 1, 5, -5 \rangle$ is a linear combination of the vectors $\mathbf{x}_1 = \langle 1, 2, 1, -1 \rangle$, $\mathbf{x}_2 = \langle 1, 0, 2, -3 \rangle$ and $\mathbf{x}_3 = \langle 1, 1, 0, -2 \rangle$ in \mathbb{R}^4 . (Homework).

Example (3): Show whether the vector $\mathbf{x} = <1, 0, 2>$ is a linear combination of the vectors $\mathbf{x}_1 = <1, 2, -1>$ and $\mathbf{x}_2 = <1, 0, -1>$ in \mathbb{R}^3 .

Theorem (16): If $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r$, are vectors in a vector space *V*, then

- a) The set *W* of all linear combination of $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r$, is a subspace of *V*.
- b) *W* is the smallest subspace of *V*, that contains $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r$, in the sense that every other subspace of *V*, that contains $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r$, must contain *W*.

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

The Span of a set of vectors:

Definition (4): If $S = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r}$, is a set of vectors in a vector space *V*, then the subspace *W* of *V*, consisting of all linear combinations of the vectors in *S* is called the **space spanned** by the vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r$, and we say that the vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r$ span *W*. To indicate that *W* is the space spanned by the vectors in the set $S = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r}$, we write as the following,

W= span(S) or W= span { $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r$ }.

We can say if $S = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r}$ is a set of the vector space *V*, then *S* is the span (span *V*), if each vector in *V* is a linear combination of the vectors in *S*.

Space spanned by one or two vectors:

If \mathbf{v}_1 and \mathbf{v}_2 are no collinear vectors in \mathbb{R}^3 with their initial points at the origin, then span(\mathbf{v}_1 , \mathbf{v}_2), which consists of all linear combinations $k_1\mathbf{v}_1 + k_2\mathbf{v}_2$, is the plane determined by \mathbf{v}_1 and \mathbf{v}_2 , as shown in figure(4-a) Similarly, if \mathbf{v} is a nonzero vector in \mathbb{R}^2 or \mathbb{R}^3 , then the span{ \mathbf{v} }, which is the set of all scalar multiple $k\mathbf{v}$, is the line determined by \mathbf{v} as shown in figure (4-b).

Span {**v**} is the line through origin determined by **v**.

Figure (4)

Example (4): Let *V* is a vector space of \mathbb{R}^3 and let $S = \{\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3\}$, such that $\mathbf{x}_1 = <1, 2, 1>, \mathbf{x}_2 = <1, 0, 2>$, and $\mathbf{x}_3 = <1, 1, 0>$, show whether *S* span \mathbb{R}^3 .

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Solution:

To show that, we must determine whether every vector in \mathbb{R}^3 is a linear combination of the vectors in *S*.

Let $\mathbf{x} = \langle a, b, c \rangle$ is any vector $\in \mathbb{R}^3$, where *a*, *b*, and $c \in \mathbb{R}$, then

 $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + c_3 \mathbf{x}_3$, where c_1, c_2 , and c_3 are scalars $\in \mathbb{R}$

We must find c_1 , c_2 , and c_3 .

=
$$c_1 < 1, 2, 1> + c_2 < 1, 0, 2> + c_3 < 1, 1, 0>$$

= < $c_1, 2c_1, c_1 > + < c_2, 0, 2 c_2 > + < c_3, c_3, 0>$
= < $c_1 + c_2 + c_3, 2c_1 + c_3, c_1 + 2 c_2 >$

We obtain the following system of linear equations,

$$c_1 + c_2 + c_3, 2c_1 = a$$

 $2c_1 + c_3 = b$
 $c_1 + 2 c_2 = c$

Using Gauss-Jordan elimination method, we can solve this system, and if this system is consistent, then *S* span \mathbb{R}^3 .

$$\begin{bmatrix} 1 & 1 & 1 & a \\ 2 & 0 & 1 & b \\ 1 & 2 & 0 & c \end{bmatrix} -2R_1 + R_2 \rightarrow R_2 \text{ and } -R_1 + R_3 \rightarrow R_3 \sim \begin{bmatrix} 1 & 1 & 1 & 1 & a \\ 0 & -2 & -1 & -2a+b \\ 0 & 1 & -1 & -a+c \end{bmatrix} -\frac{1}{2}R_2 \rightarrow R_2$$

$$\sim \begin{bmatrix} 1 & 1 & 1 & a \\ 0 & 1 & \frac{1}{2} & \frac{2a-b}{2} \\ 0 & 1 & -1 & -a+c \end{bmatrix} -R_2 + R_1 \rightarrow R_1 \text{ and } -R_2 + R_3 \rightarrow R_3 \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & \frac{b}{2} \\ 0 & 1 & \frac{1}{2} & \frac{2a-b}{2} \\ 0 & 0 & -\frac{3}{2} & -\frac{4a+b+2c}{2} \end{bmatrix} -\frac{2}{3}R_3 \rightarrow R_3$$

