University of Anbar College of Science Department of Applied Mathematics
lectures
Subject: Vector analysis.

The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

Linear combination:

Definition (3): A vector W is called linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$, if it can be expressed in the following form,

$$
W=k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\ldots+k_{\mathrm{r}} \mathbf{v}_{\mathrm{r}} \ldots \text { (1) }
$$

Where, $k_{1}, k_{2}, \ldots, k_{\mathrm{r}}$, are scalars $(\in \mathbb{R})$.
Note: If $r=1$, then the equation (1), reduced to $W=k_{1} \mathbf{v}_{1}, W$ is a linear combination of a single vector \mathbf{v}_{1} if it a scalar multiple of \mathbf{v}_{1}.

(Vectors in \mathbb{R}^{3} are a linear combination of \mathbf{i}, \mathbf{j}, and \mathbf{k}.)

Every vector $\mathbf{v}=\langle a, b, c\rangle$ in \mathbb{R}^{3} is expressible as a linear combination of the standard basis vectors $\mathbf{i}=\langle 1,0,0\rangle, \mathbf{j}=\langle 0,1,0\rangle$, and $\mathbf{k}=\langle 0,0,1\rangle$

$$
\begin{aligned}
\mathbf{v}=\langle a, b, c\rangle & =a\langle 1,0,0\rangle+b\langle 0,1,0\rangle+c\langle 0,0,1\rangle \\
& =a \mathbf{i}+b \mathbf{j}+c \mathbf{k}
\end{aligned}
$$

Also for the vectors in \mathbb{R}^{2}.

$$
\begin{aligned}
\mathbf{v}=\langle a, b\rangle & =a\langle 1,0\rangle+b\langle 0,1\rangle \\
& =a \mathbf{i}+b \mathbf{j}
\end{aligned}
$$

Example (1): Show that the vector $\mathbf{w}_{1}=<9,2,7>$ is a linear combination of the vectors $\mathbf{u}=<1,2$, $-1\rangle$ and $\mathbf{v}=\langle 6,4,2\rangle$ in \mathbb{R}^{3}, and $\mathbf{w}_{2}=\langle 4,-1,8\rangle$ is not a linear combination of these vectors.

Solution:
$\mathbf{w}_{1}=k_{1} \mathbf{u}+k_{2} \mathbf{v}, k_{1}$ and $k_{2} \in \mathbb{R}$.

$$
\begin{aligned}
\langle 9,2,7\rangle & =k_{1}\langle 1,2,-1\rangle+k_{2}\langle 6,4,2\rangle \\
& =\left\langle k_{1}, 2 k_{1},-k_{1}\right\rangle+\left\langle 6 k_{2}, 4 k_{2}, 2 k_{2}\right\rangle \\
& =\left\langle k_{1}+6 k_{2}, 2 k_{1}+4 k_{2},-k_{1}+2 k_{2}\right\rangle
\end{aligned}
$$

and, $k_{1}+6 k_{2}=9$

$$
\begin{aligned}
& 2 k_{1}+4 k_{2}=2 \\
& -k_{1}+2 k_{2}=7
\end{aligned}
$$

lectures

Subject: Vector analysis.

The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

We obtain a system of linear equations and we can solve this system using Gauss-Jordan elimination method.

$$
\left[\begin{array}{rrr}
1 & 6 & 9 \\
2 & 4 & 2 \\
-1 & 2 & 7
\end{array}\right]-R_{1}+R_{2} \rightarrow R_{2} \text {, and } R_{1}+R_{3} \rightarrow R_{3} \sim\left[\begin{array}{rrr}
1 & 6 & 9 \\
0 & -8 & -16 \\
0 & 8 & 16
\end{array}\right]-\frac{1}{8} R_{2} \rightarrow R_{2}
$$

$$
\left[\begin{array}{rrr}
1 & 6 & 9 \\
0 & 1 & 2 \\
0 & 8 & 16
\end{array}\right]-6 R_{2}+R_{1} \rightarrow R_{1} \text { and }-8 R_{2}+R_{3} \rightarrow R_{3} \sim\left[\begin{array}{rrr}
1 & 0 & -3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

$$
k_{1}=-3, \text { and } k_{2}=2
$$

Thus, \mathbf{w}_{1} is a linear combination of the vectors \mathbf{u} and \mathbf{v}.

