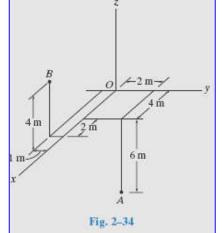


Engineering Mechanics - STATICS

2.7 Position Vectors:

In this section we will introduce the concept of a position vector. It will be shown that this vector is of importance in formulating a Cartesian force vector directed between two points in space.

x, *y*, *z* Coordinates, we will use a *right-handed* coordinate system to reference the location of points in space, Fig. 2–34. Points in space are located relative to the origin of coordinates, O, by successive measurements along the *x*, *y*, *z* axes. For example, the coordinates of

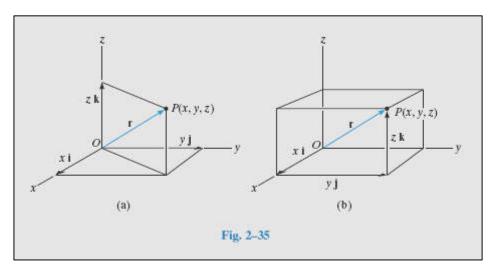


point *A* are obtained by starting at *O* and measuring $x_A = +4$ m along the *x* axis, then $y_A = +2$ m along the *y* axis, and finally $z_A = -6$ m along the *z* axis. Thus, *A* (4 m, 2 m, -6 m). In a similar manner, measurements along the *x*, *y*, *z* axes from *O* to *B* yield the coordinates of *B*, i.e., *B* (6 m, -1 m, 4 m).

Position Vector, A *position vector* \mathbf{r} is defined as a fixed vector which locates a point in space relative to another point. For example, if \mathbf{r} extends from the origin of coordinates, O, to point P(x, y, z), Fig. 2–35 a, then \mathbf{r} can be expressed in Cartesian vector form as:

$\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$

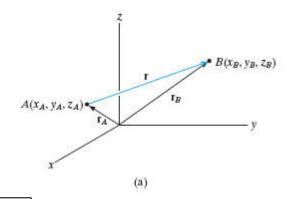
Note how the head-to-tail vector addition of the three components yields vector \mathbf{r} , Fig. 2–35 *b*. Starting at the origin *O*, one "travels" *x* in the +**i** direction, then *y* in the +**j** direction, and finally *z* in the +**k** direction to arrive at point P(x, y, z).



Engineering Mechanics - STATICS

In the more general case, the position vector may be directed from point A to point B in space, Fig. 2–36 a. From Fig. 2–36 a, by the head-to-tail vector addition, using the triangle rule, we require:

$$\mathbf{r}_A + \mathbf{r} = \mathbf{r}_B$$



$$\mathbf{r} = \mathbf{r}_B - \mathbf{r}_A = (x_B \mathbf{i} + y_B \mathbf{j} + z_B \mathbf{k}) - (x_A \mathbf{i} + y_A \mathbf{j} + z_A \mathbf{k})$$

or

$$\mathbf{r} = (x_B - x_A)\mathbf{i} + (y_B - y_A)\mathbf{j} + (z_B - z_A)\mathbf{k}$$

$$(2-11)$$

We can also form these components *directly*, Fig. 2–36 *b*, by starting at *A* and moving through a distance of $(x_B - x_A)$ along the positive *x* axis (+**i**), then $(y_B - y_A)$ along the positive *y* axis (+**j**), and finally $(z_B - z_A)$ along the positive *z* axis (+**k**) to get to *B*.

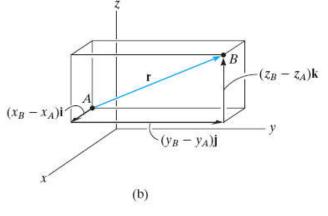
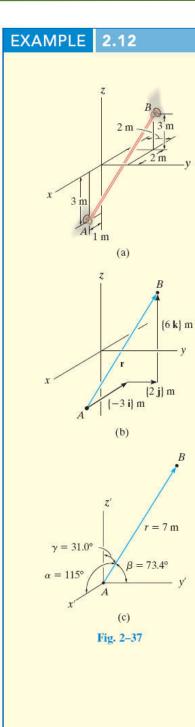


Fig. 2-36



An elastic rubber band is attached to points A and B as shown in Fig. 2–37a. Determine its length and its direction measured from A toward B.