$$\sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & \frac{b}{2} \\ 0 & 1 & \frac{1}{2} & \frac{2a-b}{2} \\ 0 & 1 & \frac{1}{2} & \frac{2a-b}{2} \\ 0 & 0 & 1 & \frac{1}{2} & \frac{2a-b}{2} \end{bmatrix} -\frac{1}{2}R_3 + R_2 \rightarrow R_2 \text{ and } -\frac{1}{2}R_3 + R_1 \rightarrow R_1 \sim \begin{bmatrix} 1 & 0 & 0 & \frac{-2a+2b+c}{3} \\ 0 & 1 & 0 & \frac{a-b+c}{3} \\ 0 & 0 & 1 & \frac{4a-b-2c}{3} \end{bmatrix}$$

$$c_1 = \frac{-2a+2b+c}{3}, c_2 = \frac{a-b+c}{3}, c_3 = \frac{4a-b-2c}{3}$$

Thus, *S* span \mathbb{R}^3 .

Example (5): Determine whether the vectors $\mathbf{v}_1 = \langle 1, 1, 2 \rangle$, $\mathbf{v}_2 = \langle 1, 0, 1 \rangle$, and $\mathbf{v}_3 = \langle 2, 1, 3 \rangle$ span the vector space \mathbb{R}^3 .

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

Solution:

Let $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ any arbitrary vector in \mathbb{R}^3 , such that b_1, b_2 , and $b_3 \in \mathbb{R}$.

Now, we must determine whether the vector \mathbf{b} is a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 , such that

$$\mathbf{b} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + k \mathbf{v}_3$$
, where k_1, k_2 , and k_3 are scalars $\in \mathbb{R}$.

$$< b_1, b_2, b_3 >= k_1 < 1, 1, 2 > + k_2 < 1, 0, 1 > + k_3 < 2, 1, 3 >$$

= $< k_1, k_1, 2k_1 > + < k_2, 0, k_2 > + < 2k_3, k_3, 3k_3 >$
= $< k_1 + k_2 + 2k_3, k_1 + k_3, 2k_1 + k_2 + 3k_3 >$
 $k_1 + k_2 + 2k_3 = \mathbf{b}_1$
 $k_1 + k_3 = \mathbf{b}_2$
 $2k_1 + k_2 + 3k_3 = \mathbf{b}_3$

We obtain system of linear equations and we can solve it using Gauss-Jordan elimination method.

$$\begin{bmatrix} 1 & 1 & 2 & b_1 \\ 1 & 0 & 1 & b_2 \\ 2 & 1 & 3 & b_3 \end{bmatrix} -R_1 + R_2 \rightarrow R_2 \text{ and } -2R_1 + R_3 \rightarrow R_3 \sim \begin{bmatrix} 1 & 1 & 2 & b_1 \\ 0 & -1 & -1 & -b_1 + b_2 \\ 0 & -1 & -1 & -2b_1 + b_3 \end{bmatrix} -R_2 \rightarrow R_2$$
$$\sim \begin{bmatrix} 1 & 1 & 2 & b_1 \\ 0 & 1 & 1 & b_1 - b_2 \\ 0 & -1 & -1 & -2b_1 + b_3 \end{bmatrix} -R_2 + R_1 \rightarrow R_1 \text{ and } R_2 + R_3 \rightarrow R_3 \sim \begin{bmatrix} 1 & 0 & 2 & b_2 \\ 0 & 1 & 1 & b_1 - b_2 \\ 0 & 0 & 0 & -b_1 - b_2 + b_3 \end{bmatrix}$$

Now, if $-b_1 - b_2 + b_3 \neq 0$, then this system is inconsistent and S do not span \mathbb{R}^3 .

Example (6): Let *V* is a vector space of all polynomials P_2 (degree ≤ 2) and let $S = \{p_1(t), p_2(t)\}$, such that $p_1(t) = t^2 + 2t + 1$ and $p_2(t) = t^2 + 2$, show whether *S* span P_2 . (Homework)

Example (7): Show whether the set $S = \{\mathbf{e}_1, \mathbf{e}_2\}$ span \mathbb{R}^2 , where $\mathbf{e}_1 = \mathbf{i} = \langle 1, 0 \rangle$ and $\mathbf{e}_2 = \mathbf{j} = \langle 0, 1 \rangle$.