$$
\begin{aligned}
\mathbf{w}_{1}=k_{1} \mathbf{u}+k_{2} \mathbf{v}=-3<1, & , \\
& =\langle-3\rangle+2\langle 6,4,2\rangle \\
& =\langle 9,2,7\rangle \\
& =\mathbf{w}_{1}
\end{aligned}
$$

Similarly, for \mathbf{w}_{2} and we obtain

$$
\left[\begin{array}{rrr}
1 & 0 & \frac{-11}{4} \\
0 & 1 & \frac{9}{8} \\
0 & 0 & 3
\end{array}\right]
$$

We note this system of linear equation is inconsistent, because the third equation $0+0=3$, and this system has no solution. Therefore, both k_{1} and k_{2} do not exist.

Hence, \mathbf{w}_{2} is not a linear combination of the vectors \mathbf{u} and \mathbf{v}.
Example (2): Show that the vector $\mathbf{x}=<2,1,5,-5>$ is a linear combination of the vectors $\mathbf{x}_{1}=<1$, $2,1,-1\rangle, \mathbf{x}_{2}=\langle 1,0,2,-3\rangle$ and $\mathbf{x}_{3}=\langle 1,1,0,-2\rangle$ in \mathbb{R}^{4}. (Homework).

Example (3): Show whether the vector $\mathbf{x}=<1,0,2>$ is a linear combination of the vectors $\mathbf{x}_{1}=<1$, $2,-1\rangle$ and $\mathbf{x}_{2}=\langle 1,0,-1\rangle$ in \mathbb{R}^{3}.

Theorem (16): If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$, are vectors in a vector space V, then
a) The set W of all linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$, is a subspace of V.
b) W is the smallest subspace of V, that contains $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$, in the sense that every other subspace of V, that contains $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$, must contain W.

Ministry of Higher Education
\& Scientific Research
University of Anbar College of Science Department of Applied Mathematics

lectures
Subject: Vector analysis. 2020-2021.
Stage: 2 ${ }^{\text {st }}$.
The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

The Span of a set of vectors:

Definition (4): If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$, is a set of vectors in a vector space V, then the subspace W of V, consisting of all linear combinations of the vectors in S is called the space spanned by the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$, and we say that the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}$ span W. To indicate that W is the space spanned by the vectors in the set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$, we write as the following,
$W=\operatorname{span}(S)$ or $W=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$.
We can say if $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is a set of the vector space V, then S is the span (span V), if each vector in V is a linear combination of the vectors in S.

Space spanned by one or two vectors:

If \mathbf{v}_{1} and \mathbf{v}_{2} are no collinear vectors in \mathbb{R}^{3} with their initial points at the origin, then $\operatorname{span}\left(\mathbf{v}_{1}\right.$, \mathbf{v}_{2}), which consists of all linear combinations $k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}$, is the plane determined by \mathbf{v}_{1} and \mathbf{v}_{2}, as shown in figure (4-a) Similarly, if \mathbf{v} is a nonzero vector in \mathbb{R}^{2} or \mathbb{R}^{3}, then the span $\{v\}$, which is the set of all scalar multiple $k \mathbf{v}$, is the line determined by \mathbf{v} as shown in figure (4-b).

Figure (4)
Example (4): Let V is a vector space of \mathbb{R}^{3} and let $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$, such that $\mathbf{x}_{1}=\langle 1,2,1\rangle, \mathbf{x}_{2}=$ $\langle 1,0,2\rangle$, and $\mathbf{x}_{3}=\langle 1,1,0\rangle$, show whether S span \mathbb{R}^{3}.