SOLUTION

We first establish a position vector from A to B, Fig. 2–37b. In accordance with Eq. 2–11, the coordinates of the tail A(1 m, 0, -3 m) are subtracted from the coordinates of the head B(-2 m, 2 m, 3 m), which yields

$$\mathbf{r} = [-2 \text{ m} - 1 \text{ m}]\mathbf{i} + [2 \text{ m} - 0]\mathbf{j} + [3 \text{ m} - (-3 \text{ m})]\mathbf{k}$$
$$= \{-3\mathbf{i} + 2\mathbf{j} + 6\mathbf{k}\} \text{ m}$$

These components of **r** can also be determined *directly* by realizing that they represent the direction and distance one must travel along each axis in order to move from A to B, i.e., along the x axis $\{-3i\}$ m, along the y axis $\{2j\}$ m, and finally along the z axis $\{6k\}$ m.

The length of the rubber band is therefore

$$r = \sqrt{(-3 \text{ m})^2 + (2 \text{ m})^2 + (6 \text{ m})^2} = 7 \text{ m}$$
 Ans.

Formulating a unit vector in the direction of r, we have

$$\mathbf{u} = \frac{\mathbf{r}}{r} = -\frac{3}{7}\mathbf{i} + \frac{2}{7}\mathbf{j} + \frac{6}{7}\mathbf{k}$$

The components of this unit vector give the coordinate direction angles

$$\alpha = \cos^{-1}\left(-\frac{3}{7}\right) = 115^{\circ} \qquad Ans.$$

$$\beta = \cos^{-1}\left(\frac{2}{7}\right) = 73.4^{\circ} \qquad Ans.$$

$$\gamma = \cos^{-1}\left(\frac{6}{7}\right) = 31.0^{\circ} \qquad Ans.$$

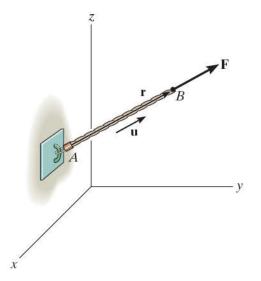
NOTE: These angles are measured from the *positive axes* of a localized coordinate system placed at the tail of \mathbf{r} , as shown in Fig. 2–37*c*.

UNIVERSITY OF ANBAR COLLEGE OF ENGINEERING DAM & WATER RESOURCES DEPT.

Engineering Mechanics - STATICS

2.8 Force Vector Directed Along a Line

Quite often in three-dimensional statics problems, the direction of a force is specified by two points through which its line of action passes. Such a situation is shown in Fig. 2–38, where the force **F** is directed along the cord *AB*. We can formulate **F** as a Cartesian vector by realizing that it has the *same direction* and *sense* as the position vector **r** directed from point *A* to point *B* on the cord. This common direction is specified by the *unit vector* $\mathbf{u} = \mathbf{r} > r$. Hence,

