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Definition: (Degree Sequence) The degree sequence of a graph of order n is the
n —term sequence (usually written in descending order) of the vertex degrees.

Degree Sequence = (4,4,4,3,3,3,3,3,3) 3

Definition: (Graphical Sequence) An integer sequence is said to be graphical if
It IS the degree sequence of some graphs.




Example 1: Is the sequence S = (9,9,8,7,7,6,6,5,5) graphical? Justify your
answer.

Solution: The sequence S = (a;) Is graphical if every element of S is the degree
of some vertex in a graph. For any graph, we know that .., d(v) = 2E, an

even integer. Here, ), a; = 62, an even number. But note that the maximum
degree that a vertex can attain in a graph of order n isn — 1. If S were graphical,
the corresponding graph would have been a graph on 9 vertices and have
(G) = 9. Therefore, the given sequence is not graphical.

Example 2: Is the sequence S =(9,8,7,6,6,5,5,4,3,3,2,2) graphical? Justify your
answetr.

Solution: The sequence S = (a;) Is graphical if every element of S is the degree
of some vertex in a graph. For any graph, we know that .., d(v) = 2E, an

even integer. Here, we have ), a; = 60, an even number. Also, note that the all
elements In the sequence are less than the number of elements in that sequence.
Therefore, the given sequence iIs graphical.



Example 3: Is the sequence S = (5,4,3,3,2,2,2,1,1,1,1) graphical? Justify your
answer.

Solution: The sequence S = (a;) Is graphical If every element of S is the
degree of some vertex In a graph. For any graph, we know that
2vev(c)d(v) = 2E, an even integer. Here, >, a; = 25, not an even number.

Therefore, the given sequence is not graphical.

Havel Hakimi Theorem: The non-negative integer sequence D = [d;]} IS
graphic if and only if D is graphic, where D is the sequence (having n — 1
elements) obtained from D by deleting its largest element A and subtracting 1
from its A next largest elements.




Havel Hakimi Algorithm (HHA)

The Havel Hakimi algorithm gives a systematic approach to answer the question of
determining whether it is possible to construct a simple graph from a given degree
sequence.

Take as input a degree sequence S and determine if that sequence is graphical
That 1s, can we produce a graph with that degree seguence?

Assume the degree sequence is 5
S =d,.d,.d; - d,
&, =d.

1. If anyv &, = »then fail

_If there is an odd mumber of odd degrees then fail
If there is a &, < 0 then fail

If all &. = 0 then report success

b

-Reorder Sinto non -imcreasmg order
Let k =4
. Remove o, from 5.

_Subtract 1from the first & terms remaining of the new seguence

O 6 =) Oy L da W

. Go to step 3 above



Example 1:

Consider the degree sequence: S = 7,5,5, 4,4, 4, 4, 3
Where n = 8 (no. of vertices)
Step 1. Degree of all vertices is less than n ( no.of vertices)

Step 2. Odd number vertices are four.

Step 3. There is no degree less than zero.

Step 4. Remove 7" from the sequence and subtract 1 from the remaining new sequence
and arrange again in non-increasing order to get

S=4,4,3,3,3,3.2

Step 5. Now remove the first ‘4 ° from the sequence and subtract 1 from the remaining
new sequence to get:

S=3,2, 2.2, 3, 2

rearrange in non-increasing order to get:

- R e W W M M
Fepeating the abowve step we get following degree sequances:

5=2 2 2, 1,1
5=1,1,1, 1
5=1,1,0
5=0,0

Step 6. Since all the deg remaining inm the sequence is Zzero, the given seqguence Is
graphical {(or in other vwords, 1t iIs possible o construct a simple graph from the given
degree sequancel).




Example 2:
$S=4,3,3,3,1
Where n = 5 (no. of vertices)

Step 1. Degree of all verticesis less than n ( no.of vertices)

Step 2. Odd number vertices are four.
Step 3. There is no degree less than zero.

Step 4. Remove ‘4’ from the sequence and subtracting 1 from the remaining new sequence and
arrange again in non-increasing order we get

S=2,220

Step 5. Again Remove ‘2 ‘ from the sequence and subtracting 1 from the remaining new sequence
and arrange in non-increasing order we get

5= 1.1.0
Repeating the above step

S=0,0

Step 6. Since all the deg remaining in the sequence is zero, the given sequence is graphical.




Neighbourhoods

Definition: (Neighbourhood of a Vertex) The neighbourhood (or open neighbourhood)
of a vertex v, denoted by N(v), Is the set of vertices adjacent to v. That Is,
N(w)={x € V: vx € E}. The closed neighbourhood of a vertex v, denoted by
N[v], is simply the set N(v) U {v}.

, for any vertex v in a graph G, we have d(v) = |N(v)|. A special case is a loop

at connects a vertex to itself; if such an edge exists, the vertex is said to belong to Its
own neighbourhood.

Given a set S of vertices, we define the neighbourhood of S, denoted by N(S), to be
the union of the neighbourhoods of the vertices in S. Similarly, the closed
neighbourhood of S, denoted by N[S], Is defined to be S U N(S).



N(f) = {c,d} &N[f] ={c,d,f}

Let S ={a,b,c}, thenN(S) ={e,d}U{c,e,g}U{b,f}




H. W.

1) Verify whether the integer sequences (7,6,5,4,3,3,2) and (6,6,5,4,3,3,1)
are graphical. ( Hint: Use Havel Hakimi Algorithm)
2) For the following graph G , find:

8(G), A(G),NJvs]and degree sequence .




Tiiend Y
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