Ministry of Higher Education
 \& Scientific Research
 University of Anbar College of Science Department of Applied
 Mathematics

lectures
Subject: Vector analysis.

The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

Solution:

To show that, we must determine whether every vector in \mathbb{R}^{3} is a linear combination of the vectors in S.

Let $\mathbf{x}=\langle a, b, c\rangle$ is any vector $\in \mathbb{R}^{3}$, where a, b, and $c \in \mathbb{R}$, then

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}+c_{2} \mathbf{x}_{2}+c_{3} \mathbf{x}_{3} \text {, where } c_{1}, c_{2} \text {, and } c_{3} \text { are scalars } \in \mathbb{R}
$$

We must find c_{1}, c_{2}, and c_{3}.

$$
\begin{aligned}
\langle a, b, c\rangle & =c_{1}\langle 1,2,1\rangle+c_{2}\langle 1,0,2\rangle+c_{3}\langle 1,1,0\rangle \\
& =\left\langle c_{1}, 2 c_{1}, c_{1}\right\rangle+\left\langle c_{2}, 0,2 c_{2}\right\rangle+\left\langle c_{3}, c_{3}, 0\right\rangle \\
& =\left\langle c_{1}+c_{2}+c_{3}, 2 c_{1}+c_{3}, c_{1}+2 c_{2}\right\rangle
\end{aligned}
$$

We obtain the following system of linear equations,

$$
\begin{aligned}
& c_{1}+c_{2}+c_{3}, 2 c_{1}=a \\
& 2 c_{1}+c_{3}=b \\
& c_{1}+2 c_{2}=c
\end{aligned}
$$

Using Gauss-Jordan elimination method, we can solve this system, and if this system is consistent, then S span \mathbb{R}^{3}.

$$
\begin{aligned}
& {\left[\begin{array}{llll}
1 & 1 & 1 & a \\
2 & 0 & 1 & b \\
1 & 2 & 0 & c
\end{array}\right]-2 \mathrm{R}_{1}+\mathrm{R}_{2} \rightarrow \mathrm{R}_{2} \text { and }-\mathrm{R}_{1}+\mathrm{R}_{3} \rightarrow \mathrm{R}_{3} \sim\left[\begin{array}{rrrc}
1 & 1 & 1 & a \\
0 & -2 & -1 & -2 a+b \\
0 & 1 & -1 & -a+c
\end{array}\right]-\frac{1}{2} \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}} \\
& \sim\left[\begin{array}{rrrr}
1 & 1 & 1 & a \\
0 & 1 & \frac{1}{2} & \frac{2 a-b}{2} \\
0 & 1 & -1 & -a+c
\end{array}\right]-\mathrm{R}_{2}+\mathrm{R}_{1} \rightarrow \mathrm{R}_{1} \text { and }-\mathrm{R}_{2}+\mathrm{R}_{3} \rightarrow \mathrm{R}_{3} \sim\left[\begin{array}{rrrr}
1 & 0 & \frac{1}{2} & \frac{b}{2} \\
0 & 1 & \frac{1}{2} & \frac{2 a-b}{2} \\
0 & 0 & \frac{-3}{2} & \frac{-4 a+b+2 c}{2}
\end{array}\right]-\frac{2}{3} \mathrm{R}_{3} \rightarrow \mathrm{R}_{3} \\
& \sim\left[\begin{array}{lllr}
1 & 0 & \frac{1}{2} & \frac{b}{2} \\
0 & 1 & \frac{1}{2} & \frac{2 a-b}{2} \\
0 & 0 & 1 & \frac{4 a-b-2 c}{3}
\end{array}\right]-\frac{1}{2} \mathrm{R}_{3}+\mathrm{R}_{2} \rightarrow \mathrm{R}_{2} \text { and }-\frac{1}{2} \mathrm{R}_{3}+\mathrm{R}_{1} \rightarrow \mathrm{R}_{1} \sim\left[\begin{array}{cccc}
1 & 0 & 0 & \frac{-2 a+2 b+c}{3} \\
0 & 1 & 0 & \frac{a-b+c}{3} \\
0 & 0 & 1 & \frac{4 a-b-2 c}{3}
\end{array}\right] \\
& c_{1}=\frac{-2 a+2 b+c}{3}, c_{2}=\frac{a-b+c}{3}, c_{3}=\frac{4 a-b-2 c}{3}
\end{aligned}
$$