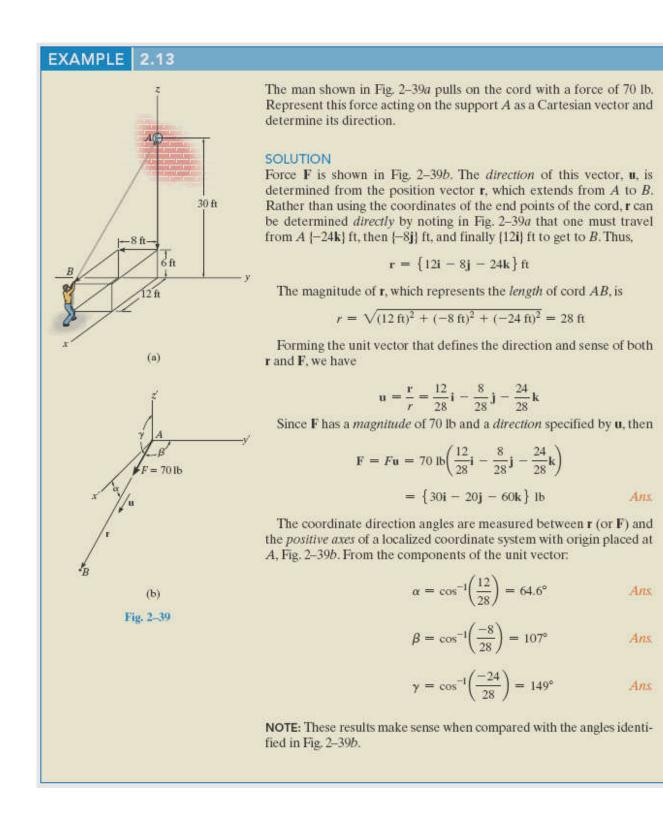


$$\mathbf{F} = F \,\mathbf{u} = F\left(\frac{\mathbf{r}}{r}\right) = F\left(\frac{(x_B - x_A)\mathbf{i} + (y_B - y_A)\mathbf{j} + (z_B - z_A)\mathbf{k}}{\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}}\right)$$

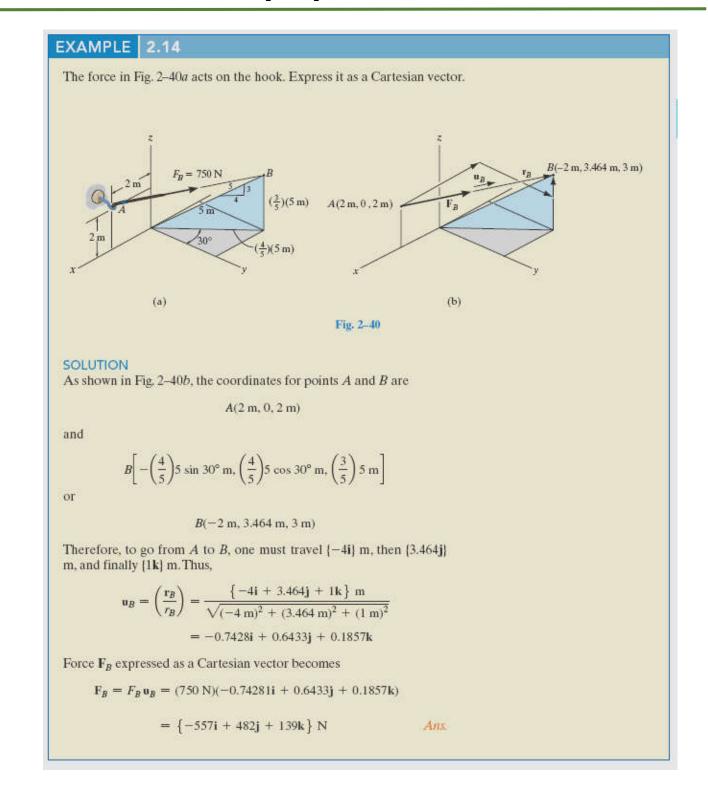
The force **F** acting along the rope can be represented as a Cartesian vector by establishing x, y, z axes and first forming a position vector **r** along the length of the rope. Then the corresponding unit vector $\mathbf{u} = \mathbf{r}/r$ that defines the direction of both the rope and the force can be determined. Finally, the magnitude of the force is combined with its direction, $\mathbf{F} = F\mathbf{u}$.

Important Points

- A position vector locates one point in space relative to another point.
- The easiest way to formulate the components of a position vector is to determine the distance and direction that must be traveled along the *x*, *y*, *z* directions—going from the tail to the head of the vector.
- A force F acting in the direction of a position vector r can be represented in Cartesian form if the unit vector u of the position vector is determined and it is multiplied by the magnitude of the force, i.e., F = Fu = F (r>r).



Engineering Mechanics - STATICS

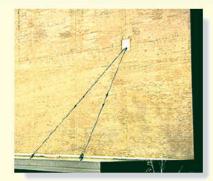


UNIVERSITY OF ANBAR COLLEGE OF ENGINEERING DAM & WATER RESOURCES DEPT.

