Engineering Mechanics - STATILS

2.7 Position Vectors:

In this section we will introduce the concept of a position vector. It will be shown that this vector is of importance in formulating a Cartesian force vector directed between two points in space.
$\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ Coordinates, we will use a right-handed coordinate system to reference the location of points in space, Fig. 2-34. Points in space are located relative to the origin of coordinates, O, by successive measurements along the x, y, z axes. For example, the coordinates of
 point A are obtained by starting at O and measuring $x_{A}=+4 \mathrm{~m}$ along the x axis, then $y_{A}=+2 \mathrm{~m}$ along the y axis, and finally $z_{A}=-6 \mathrm{~m}$ along the z axis. Thus, $A(4 \mathrm{~m}, 2$ $\mathrm{m},-6 \mathrm{~m}$). In a similar manner, measurements along the x, y, z axes from O to B yield the coordinates of B, i.e., $B(6 \mathrm{~m},-1 \mathrm{~m}, 4 \mathrm{~m})$.

Position Vector, A position vector \mathbf{r} is defined as a fixed vector which locates a point in space relative to another point. For example, if \mathbf{r} extends from the origin of coordinates, O, to point $P(x, y, z)$, Fig. 2-35 a, then \mathbf{r} can be expressed in Cartesian vector form as:

$$
\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

Note how the head-to-tail vector addition of the three components yields vector \mathbf{r}, Fig. 2-35 b. Starting at the origin O, one "travels" x in the $+\mathbf{i}$ direction, then y in the $+\mathbf{j}$ direction, and finally z in the $+\mathbf{k}$ direction to arrive at point $\boldsymbol{P}(x, y, z)$.

Fig. 2-35

Engineering Mechanics - STATILS

In the more general case, the position vector may be directed from point A to point B in space, Fig. 2-36 a. From Fig. 2-36 a, by the head-to-tail vector addition, using the triangle rule, we require:

$$
\mathbf{r}_{A}+\mathbf{r}=\mathbf{r}_{B}
$$

(a)
$\mathbf{r}=\mathbf{r}_{B}-\mathbf{r}_{A}=\left(x_{B} \mathbf{i}+y_{B} \mathbf{j}+z_{B} \mathbf{k}\right)-\left(x_{A} \mathbf{i}+y_{A} \mathbf{j}+z_{A} \mathbf{k}\right)$
or

$$
\begin{equation*}
\mathbf{r}=\left(x_{B}-x_{A}\right) \mathbf{i}+\left(y_{B}-y_{A}\right) \mathbf{j}+\left(z_{B}-z_{A}\right) \mathbf{k} \tag{2-11}
\end{equation*}
$$

We can also form these components directly, Fig. 2-36 b, by starting at A and moving through a distance of $\left(x_{B}-x_{A}\right)$ along the positive x axis ($+\mathbf{i}$), then $\left(y_{B}-y_{A}\right)$ along the positive y axis $(+\mathbf{j})$, and finally ($z_{B}-z_{A}$) along the positive z axis $(+\mathbf{k})$ to get to B.

(b)

Fig. 2-36

EXAMPLE 2.12

Fig. 2-37

An elastic rubber band is attached to points A and B as shown in Fig. 2-37a. Determine its length and its direction measured from A toward B.

SOLUTION

We first establish a position vector from A to B, Fig. 2-37b. In accordance with Eq. 2-11, the coordinates of the tail $A(1 \mathrm{~m}, 0,-3 \mathrm{~m})$ are subtracted from the coordinates of the head $B(-2 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m})$, which yields

$$
\begin{aligned}
\mathbf{r} & =[-2 \mathrm{~m}-1 \mathrm{~m}] \mathbf{i}+[2 \mathrm{~m}-0] \mathbf{j}+[3 \mathrm{~m}-(-3 \mathrm{~m})] \mathbf{k} \\
& =\{-3 \mathbf{i}+2 \mathbf{j}+6 \mathbf{k}\} \mathrm{m}
\end{aligned}
$$

