

(4-7)

## **Cartesian vector formulation:**

If we establish x, y, z coordinate axes, then the position vector **r** and force **F** can be expressed as Cartesian vectors (Fig 4-12-a) then we can write:

$$\mathbf{M}_{O} = \mathbf{r} \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ r_{x} & r_{y} & r_{z} \\ F_{x} & F_{y} & F_{z} \end{vmatrix}$$

Where  $r_x$ ,  $r_y$ ,  $r_z$  represent the x, y, z components of the position vector drawn from point O to any point on the line of action of the force.  $F_x$ ,  $F_y$ ,  $F_z$  represent the x, y, z components of the force vector. If the determinant is expanded, then like Eq. 4-4 we have:

$$\mathbf{M}_O = (r_y F_z - r_z F_y)\mathbf{i} - (r_x F_z - r_z F_x)\mathbf{j} + (r_x F_y - r_y F_x)\mathbf{k} \qquad (4-8)$$

# **Resultant Moment of a system of forces:**

If a body is acted upon by a system of forces (Fig 4-13), the resultant moment of the forces about point O can be determined by vector addition of the moment of each force. This resultant can be written symbolically as:

$$(\mathbf{M}_{\mathbf{R}})_{\mathbf{o}} = \boldsymbol{\Sigma} (\mathbf{r} \times \mathbf{F})$$

















### **Principle of Moments:**

A concept often used in mechanics is the *principle of moments*, which is sometimes referred to as *Varignon's theorem*. It states that *the moment of a force about a point is equal to the sum of the moments of the components of the force about the point*. For example, consider the moments of the force **F** and two of its components about point *O*. Fig. 4–16 . Since  $\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2$  we have:

$$\mathbf{M}_O = \mathbf{r} \times \mathbf{F} = \mathbf{r} \times (\mathbf{F}_1 + \mathbf{F}_2) = \mathbf{r} \times \mathbf{F}_1 + \mathbf{r} \times \mathbf{F}_2$$

For two-dimensional problems, Fig. 4–17, we can use the principle of moments by resolving the force into its rectangular components and then determine the moment using a scalar analysis. Thus,

$$M_0 = F_x y - F_y x$$

This method is generally easier than finding the same moment using  $M_0 = Fd$ .

### **Important Points**

- The moment of a force creates the tendency of a body to turn about an axis passing through a specific point *O*.
- Using the right-hand rule, the sense of rotation is indicated by the curl of the fingers, and the thumb is directed along the moment axis, or line of action of the moment.
- The magnitude of the moment is determined from  $M_O = Fd$ , where d is called the moment arm, which represents the perpendicular or shortest distance from point O to the line of action of the force.
- In three dimensions the vector cross product is used to determine the moment, i.e.,  $M_O = r \times F$ . Remember that r is directed *from* point *O* to any point on the line of action of F.
- The principle of moments states that the moment of a force about a point is equal to the sum of the moments of the force's components about the point. This is a very convenient method to use in two dimensions.



















Engineering Mechanics - STATICS

## PROBLEMS

4-1. If A, B, and D are given vectors, prove the distributive law for the vector cross product, i.e.,  $A \times (B + D) = (A \times B) + (A \times D)$ .

**4–2.** Prove the triple scalar product identity  $A \cdot (B \times C) = (A \times B) \cdot C$ .

**4-3.** Given the three nonzero vectors **A**, **B**, and **C**, show that if  $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = 0$ , the three vectors *must* lie in the same plane.

\*4-4. Determine the moment about point A of each of the three forces acting on the beam.

4-5. Determine the moment about point B of each of the three forces acting on the beam.



#### Probs. 4-4/5

**4-6.** The crane can be adjusted for any angle  $0^{\circ} \le \theta \le 90^{\circ}$  and any extension  $0 \le x \le 5$  m. For a suspended mass of 120 kg, determine the moment developed at A as a function of x and  $\theta$ . What values of both x and  $\theta$  develop the maximum possible moment at A? Compute this moment. Neglect the size of the pulley at B.



4-7. Determine the moment of each of the three forces about point A.

\*4–8. Determine the moment of each of the three forces about point *B*.



Probs. 4-7/8

**4–9.** Determine the moment of each force about the bolt located at *A*. Take  $F_B = 40$  lb,  $F_C = 50$  lb.

**4–10.** If  $F_B = 30$  lb and  $F_C = 45$  lb, determine the resultant moment about the bolt located at A.





Engineering Mechanics - STATICS

### Moment of a Force about a Specified Axis

Sometimes, the moment produced by a force about a *specified axis* must be determined. For example, suppose the lug nut at O on the car tire in Fig. 4–20 a needs to be loosened. The force applied to the wrench will create a tendency for the wrench and the nut to rotate about the *moment axis* passing through O; however, the nut can only rotate about the yaxis. Therefore, to determine the turning effect, only the y component of the moment is needed, and the total moment produced is not important. To determine this component, we can use either a scalar or vector analysis.