Engineering Mechanics - STATICS

EXAMPLE 2.15

 $F_{AB} = 100 \text{ N}$



 $F_{AC} = 120 \text{ N}$

(a)

FAB

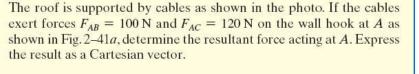
ľ AI

A

AC

(b) Fig. 2–41 4 m

4 m



SOLUTION

The resultant force \mathbf{F}_R is shown graphically in Fig. 2–41*b*. We can express this force as a Cartesian vector by first formulating \mathbf{F}_{AB} and \mathbf{F}_{AC} as Cartesian vectors and then adding their components. The directions of \mathbf{F}_{AB} and \mathbf{F}_{AC} are specified by forming unit vectors \mathbf{u}_{AB} and \mathbf{u}_{AC} along the cables. These unit vectors are obtained from the associated position vectors \mathbf{r}_{AB} and \mathbf{r}_{AC} . With reference to Fig. 2–41*a*, to go from *A* to *B*, we must travel $\{-4\mathbf{k}\}$ m, and then $\{4\mathbf{i}\}$ m. Thus,

$$\mathbf{r}_{AB} = \{4\mathbf{i} - 4\mathbf{k}\} \text{ m}$$

$$r_{AB} = \sqrt{(4 \text{ m})^2 + (-4 \text{ m})^2} = 5.66 \text{ m}$$

$$\mathbf{F}_{AB} = F_{AB} \left(\frac{\mathbf{r}_{AB}}{r_{AB}}\right) = (100 \text{ N}) \left(\frac{4}{5.66}\mathbf{i} - \frac{4}{5.66}\mathbf{k}\right)$$

$$\mathbf{F}_{AB} = \{70.7\mathbf{i} - 70.7\mathbf{k}\} \text{ N}$$

To go from A to C, we must travel $\{-4k\}$ m, then $\{2j\}$ m, and finally $\{4i\}$. Thus,

$$\mathbf{r}_{AC} = \{4\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}\} \text{ m}$$

$$r_{AC} = \sqrt{(4 \text{ m})^2 + (2 \text{ m})^2 + (-4 \text{ m})^2} = 6 \text{ m}$$

$$\mathbf{F}_{AC} = F_{AC} \left(\frac{\mathbf{r}_{AC}}{r_{AC}}\right) = (120 \text{ N}) \left(\frac{4}{6}\mathbf{i} + \frac{2}{6}\mathbf{j} - \frac{4}{6}\mathbf{k}\right)$$

$$= \{80\mathbf{i} + 40\mathbf{j} - 80\mathbf{k}\} \text{ N}$$

The resultant force is therefore

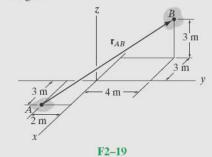
$$\mathbf{F}_{R} = \mathbf{F}_{AB} + \mathbf{F}_{AC} = \{70.7\mathbf{i} - 70.7\mathbf{k}\} \mathbf{N} + \{80\mathbf{i} + 40\mathbf{j} - 80\mathbf{k}\} \mathbf{N}$$
$$= \{151\mathbf{i} + 40\mathbf{j} - 151\mathbf{k}\} \mathbf{N} \qquad Ans.$$

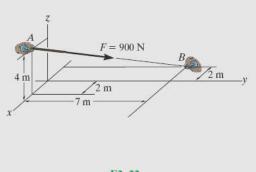
Prepared by: Ass. Prof. Dr. Ayad A. Sulaibi

Engineering Mechanics - STATICS

FUNDAMENTAL PROBLEMS

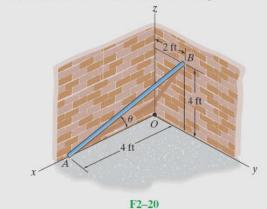
F2-19. Express the position vector \mathbf{r}_{AB} in Cartesian vector form, then determine its magnitude and coordinate direction angles.



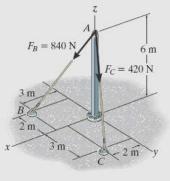


F2-22. Express the force as a Cartesian vector.

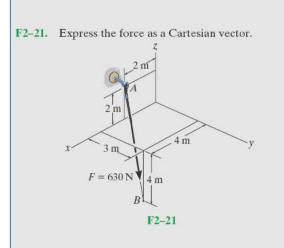
F2-20. Determine the length of the rod and the position vector directed from A to B. What is the angle θ ?



F2-23. Determine the magnitude of the resultant force at A.



F2-23



F2-24. Determine the resultant force at A.