These components of \mathbf{r} can also be determined directly by realizing that they represent the direction and distance one must travel along each axis in order to move from A to B, i.e., along the x axis $\{-3 \mathbf{i}\} \mathrm{m}$, along the y axis $\{2 \mathbf{j}\} \mathrm{m}$, and finally along the z axis $\{6 \mathbf{k}\} \mathrm{m}$.
The length of the rubber band is therefore

$$
r=\sqrt{(-3 \mathrm{~m})^{2}+(2 \mathrm{~m})^{2}+(6 \mathrm{~m})^{2}}=7 \mathrm{~m}
$$

Ans.
Formulating a unit vector in the direction of \mathbf{r}, we have

$$
\mathbf{u}=\frac{\mathbf{r}}{r}=-\frac{3}{7} \mathbf{i}+\frac{2}{7} \mathbf{j}+\frac{6}{7} \mathbf{k}
$$

The components of this unit vector give the coordinate direction angles

$$
\begin{array}{ll}
\alpha=\cos ^{-1}\left(-\frac{3}{7}\right)=115^{\circ} & \text { Ans. } \\
\beta=\cos ^{-1}\left(\frac{2}{7}\right)=73.4^{\circ} & \text { Ans. } \\
\gamma=\cos ^{-1}\left(\frac{6}{7}\right)=31.0^{\circ} & \text { Ans. }
\end{array}
$$

NOTE: These angles are measured from the positive axes of a localized coordinate system placed at the tail of \mathbf{r}, as shown in Fig. 2-37c.

Engineering Mechanics - STATILS

2.8 Force Vector Directed Along a Line

Quite often in three-dimensional statics problems, the direction of a force is specified by two points through which its line of action passes. Such a situation is shown in Fig. 2-38, where the force \mathbf{F} is directed along the cord $A B$. We can formulate \mathbf{F} as a Cartesian vector by realizing that it has the same direction and sense as the position vector \mathbf{r} directed from point A to point B on the cord. This common direction is specified by the unit vector $\mathbf{u}=\mathbf{r}>r$. Hence,

Fig. 2-38

$$
\mathbf{F}=F \mathbf{u}=F\left(\frac{\mathbf{r}}{r}\right)=F\left(\frac{\left(x_{B}-x_{A}\right) \mathbf{i}+\left(y_{B}-y_{A}\right) \mathbf{j}+\left(z_{B}-z_{A}\right) \mathbf{k}}{\sqrt{\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}+\left(z_{B}-z_{A}\right)^{2}}}\right)
$$

The force \mathbf{F} acting along the rope can be represented as a Cartesian vector by establishing x, y, z axes and first forming a position vector \mathbf{r} along the length of the rope. Then the corresponding unit vector $\mathbf{u}=\mathbf{r} / r$ that defines the direction of both the rope and the force can be determined. Finally, the magnitude of the force is combined with its direction, $\mathbf{F}=F \mathbf{u}$.

Important Points

- A position vector locates one point in space relative to another point.
- The easiest way to formulate the components of a position vector is to determine the distance and direction that must be traveled along the x, y, z directions-going from the tail to the head of the vector.
- A force \mathbf{F} acting in the direction of a position vector \mathbf{r} can be represented in Cartesian form if the unit vector \mathbf{u} of the position vector is determined and it is multiplied by the magnitude of the force, i.e., $\mathbf{F}=F \mathbf{u}=F(\mathbf{r}>r)$.

(a)

(b)

Fig. 2-39

The man shown in Fig. 2-39a pulls on the cord with a force of 70 lb . Represent this force acting on the support A as a Cartesian vector and determine its direction.

