Def:-

- 1- f(x) is an **even** fun. if f(-x) = f(x) for every x in the domain.
- 2- f(x) is an **odd** fun. if f(-x) = -f(x) for every x in the domain.

Exs.

1) $\sin \theta$

 $\sin(-\theta) = -\sin(\theta)$ is odd fun.

- 2) $\cos \theta$ $\cos(\theta) = \cos(-\theta)$ is even fun.
- 3) $f(x) = x^{2} \cos x$ $f(-x) = (-x)^{2} \cos(-x) = x^{2} \cos x = f(x)$ $\therefore f(x)$ is even fun. 4) $f(x) = \frac{x^{2}-1}{\sin x}$ $f(-x) = \frac{(-x)^{2}-1}{\sin(-x)} = \frac{x^{2}-1}{-\sin x} = -\left(\frac{x^{2}-1}{\sin(x)}\right) = -f(x)$ $\therefore f(x)$ is odd for
 - $\therefore f(x)$ is odd fun.

Sum, Differences, product and quotient of Functions (الجمع، الطرح، الضرب، و القسمة للدوال)

If f(x) and g(x) are two functions then :-

1- The sum f + g is the fun.

(f+g)(x) = f(x) + g(x)

Domain $(f + g) = \text{domain}(f) \cap \text{domain}(g)$

- 2- The differences f g is the fun. (f - g)(x) = f(x) - g(x)Domain $(f - g) = \text{domain}(f) \cap \text{domain}(g)$
- 3- The product $f \cdot g$ is the fun.

(f.g)(x) = f(x).g(x)

Domain $(f, g) = \text{domain}(f) \cap \text{domain}(g)$

4- The quotient $\frac{f}{g}$ is the fun. $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$ $g(x) \neq 0$ Domain $\left(\frac{f}{g}\right) = \text{domain}(f) \cap \text{domain}(g) \setminus \{x: g(x) = 0\}$ **Ex.** If $f(x) = \sqrt{x}$ and $g(x) = \sqrt{1-x}$ Find (f + g), (g - f), (f - g), $\left(\frac{f}{g}\right)$, $\left(\frac{g}{f}\right)$, (f, g) and its domain. **Sol.** domain $(f) = [0, \infty)$, domain $(g) = (-\infty, 1]$ $1 - x \ge 0$ $-x \ge -1$ $x \le 1$

 $Domain(f) \cap Domain(g) = [0,1]$

م. صالح محمد حسين	التفاضل والتكامل المستوى 2	كلية التربية الأساسية / حديثة
Collage of Basic Education/Haditha		Calculus - Level 2nd
	(2020-2021)	

- $(f+g)(x) = \sqrt{x} + \sqrt{1-x}$ Domain(f+g) = [0,1]• $(f-g)(x) = \sqrt{x} - \sqrt{1-x}$ Domain(f-g) = [0,1]• $(g-f)(x) = \sqrt{1-x} - \sqrt{x}$ Domain(g-f) = [0,1]
- $(f.g)(x) = f(x).g(x) = \sqrt{x}\sqrt{1-x} = \sqrt{x-x^2}$

$$D_{f.g} = [0,1]$$

•
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{\sqrt{x}}{\sqrt{1-x}} = \sqrt{\frac{x}{1-x}} \qquad D_{\frac{f}{g}} = [0,1)$$

•
$$\left(\frac{g}{f}\right)(x) = \frac{g(x)}{f(x)} = \frac{\sqrt{1-x}}{\sqrt{x}} = \sqrt{\frac{1-x}{x}} = \sqrt{\frac{1}{x}} - 1$$
 $D_{\frac{g}{f}} = (0,1]$

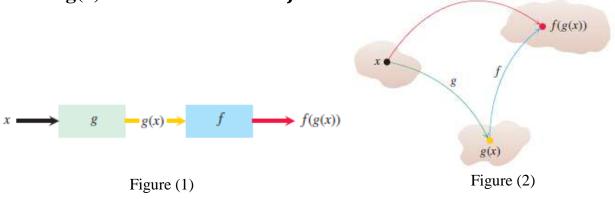
(تركيب الدوال) Composition of Functions

Composition is another method for combining functions. In this operation the output from one function becomes the input to a second function.