Thus, S span \mathbb{R}^{3}.
Example (5): Determine whether the vectors $\mathbf{v}_{1}=\langle 1,1,2\rangle, \mathbf{v}_{2}=\langle 1,0,1\rangle$, and $\mathbf{v}_{3}=\langle 2,1,3\rangle$ span the vector space \mathbb{R}^{3}.

Ministry of Higher Education
 \& Scientific Research
 University of Anbar College of Science
 Department of Applied
 Mathematics

lectures
Subject: Vector analysis.

Solution:

Let $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ any arbitrary vector in \mathbb{R}^{3}, such that b_{1}, b_{2}, and $b_{3} \in \mathbb{R}$.
Now, we must determine whether the vector \mathbf{b} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}, such that

$$
\begin{aligned}
& \mathbf{b}= k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+k \mathbf{v}_{3}, \text { where } k_{1}, k_{2}, \text { and } k_{3} \text { are scalars } \in \mathbb{R} . \\
&\left\langle b_{1}, b_{2}, b_{3}\right\rangle=\left.k_{1}<1,1,2\right\rangle+k_{2}\langle 1,0,1\rangle+k_{3}\langle 2,1,3\rangle \\
&=\left\langle k_{1}, k_{1}, 2 k_{1}\right\rangle+\left\langle k_{2}, 0, k_{2}\right\rangle+\left\langle 2 k_{3}, k_{3}, 3 k_{3}\right\rangle \\
&=\left\langle k_{1}+k_{2}+2 k_{3}, k_{1}+k_{3}, 2 k_{1}+k_{2}+3 k_{3}\right\rangle \\
& k_{1}+k_{2}+2 k_{3}=\mathbf{b}_{1} \\
& k_{1}+\quad k_{3}=\mathbf{b}_{2} \\
& 2 k_{1}+k_{2}+3 k_{3}=\mathbf{b}_{3}
\end{aligned}
$$

We obtain system of linear equations and we can solve it using Gauss-Jordan elimination method.

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & 1 & 2 & b_{1} \\
1 & 0 & 1 & b_{2} \\
2 & 1 & 3 & b_{3}
\end{array}\right]-\mathrm{R}_{1}+\mathrm{R}_{2} \rightarrow \mathrm{R}_{2} \text { and }-2 \mathrm{R}_{1}+\mathrm{R}_{3} \rightarrow \mathrm{R}_{3} \sim\left[\begin{array}{rrrrr}
1 & 1 & 2 & b_{1} \\
0 & -1 & -1 & -b_{1}+b_{2} \\
0 & -1 & -1 & -2 b_{1}+b_{3}
\end{array}\right]-\mathrm{R}_{2} \rightarrow \mathrm{R}_{2} } \\
& \sim\left[\begin{array}{rrrr}
1 & 1 & 2 & b_{1} \\
0 & 1 & 1 & b_{1}-b_{2} \\
0 & -1 & -1 & -2 b_{1}+b_{3}
\end{array}\right]-\mathrm{R}_{2}+\mathrm{R}_{1} \rightarrow \mathrm{R}_{1} \text { and } \mathrm{R}_{2}+\mathrm{R}_{3} \rightarrow \mathrm{R}_{3} \sim\left[\begin{array}{ccccc}
1 & 0 & 2 & b_{2} \\
0 & 1 & 1 & b_{1}-b_{2} \\
0 & 0 & 0 & -b_{1}-b_{2}+b_{3}
\end{array}\right]
\end{aligned}
$$

Now, if $-b_{1}-b_{2}+b_{3} \neq 0$, then this system is inconsistent and S do not span \mathbb{R}^{3}.