**Scalar Analysis:** To use a scalar analysis in the case of the lug nut in Fig. 4–20 *a*, the moment arm perpendicular distance from the axis to the line of action of the force is  $d_y = d \cos \theta$ . Thus, the moment of **F** about the *y*- axis is:

$$M_y = F d_y = F(d \cos \theta)$$

According to the right-hand rule,  $\mathbf{M}_y$  is directed along the positive *y*- axis as shown in the figure. In general, for any axis *a*, the moment is:

$$M_a = Fd_a$$

**Vector Analysis**: To find the moment of force **F** in Fig. 4–20 b about the *y* axis using a vector analysis, we must determine the moment of **F** about a point **O** on the axis:  $\mathbf{M}_{\mathbf{O}} = \mathbf{r} \times \mathbf{F}$ , and the projection of this moment onto the a axis is  $M_a = \mathbf{u}_a$ . (**r** x **F**). This combination is referred to as the scalar triple product. We have:

$$M_a = [u_{a_x}\mathbf{i} + u_{a_y}\mathbf{j} + u_{a_z}\mathbf{k}] \cdot \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}$$
$$= u_{a_x}(r_yF_z - r_zF_y) - u_{a_y}(r_xF_z - r_zF_x) + u_{a_z}(r_xF_y - r_yF_x)$$

Prepared by: Ass. Prof. Dr. Ayad A. Sulaibi



Engineering Mechanics - STATICS

This result can also be written in the form of a determinant, making it easier to memorize.

$$M_a = \mathbf{u}_a \cdot (\mathbf{r} \times \mathbf{F}) = \begin{vmatrix} u_{a_x} & u_{a_y} & u_{a_z} \\ r_x & r_y & r_z \\ F_x & F_y & F_z \end{vmatrix}$$

When Ma is evaluated from above equation, it will yield a positive or negative scalar. The sign of this scalar indicates the sense of direction of  $M_a$  along the a axis. If it is positive, then  $M_a$  will have the same sense as  $u_a$ , whereas if it is negative, then  $M_a$  will act opposite to  $u_a$ . Once  $M_a$  is determined, we can then express  $M_a$ as a Cartesian vector, namely,

 $\mathbf{M}_a = M_a \mathbf{u}_a$ 



# **Important Points**

- The moment of a force about a specified axis can be determined provided the perpendicular distance  $d_a$  from the force line of action to the axis can be determined.  $M_a = Fd_a$ .
- If vector analysis is used,  $M_a = \mathbf{u}_a \cdot (\mathbf{r} \times \mathbf{F})$ , where  $\mathbf{u}_a$  defines the direction of the axis and  $\mathbf{r}$  is extended from *any point* on the axis to *any point* on the line of action of the force.
- If *M<sub>a</sub>* is calculated as a negative scalar, then the sense of direction of **M**<sub>*a*</sub> is opposite to **u**<sub>*a*</sub>.
- The moment M<sub>a</sub> expressed as a Cartesian vector is determined from M<sub>a</sub> = M<sub>a</sub>u<sub>a</sub>.





Determine the resultant moment of the three forces in Fig. 4–22 about the x axis, the y axis, and the z axis.

#### SOLUTION

A force that is *parallel* to a coordinate axis or has a line of action that passes through the axis does *not* produce any moment or tendency for turning about that axis. Therefore, defining the positive direction of the moment of a force according to the right-hand rule, as shown in the figure, we have

| $M_x = (60 \text{ lb})(2 \text{ ft}) + (50 \text{ lb})(2 \text{ ft}) + 0 = 220 \text{ lb} \cdot \text{ft}$  | Ans. |
|-------------------------------------------------------------------------------------------------------------|------|
| $M_y = 0 - (50 \text{ lb})(3 \text{ ft}) - (40 \text{ lb})(2 \text{ ft}) = -230 \text{ lb} \cdot \text{ft}$ | Ans. |
| $M_{\rm c} = 0 + 0 - (40 \text{ lb})(2 \text{ ft}) = -80 \text{ lb} \cdot \text{ft}$                        | Ans  |

 $F_3 = 40$  lb  $F_3 = 40$  lb  $F_1 = 60$  lb 2 ft Q ft 

The negative signs indicate that  $M_y$  and  $M_z$  act in the -y and -z directions, respectively.