Def. :- If f and g are functions, the **composite** function $f \circ g$ ("f composed with g") is defined by:

$$(f \circ g)(x) = f(g(x))$$

The domain of $f \circ g$ consists of the numbers x in the domain of g for which g(x) lies in the domain of f.



The definition implies that $f \circ g$ can be formed when the range of g lies in the domain of f. To find $(f \circ g)(x)$, *first* find g(x) and *second* find f(g(x)). Figure (1) pictures $f \circ g$ as a machine diagram, and Figure (2) shows the composition as an arrow diagram.

To evaluate the composite function $g \circ f$ (when defined), we find f(x) first and then find g(f(x)). The domain of $g \circ f$ is the set of numbers x in the domain of f such that f(x) lies in the domain of g.

The functions $f \circ g$ and $g \circ f$ are usually quite different.

Ex. If $f(x) = \sqrt{x}$ and g(x) = x + 1

Find (a) $(f \circ g)(x)$ (b) $(g \circ f)(x)$ (c) $(f \circ f)(x)$ (d) $(g \circ g)(x)$.

Sol.	Composition	Domain
(a)	$(f \circ g)(x) = f(g(x)) = \sqrt{g(x)} = \sqrt{x+1}$	[−1,∞)
(b)	$(g \circ f)(x) = g(f(x)) = f(x) + 1 = \sqrt{x} + 1$	[0,∞)
(c)	$(f \circ f)(x) = f(f(x)) = \sqrt{f(x)} = \sqrt{\sqrt{x}} = x^{\frac{1}{4}}$	[0,∞)
(d)	$(g \circ g)(x) = g(g(x)) = g(x) + 1 = (x + 1) + 1 = x + 2$	(−∞,∞)

To see why the domain of $f \circ g$ is $[-1, \infty)$, notice that g(x) = x + 1 is defined for all real x but g(x) belongs to the domain of f only if $x + 1 \ge 0$, that is to say, when $x \ge -1$.

Notice that if $f(x) = x^2$ and $g(x) = \sqrt{x}$, then

 $(f \circ g)(x) = (\sqrt{x})^2 = x$. However, the domain of $f \circ g$ is $[0, \infty)$, not (∞, ∞) , since \sqrt{x} requires $x \ge 0$.

Ex. Let f(x) = 2x + 1 find the fun. g(x) in which $(f \circ g)(x) = x^3$. Sol.

$$(f \circ g)(x) = f(g(x)) = 2g(x) + 1 = x^3 \Leftrightarrow 2g(x) = x^3 - 1$$
$$g(x) = \frac{x^3 - 1}{2}$$

Exercises (تمارين)

1) Let f(x) = -3x + 2 find the fun. g(x) in which $(g \circ f)(x) = x$.

2) Find the domain and rang of the following fun.s

a)
$$y = x^2 + 1$$

b) $y = \sqrt{6-x}$
c) $y = \frac{1}{\sqrt{x}}$
d) $y = \sqrt{8 - \sqrt{x}}$
e) $y = \frac{x-1}{x}$
f) $y = \frac{1-|x|}{|x|}$
3) Find $f + g$, $f - g$, $f \cdot g$, $\frac{f}{g}$, $\frac{g}{f}$ and its domain
a) $f(x) = \frac{x}{2}$, $g(x) = \sqrt{x+1}$
b) $f(x) = \frac{1}{x-2}$, $g(x) = \frac{1}{\sqrt{x-1}}$
4) Find $f \circ g$ and $g \circ f$ and its domain of
a) $f(x) = \sqrt{2-x}$ $g(x) = \sqrt{x-2}$
b) $f(x) = \sqrt{3 + x^2}$ $g(x) = \frac{1}{x}$