Example (6): Let V is a vector space of all polynomials P_{2} (degree ≤ 2) and let $S=\left\{\boldsymbol{p}_{1}(t), \boldsymbol{p}_{2}(t)\right\}$, such that $\boldsymbol{p}_{1}(t)=t^{2}+2 t+1$ and $\boldsymbol{p}_{2}(t)=t^{2}+2$, show whether S span P_{2}. (Homework)

Example (7): Show whether the set $S=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$ span \mathbb{R}^{2}, where $\mathbf{e}_{1}=\mathbf{i}=\langle 1,0\rangle$ and $\mathbf{e}_{2}=\mathbf{j}=\langle 0,1\rangle$.
Solution:
Let $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle \in \mathbb{R}^{2}$, such that v_{1} and $v_{2} \in \mathbb{R}$.
$\mathbf{v}=k_{1} \mathbf{e}_{1}+k_{2} \mathbf{e}_{2}$
$\left\langle v_{1}, v_{2}\right\rangle=k_{1}\langle 1,0\rangle+k_{2}\langle 0,1\rangle$
$=\left\langle k_{1}, 0\right\rangle+\left\langle 0, k_{2}\right\rangle$
$=\left\langle k_{1}, k_{2}\right\rangle \rightarrow v_{1}=k_{1}, v_{2}=k_{2}$

lectures

Subject: Vector analysis.

The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

$$
\begin{aligned}
\mathbf{v} & =v_{1} \mathbf{e}_{1}+v_{2} \mathbf{e}_{2} \\
& =v_{1} \mathbf{i}+v_{2} \mathbf{j}
\end{aligned}
$$

Therefore, every vector in \mathbb{R}^{2}, we can write it as a linear combination of the unit vectors of \mathbb{R}^{2}.
Thus, the set of the unit vectors in \mathbb{R}^{2} formed span \mathbb{R}^{2}.
So, every vector $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \in \mathbb{R}^{3}$, we can write it as a linear combination of the unit vectors in \mathbb{R}^{3}.

$$
\mathbf{v}=v_{1} \mathbf{e}_{1}+\mathrm{v}_{2} \mathbf{e}_{2}+\mathrm{v}_{3} \mathbf{e}_{3} \text {, such that, } \mathbf{e}_{1}=\mathbf{i}=\langle 1,0,0\rangle, \mathbf{e}_{2}=\mathbf{j}=\langle 0,1,0\rangle \text { and } \mathbf{e}_{3}=\mathbf{k}=\langle 0,0,1\rangle
$$

Therefore, the set of the unit vectors in \mathbb{R}^{3} formed span \mathbb{R}^{3}.
So, the set of the vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ in \mathbb{R}^{n} formed span \mathbb{R}^{n}.
We can say that the set $S=\left\{1, t, t^{2}, \ldots, t^{n}\right\}$ formed span P_{n}, because every polynomial in P_{n} be of the form $\boldsymbol{p}(t)=a_{0}+a_{1} t+a_{3} t^{2}+\ldots+a_{n} t^{n}$, which is a linear combination of $1, t, t^{2}, \ldots, t^{n}$.

Thus, the set S span $P_{n}\left(P_{n}=\operatorname{span}\left\{1, t, t^{2}, \ldots, t^{n}\right\}\right)$.
Theorem (17): If $S_{1}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ and $S_{2}=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}\right\}$ are two sets of vectors in a vector space V, then span $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}=\operatorname{span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{k}\right\}$ if and only if each vector in S_{1} is a linear combination of those in S_{2}, and each vector in S_{2} is a linear combination of those in S_{1}.