SOLUTION

Force \mathbf{F} is shown in Fig. 2-39b. The direction of this vector, \mathbf{u}, is determined from the position vector \mathbf{r}, which extends from A to B. Rather than using the coordinates of the end points of the cord, \mathbf{r} can be determined directly by noting in Fig. 2-39a that one must travel from $A\{-24 \mathbf{k}\} \mathrm{ft}$, then $\{-8 \mathbf{j}\} \mathrm{ft}$, and finally $\{12 \mathbf{i}\} \mathrm{ft}$ to get to B. Thus,

$$
\mathbf{r}=\{12 \mathbf{i}-8 \mathbf{j}-24 \mathbf{k}\} \mathrm{ft}
$$

The magnitude of \mathbf{r}, which represents the length of cord $A B$, is

$$
r=\sqrt{(12 \mathrm{ft})^{2}+(-8 \mathrm{ft})^{2}+(-24 \mathrm{ft})^{2}}=28 \mathrm{ft}
$$

Forming the unit vector that defines the direction and sense of both \mathbf{r} and \mathbf{F}, we have

$$
\mathbf{u}=\frac{\mathbf{r}}{\mathbf{r}}=\frac{12}{28} \mathbf{i}-\frac{8}{28} \mathbf{j}-\frac{24}{28} \mathbf{k}
$$

Since \mathbf{F} has a magnitude of 70 lb and a direction specified by \mathbf{u}, then

$$
\begin{align*}
\mathbf{F}=F \mathbf{u} & =70 \mathrm{lb}\left(\frac{12}{28} \mathbf{i}-\frac{8}{28} \mathbf{j}-\frac{24}{28} \mathbf{k}\right) \\
& =\{30 \mathbf{i}-20 \mathbf{j}-60 \mathbf{k}\} \mathrm{lb}
\end{align*}
$$

The coordinate direction angles are measured between $\mathbf{r}($ or $\mathbf{F})$ and the positive axes of a localized coordinate system with origin placed at A, Fig. 2-39b. From the components of the unit vector:

$$
\alpha=\cos ^{-1}\left(\frac{12}{28}\right)=64.6^{\circ}
$$

Ans

$$
\begin{aligned}
& \beta=\cos ^{-1}\left(\frac{-8}{28}\right)=107^{\circ} \\
& \gamma=\cos ^{-1}\left(\frac{-24}{28}\right)=149^{\circ}
\end{aligned}
$$

Ans.

NOTE: These results make sense when compared with the angles identified in Fig. 2-39b.

Engineering Mechanics - STATILS

EXAMPLE 2.14

The force in Fig. 2-40a acts on the hook. Express it as a Cartesian vector.

(a)

(b)

Fig. 2-40

SOLUTION

As shown in Fig. 2-40b, the coordinates for points A and B are

$$
A(2 \mathrm{~m}, 0,2 \mathrm{~m})
$$

and

$$
B\left[-\left(\frac{4}{5}\right) 5 \sin 30^{\circ} \mathrm{m},\left(\frac{4}{5}\right) 5 \cos 30^{\circ} \mathrm{m},\left(\frac{3}{5}\right) 5 \mathrm{~m}\right]
$$

or

$$
B(-2 \mathrm{~m}, 3.464 \mathrm{~m}, 3 \mathrm{~m})
$$

Therefore, to go from A to B, one must travel $\{-4 \mathbf{i}\} \mathrm{m}$, then $\{3.464 \mathrm{j}\}$ m , and finally $[1 \mathrm{k}] \mathrm{m}$. Thus,

$$
\begin{aligned}
\mathbf{u}_{B}=\left(\frac{\mathrm{r}_{B}}{r_{B}}\right) & =\frac{\{-4 \mathbf{i}+3.464 \mathbf{j}+1 \mathbf{k}\} \mathbf{m}}{\sqrt{(-4 \mathrm{~m})^{2}+(3.464 \mathrm{~m})^{2}+(1 \mathrm{~m})^{2}}} \\
& =-0.7428 \mathbf{i}+0.6433 \mathbf{j}+0.1857 \mathbf{k}
\end{aligned}
$$

Force \mathbf{F}_{B} expressed as a Cartesian vector becomes

$$
\begin{aligned}
\mathbf{F}_{B}=F_{B} \mathbf{u}_{B} & =(750 \mathrm{~N})(-0.74281 \mathbf{i}+0.6433 \mathbf{j}+0.1857 \mathbf{k}) \\
& =\{-557 \mathbf{i}+482 \mathbf{j}+139 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

EXAMPLE 2.15

(a)

(b)

The roof is supported by cables as shown in the photo. If the cables exert forces $F_{A B}=100 \mathrm{~N}$ and $F_{A C}=120 \mathrm{~N}$ on the wall hook at A as shown in Fig. 2-41a, determine the resultant force acting at A. Express the result as a Cartesian vector.