#### **EXAMPLE** 4.8 Determine the moment $M_{AB}$ produced by the force F in Fig. 4–23*a*, which tends to rotate the rod about the AB axis. SOLUTION A vector analysis using $M_{AB} = \mathbf{u}_B \cdot (\mathbf{r} \times \mathbf{F})$ will be considered for the 0.3 m solution rather than trying to find the moment arm or perpendicular distance from the line of action of $\mathbf{F}$ to the AB axis. Each of the terms in the equation will now be identified. Unit vector $\mathbf{u}_B$ defines the direction of the AB axis of the rod, 0.4 m F = 300 NFig. 4–23b, where $\mathbf{u}_B = \frac{\mathbf{r}_B}{\mathbf{r}_B} = \frac{\{0.4\mathbf{i} + 0.2\mathbf{j}\} \text{ m}}{\sqrt{(0.4 \text{ m})^2 + (0.2 \text{ m})^2}} = 0.8944\mathbf{i} + 0.4472\mathbf{j}$ 0.2 m (a) Vector **r** is directed from *any point* on the *AB* axis to *any point* on the line of action of the force. For example, position vectors $\mathbf{r}_C$ and $\mathbf{r}_D$ are suitable, Fig. 4–23*b*. (Although not shown, $\mathbf{r}_{BC}$ or $\mathbf{r}_{BD}$ can also be used.) For simplicity, we choose $\mathbf{r}_D$ , where $\mathbf{r}_D = \{0.6\mathbf{i}\}\ \mathbf{m}$ The force is $F = \{-300k\} N$



Engineering Mechanics - STATICS





### EXAMPLE 4.9

Determine the magnitude of the moment of force  $\mathbf{F}$  about segment *OA* of the pipe assembly in Fig. 4–24*a*.

#### SOLUTION

The moment of **F** about the *OA* axis is determined from *D*  $M_{OA} = \mathbf{u}_{OA} \cdot (\mathbf{r} \times \mathbf{F})$ , where **r** is a position vector extending from any point on the *OA* axis to any point on the line of action of **F**. As indicated in Fig. 4–24*b*, either  $\mathbf{r}_{OD}$ ,  $\mathbf{r}_{OC}$ ,  $\mathbf{r}_{AD}$ , or  $\mathbf{r}_{AC}$  can be used; however,  $\mathbf{r}_{OD}$  will be considered since it will simplify the calculation. <sup>0.5</sup>

The unit vector  $\mathbf{u}_{OA}$ , which specifies the direction of the OA axis, is

$$\mathbf{u}_{OA} = \frac{\mathbf{r}_{OA}}{r_{OA}} = \frac{\{0.3\mathbf{i} + 0.4\mathbf{j}\} \text{ m}}{\sqrt{(0.3 \text{ m})^2 + (0.4 \text{ m})^2}} = 0.6\mathbf{i} + 0.8\mathbf{j}$$

and the position vector  $\mathbf{r}_{OD}$  is

$$\mathbf{r}_{OD} = \{0.5\mathbf{i} + 0.5\mathbf{k}\} \text{ m}$$

The force F expressed as a Cartesian vector is

$$\mathbf{F} = F\left(\frac{\mathbf{r}_{CD}}{r_{CD}}\right)$$
  
= (300 N)  $\left[\frac{\{0.4\mathbf{i} - 0.4\mathbf{j} + 0.2\mathbf{k}\} \text{ m}}{\sqrt{(0.4 \text{ m})^2 + (-0.4 \text{ m})^2 + (0.2 \text{ m})^2}}\right]$   
= {200\mathbf{i} - 200\mathbf{j} + 100\mathbf{k}} N  
Therefore,  
$$M_{CL} = \mathbf{n}_{CL} : (\mathbf{r}_{CD} \times \mathbf{F})$$

$$\begin{aligned} \mathbf{M}_{OA} &= \mathbf{u}_{OA} \cdot (\mathbf{u}_{OD} \times \mathbf{r}) \\ &= \begin{vmatrix} 0.6 & 0.8 & 0 \\ 0.5 & 0 & 0.5 \\ 200 & -200 & 100 \end{vmatrix} \\ &= 0.6[0(100) - (0.5)(-200)] - 0.8[0.5(100) - (0.5)(200)] + 0 \\ &= 100 \,\mathrm{N} \cdot \mathrm{m} \end{aligned}$$







**F4–16.** Determine the magnitude of the moment of the force about the y axis.



**F4–17.** Determine the moment of the force  $\mathbf{F} = \{50\mathbf{i} - 40\mathbf{j} + 20\mathbf{k}\}\$  lb about the *AB* axis. Express the result as a Cartesian vector.



**F4–18.** Determine the moment of force F about the x, the y, and the z axes. Solve the problem using both a scalar and a vector analysis.