Linear independent and linear dependent:

Definition (5): If $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{r}\right\}$ is a nonempty set of vectors, then the vector equation

$$
k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\ldots+k_{r} \mathbf{v}_{r}=\mathbf{0}
$$

has at least one solution, namely

$$
k_{1}=0, k_{2}=0, \ldots, k_{r}=0
$$

If this is the only solution, then S is called a linearly independent set. If there are other solutions, then S is called a linearly dependent set.

Example (8): Show whether the vectors $\mathbf{v}_{1}=\langle 2,-1,0,3\rangle, \mathbf{v}_{2}=\langle 1,2,5,-1\rangle$ and $\mathbf{v}_{3}=\langle 7,-1,5,8\rangle$ are linearly independent.

Solution:

We must show that the vectors equation $k_{1} \mathbf{v}_{1}+k_{2} \mathbf{v}_{2}+\mathrm{k}_{3} \mathbf{v}_{3}=\mathbf{0}$ for $k_{1}=k_{2}=k_{3}=0$.

$$
k_{1}\langle 2,-1,0,3\rangle+k_{2}\langle 1,2,5,-1\rangle+k_{3}\langle 7,-1,5,8\rangle=\langle 0,0,0,0\rangle
$$

lectures

Subject: Vector analysis.
$\left\langle 2 k_{1},-k_{1}, 0,3 k_{1}\right\rangle+\left\langle k_{2}, 2 k_{2}, 5 k_{2},-k_{2}\right\rangle+\left\langle 7 k_{3},-k_{3}, 5 k_{3}, 8 k_{3}\right\rangle=\langle 0,0,0,0\rangle$
$\left.<2 k_{1}+k_{2}+7 k_{3},-k_{1}+2 k_{2}-k_{3}, 5 k_{2}+5 k_{3}, 3 k_{1}-k_{2}+8 k_{3}\right\rangle=\langle 0,0,0,0\rangle$
$2 k_{1}+k_{2}+7 k_{3}=0$
$-k_{1}+2 k_{2}-k_{3}=0$

$$
5 k_{2}+5 k_{3}=0
$$

$3 k_{1}-k_{2}+8 k_{3}=0$
We have system of linear equations and we can solve this system using Gauss-Jordan elimination method. At first, using augmented matrix we obtain;

$$
\begin{aligned}
& {\left[\begin{array}{rrrl}
2 & 1 & 7 & 0 \\
-1 & 2 & -1 & 0 \\
0 & 5 & 5 & 0 \\
3 & -1 & 8 & 0
\end{array}\right] \stackrel{1}{2} R_{1} \rightarrow R_{1} \sim\left[\begin{array}{rrrr}
1 & \frac{1}{2} & \frac{7}{2} & 0 \\
-1 & 2 & -1 & 0 \\
0 & 5 & 5 & 0 \\
3 & -1 & 8 & 0
\end{array}\right] R_{1}+R_{2} \rightarrow R_{2} \text { and }-3 R_{1}+R_{4} \rightarrow R_{4}} \\
& \sim\left[\begin{array}{llll}
1 & \frac{1}{2} & \frac{7}{2} & 0 \\
0 & \frac{5}{2} & \frac{5}{2} & 0 \\
0 & 5 & 5 & 0 \\
0 & \frac{-5}{2} & \frac{-5}{2} & 0
\end{array}\right] \quad{ }_{5}^{2} R_{2} \rightarrow R_{2} \sim\left[\begin{array}{cccc}
1 & \frac{1}{2} & \frac{7}{2} & 0 \\
0 & 1 & 1 & 0 \\
0 & 5 & 5 & 0 \\
0 & \frac{-5}{2} & \frac{-5}{2} & 0
\end{array}\right]-{ }_{2}^{2} R_{2}+R_{1} \rightarrow R_{1},-5 R_{2}+R_{3} \rightarrow R_{3} \text { and }{ }_{2}^{5} R_{2}+R_{4} \rightarrow R_{4} \\
& \sim\left[\begin{array}{llll}
1 & 0 & 3 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& k_{1}+3 k_{3}=0 \rightarrow k_{1}=-3 k_{3} \\
& k_{2}+k_{3}=0 \rightarrow k_{2}=-k_{3} \text {, and if } k_{3}=1 \rightarrow k_{1}=-3, k_{2}=-1
\end{aligned}
$$