SOLUTION

The resultant force \mathbf{F}_{R} is shown graphically in Fig. 2-41b. We can express this force as a Cartesian vector by first formulating $\mathbf{F}_{A B}$ and $\mathbf{F}_{A C}$ as Cartesian vectors and then adding their components. The directions of $\mathbf{F}_{A B}$ and $\mathbf{F}_{A C}$ are specified by forming unit vectors $\mathbf{u}_{A B}$ and $\mathbf{u}_{A C}$ along the cables. These unit vectors are obtained from the associated position vectors $\mathbf{r}_{A B}$ and $\mathbf{r}_{A C}$. With reference to Fig. 2-41a, to go from A to B, we must travel $\{-4 \mathbf{k}\} \mathrm{m}$, and then $\{4 \mathbf{i}\} \mathrm{m}$. Thus,

$$
\begin{aligned}
\mathbf{r}_{A B} & =\{4 \mathbf{i}-4 \mathbf{k}\} \mathrm{m} \\
r_{A B} & =\sqrt{(4 \mathrm{~m})^{2}+(-4 \mathrm{~m})^{2}}=5.66 \mathrm{~m} \\
\mathbf{F}_{A B} & =F_{A B}\left(\frac{\mathbf{r}_{A B}}{r_{A B}}\right)=(100 \mathrm{~N})\left(\frac{4}{5.66} \mathbf{i}-\frac{4}{5.66} \mathbf{k}\right) \\
\mathbf{F}_{A B} & =\{70.7 \mathbf{i}-70.7 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

To go from A to C, we must travel $\{-4 \mathbf{k}\} \mathrm{m}$, then $\{2 \mathbf{j}\} \mathrm{m}$, and finally $\{4 \mathbf{i}\}$. Thus,

$$
\begin{aligned}
\mathbf{r}_{A C} & =\{4 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k}\} \mathrm{m} \\
r_{A C} & =\sqrt{(4 \mathrm{~m})^{2}+(2 \mathrm{~m})^{2}+(-4 \mathrm{~m})^{2}}=6 \mathrm{~m} \\
\mathbf{F}_{A C} & =F_{A C}\left(\frac{\mathbf{r}_{A C}}{r_{A C}}\right)=(120 \mathrm{~N})\left(\frac{4}{6} \mathbf{i}+\frac{2}{6} \mathbf{j}-\frac{4}{6} \mathbf{k}\right) \\
& =\{80 \mathbf{i}+40 \mathbf{j}-80 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

The resultant force is therefore

$$
\begin{aligned}
\mathbf{F}_{R}=\mathbf{F}_{A B}+\mathbf{F}_{A C}= & \{70.7 \mathbf{i}-70.7 \mathbf{k}\} \mathrm{N}+\{80 \mathbf{i}+40 \mathbf{j}-80 \mathbf{k}\} \mathrm{N} \\
& =\{151 \mathbf{i}+40 \mathbf{j}-151 \mathbf{k}\} \mathrm{N}
\end{aligned}
$$

Fig. 2-41

Engineering Mechanics - STATILS

FUNDAMENTAL PROBLEMS

F2-19. Express the position vector $\mathbf{r}_{A B}$ in Cartesian vector form, then determine its magnitude and coordinate direction angles.

F2-19

F2-20. Determine the length of the rod and the position vector directed from A to B. What is the angle θ ?

F2-20

F2-21. Express the force as a Cartesian vector.

F2-21

F2-22. Express the force as a Cartesian vector.

F2-22

F2-23. Determine the magnitude of the resultant force at A.

F2-23

F2-24. Determine the resultant force at A.

F2-24