Solution:

Let $\mathbf{v} = \langle v_1, v_2 \rangle \in \mathbb{R}^2$, such that v_1 and $v_2 \in \mathbb{R}$.

 $\mathbf{v} = k_1 \mathbf{e}_1 + k_2 \mathbf{e}_2$

 $\langle v_1, v_2 \rangle = k_1 \langle 1, 0 \rangle + k_2 \langle 0, 1 \rangle$

 $= < k_1, 0 > + < 0, k_2 >$

 $= \langle k_1, k_2 \rangle \rightarrow v_1 = k_1, v_2 = k_2$

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

 $\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2$

 $= v_1 \mathbf{i} + v_2 \mathbf{j}$

Therefore, every vector in \mathbb{R}^2 , we can write it as a linear combination of the unit vectors of \mathbb{R}^2 .

Thus, the set of the unit vectors in \mathbb{R}^2 formed span \mathbb{R}^2 .

So, every vector $\mathbf{v} = \langle v_1, v_2, v_3 \rangle \in \mathbb{R}^3$, we can write it as a linear combination of the unit vectors in \mathbb{R}^3 .

 $\mathbf{v} = v_1 \mathbf{e}_1 + v_2 \mathbf{e}_2 + v_3 \mathbf{e}_3$, such that, $\mathbf{e}_1 = \mathbf{i} = \langle 1, 0, 0 \rangle$, $\mathbf{e}_2 = \mathbf{j} = \langle 0, 1, 0 \rangle$ and $\mathbf{e}_3 = \mathbf{k} = \langle 0, 0, 1 \rangle$

Therefore, the set of the unit vectors in \mathbb{R}^3 formed span \mathbb{R}^3 .

So, the set of the vectors $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ in \mathbb{R}^n formed span \mathbb{R}^n .

We can say that the set $S = \{1, t, t^2, ..., t^n\}$ formed span P_n , because every polynomial in P_n be of the form $p(t) = a_0 + a_1t + a_3t^2 + ... + a_nt^n$, which is a linear combination of 1, $t, t^2, ..., t^n$.

Thus, the set *S* span P_n (P_n = span {1, $t, t^2, ..., t^n$ }).

Theorem (17): If $S_1 = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r}$ and $S_2 = {\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_k}$ are two sets of vectors in a vector space *V*, then span ${\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r} = \text{span} {\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_k}$ if and only if each vector in S_1 is a linear combination of those in S_2 , and each vector in S_2 is a linear combination of those in S_1 .

Linear independent and linear dependent:

Definition (5): If $S = \{v_1, v_2, ..., v_r\}$ is a nonempty set of vectors, then the vector equation

$$k_1\mathbf{v}_1+k_2\mathbf{v}_2+\ldots+k_r\mathbf{v}_r=\mathbf{0},$$

has at least one solution, namely

$$k_1 = 0, k_2 = 0, \dots, k_r = 0$$

If this is the only solution, then *S* is called a **linearly independent set**. If there are other solutions, then *S* is called a **linearly dependent set**.

Example (8): Show whether the vectors $\mathbf{v}_1 = \langle 2, -1, 0, 3 \rangle$, $\mathbf{v}_2 = \langle 1, 2, 5, -1 \rangle$ and $\mathbf{v}_3 = \langle 7, -1, 5, 8 \rangle$ are linearly independent.

Solution:

We must show that the vectors equation $k_1\mathbf{v}_1 + k_2\mathbf{v}_2 + k_3\mathbf{v}_3 = \mathbf{0}$ for $k_1 = k_2 = k_3 = 0$.

 $k_1 < 2, -1, 0, 3 > + k_2 < 1, 2, 5, -1 > + k_3 < 7, -1, 5, 8 > = <0, 0, 0, 0 >$

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

 $<2k_{1}, -k_{1}, 0, 3k_{1}> + < k_{2}, 2k_{2}, 5k_{2}, -k_{2}> + <7k_{3}, -k_{3}, 5k_{3}, 8k_{3}> = <0, 0, 0, 0>$ $<2k_{1} + k_{2} + 7k_{3}, -k_{1} + 2k_{2} - k_{3}, 5k_{2} + 5k_{3}, 3k_{1} - k_{2} + 8k_{3}> = <0, 0, 0, 0>$ $2k_{1} + k_{2} + 7k_{3} = 0$ $-k_{1} + 2k_{2} - k_{3} = 0$ $5k_{2} + 5k_{3} = 0$ $3k_{1} - k_{2} + 8k_{3} = 0$