The system has infinity many solutions. Thus, the set of vectors is linearly dependent, since

$$
-3 \mathbf{v}_{1}-\mathbf{v}_{2}+\mathbf{v}_{3}=\mathbf{0} .
$$

Example (9): Show whether the set $S=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}\right\}$ of the vector space \mathbb{R}^{4}, is a linearly independent or linearly dependent, where $\mathbf{x}_{1}=\langle 1,0,1,2\rangle, \mathbf{x}_{2}=\langle 0,1,1,2\rangle$, and $\mathbf{x}_{3}=\langle 1,1,1,3\rangle$.

Solution:

$$
\begin{aligned}
& k_{1} \mathbf{x}_{1}+k_{2} \mathbf{x}_{2}+\mathrm{k}_{3} \mathbf{x}_{3}=\mathbf{0} \\
& k_{1}\langle 1,0,1,2\rangle+k_{2}\langle 0,1,1,2\rangle+k_{3}\langle 1,1,1,3\rangle=\langle 0,0,0,0\rangle \\
& \left\langle k_{1}, 0, k_{1}, 2 k_{1}\right\rangle+\left\langle 0, k_{2}, k_{2}, 2 k_{2}\right\rangle+\left\langle k_{3}, k_{3}, k_{3}, 3 k_{3}\right\rangle=\langle 0,0,0,0\rangle
\end{aligned}
$$

Ministry of Higher Education

\& Scientific Research
University of Anbar College of Science
Department of Applied
Mathematics

lectures

Subject: Vector analysis.

The lecturer: Assist. Prof. Dr.
Ali Rashid Ibrahim

$$
\begin{aligned}
&\left\langle k_{1}+k_{3}, k_{2}+k_{3}, k_{1}+k_{2}+k_{3}, 2 k_{1}+2 k_{2}+3 k_{3}\right\rangle=\langle 0,0,0,0\rangle \\
& k_{1}+\quad k_{3}=0 \\
& k_{2}+\quad k_{3}=0 \\
& k_{1}+k_{2}+k_{3}=0 \\
& 2 k_{1}+2 k_{2}+3 k_{3}=0
\end{aligned}
$$

Using Gauss-Jordan elimination method, we solve the system of linear equations.

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
2 & 2 & 3 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow k_{1}=k_{2}=k_{3}=0
$$

Thus, the set S is a linearly independent.
Example (10): Determine whether the polynomials $\boldsymbol{p}_{1}=1-x, \boldsymbol{p}_{2}=5+3 x-2 x^{2}$ and $\boldsymbol{p}_{3}=1+3 x-x^{2}$ form a linearly dependent set in P_{2}. (Homework)

Example (11): Determine whether the set $S=\left\{\boldsymbol{p}_{1}(t), \boldsymbol{p}_{2}(t), \boldsymbol{p}_{3}(t)\right\}$ is a linearly independent, where $\boldsymbol{p}_{1}(t)=t^{2}+t+2, \boldsymbol{p}_{2}(t)=2 t^{2}+t$, and $\boldsymbol{p}_{1}(t)=3 t^{2}+2 t+2$. (Homework)

References

1- Introductory linear algebra with applications, Bernard Kolman, first edition, 1976.
2- Elementary Linear Algebra Subsequent Edition, Arthur Wayne Roberts,1985.
3- Elementary Linear Algebra, Ninth Edition, Howard Anton, Chris Rorres, 2005.
4- Student Solutions Manuals for use with College Algebra with Trigonometry: graphs and models, by Raymond A. Barnett, Michael R. Ziegler and Karl E. Byleen, 2005.