We have system of linear equations and we can solve this system using Gauss-Jordan elimination method. At first, using augmented matrix we obtain;

$$\begin{bmatrix} 2 & 1 & 7 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & 5 & 5 & 0 \\ 3 & -1 & 8 & 0 \end{bmatrix} {}^{1}_{2} R_{1} \rightarrow R_{1} \sim \begin{bmatrix} 1 & \frac{1}{2} & \frac{7}{2} & 0 \\ -1 & 2 & -1 & 0 \\ 0 & 5 & 5 & 0 \\ 3 & -1 & 8 & 0 \end{bmatrix} R_{1} + R_{2} \rightarrow R_{2} \text{ and } -3R_{1} + R_{4} \rightarrow R_{4}$$

$$\sim \begin{bmatrix} 1 & \frac{1}{2} & \frac{7}{2} & 0 \\ 0 & \frac{5}{2} & \frac{5}{2} & 0 \\ 0 & \frac{5}{2} & \frac{5}{2} & 0 \\ 0 & \frac{5}{2} & \frac{5}{2} & 0 \\ 0 & \frac{-5}{2} & \frac{-5}{2} & 0 \end{bmatrix} {}^{2}_{3} R_{2} \rightarrow R_{2} \sim \begin{bmatrix} 1 & \frac{1}{2} & \frac{7}{2} & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 5 & 5 & 0 \\ 0 & \frac{-5}{2} & \frac{-5}{2} & 0 \end{bmatrix} {}^{-1}_{2} R_{2} + R_{1} \rightarrow R_{1}, -5R_{2} + R_{3} \rightarrow R_{3} \text{ and } \frac{5}{2}R_{2} + R_{4} \rightarrow R_{4}$$

$$\sim \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$k_{1} + 3k_{3} = 0 \rightarrow k_{1} = -3k_{3}$$

$$k_{2} + k_{3} = 0 \rightarrow k_{2} = -k_{3}, \text{ and if } k_{3} = 1 \rightarrow k_{1} = -3, k_{2} = -1$$

The system has infinity many solutions. Thus, the set of vectors is linearly dependent, since

$$-3v_1 - v_2 + v_3 = 0.$$

Example (9): Show whether the set $S = {\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3}$ of the vector space \mathbb{R}^4 , is a linearly independent or linearly dependent, where $\mathbf{x}_1 = \langle 1, 0, 1, 2 \rangle$, $\mathbf{x}_{22} = \langle 0, 1, 1, 2 \rangle$, and $\mathbf{x}_{33} = \langle 1, 1, 1, 3 \rangle$.

Solution:

$$k_1\mathbf{x}_1 + k_2\mathbf{x}_2 + k_3\mathbf{x}_3 = \mathbf{0}$$

$$k_1 < 1, 0, 1, 2 > + k_2 < 0, 1, 1, 2 > + k_3 < 1, 1, 1, 3 > = <0, 0, 0, 0 >$$

$$< k_1, 0, k_1, 2k_1 > + <0, k_2, k_2, 2k_2 > + < k_3, k_3, k_3, 3k_3 > = <0, 0, 0, 0 >$$

lectures Subject: <u>Vector analysis.</u> 2020-2021. Stage: 2st. The lecturer: Assist. Prof. Dr. Ali Rashid Ibrahim

$$< k_1 + k_3, k_2 + k_3, k_1 + k_2 + k_3, 2k_1 + 2k_2 + 3k_3 > = < 0, 0, 0, 0 >$$

 $k_{1} + k_{3} = 0$ $k_{2} + k_{3} = 0$ $k_{1} + k_{2} + k_{3} = 0$ $2k_{1} + 2k_{2} + 3k_{3} = 0$

Using Gauss-Jordan elimination method, we solve the system of linear equations.

 $\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 2 & 2 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow k_1 = k_2 = k_3 = 0$

Thus, the set *S* is a linearly independent.

Example (10): Determine whether the polynomials $p_1=1-x$, $p_2=5+3x-2x^2$ and $p_3=1+3x-x^2$ form a linearly dependent set in P_2 . (Homework)

Example (11): Determine whether the set $S = \{p_1(t), p_2(t), p_3(t)\}$ is a linearly independent, where $p_1(t) = t^2 + t + 2$, $p_2(t) = 2t^2 + t$, and $p_1(t) = 3t^2 + 2t + 2$. (Homework)

References

- 1- Introductory linear algebra with applications, Bernard Kolman, first edition, 1976.
- 2- Elementary Linear Algebra Subsequent Edition, Arthur Wayne Roberts, 1985.
- 3- Elementary Linear Algebra, Ninth Edition, Howard Anton, Chris Rorres, 2005.

4- Student Solutions Manuals for use with College Algebra with Trigonometry: graphs and models, by Raymond A. Barnett, Michael R. Ziegler and Karl E. Byleen, 2005.