

Table 2.5: The General Unary Code $(2,1,10)$.
The number of different general unary codes is:

$$
\frac{2^{\text {stop }}+2^{\text {step }}-2^{\text {start }}}{2^{\text {step }}-1}
$$

Notice that this expression increases exponentially with parameter "stop," so large sets of these codes can be generated with small values of the three parameters.

SHANNON-FANO CODING

Shannon-Fano coding, named after Claude Shannon and Robert Fano, was the first algorithm to construct a set of the best variable-size codes. We start with a set of \boldsymbol{n} symbols with known probabilities (or frequencies) of occurrence.

Shannon-Fano coding Steps:

1. The symbols are first arranged in descending order of their probabilities.
2. The set of symbols is then divided into two subsets that have the same (or almost the same) probabilities.
3. All symbols in one subset get assigned codes that start with a 0 , while the codes of the symbols in the other subset start with a 1 .
4. Each subset is then recursively divided into two sub-subsets of roughly equal probabilities, and the second bit of all the codes is determined in a similar way.
5. When a subset contains just two symbols, their codes are distinguished by adding one more bit to each.
6. The process continues until no more subsets remain.

Example

Table 2.14 illustrates the Shannon-Fano algorithm for a seven-symbol alphabet. Notice that the symbols themselves are not shown, only their probabilities.

Solution:

- The first step splits the set of seven symbols into two subsets
- One with two symbols and a total probability of 0.45 and the other with the remaining five symbols and a total probability of 0.55 .
- The two symbols in the first subset are assigned codes that start with 1 , so their final codes are 11 and 10.
- The second subset is divided, in the second step, into two symbols (with total probability 0.3 and codes that start with 01) and three symbols (with total probability 0.25 and codes that start with 00).
- Step three divides the last three symbols into 1 (with probability 0.1 and code 001) and 2 (with total probability 0.15 and codes that start with 000).

The average size of this code is:
$0.25 \times 2+0.20 \times 2+0.15 \times 3+0.15 \times 3+0.10 \times 3+0.10 \times 4+0.05 \times 4=2.7$ bits $/$ symbol
This is a good result because the entropy (the smallest number of bits needed, on average, to represent each symbol) is:

$$
\begin{aligned}
- & \left(0.25 \log _{2} 0.25+0.20 \log _{2} 0.20+0.15 \log _{2} 0.15+0.15 \log _{2} 0.15\right. \\
& \left.+0.10 \log _{2} 0.10+0.10 \log _{2} 0.10+0.05 \log _{2} 0.05\right) \approx 2.67
\end{aligned}
$$

This suggests that the Shannon-Fano method produces better code when the splits are better, i.e., when the two subsets in every split have very close total probabilities. Carrying this argument to its limit suggests that perfect splits yield the best code. Table 2.15 illustrates such a case. The two subsets in every split have identical total probabilities, yielding a code with the minimum average size (zero redundancy). The entropy is:

$$
2\left(-0.25 \log _{2} 0.25\right)+4\left(-0.125 \log _{2} 0.125\right)=2.508 \text { bits } / \text { symbol }
$$

The average size is:
$0.25 \times 2+0.25 \times 2+0.125 \times 3+0.125 \times 3+0.125 \times 3+0.125 \times 3=2.5$ bits/symbols which is identical to its entropy. This means that it is the theoretical minimum average size.

	Prob.	Steps			Final
1.	0.25	1	1		$: 11$
2.	0.25	1	0		$: 10$
3.	$0 . \overline{125}$	0	1	1	$: 011$
4.	0.125	0	1	0	$: 010$
5.	0.125	0	0	1	$: 001$
6.	0.125	0	0	0	$: 000$

Table 2.15: Shannon-Fano Balanced Example.
The conclusion is that this method produces the best results when the symbols have probabilities of occurrence that are (negative) powers of 2.
The Shannon-Fano method is easy to implement but the code it produces is generally not as good as that produced by the Huffman method.

Move-to-Front Coding

The idea of MtF is to encode a symbol with a ' 0 ' as long as it is a recently repeating symbol. In this way, if the source contains a long run of identical symbols, the run will be encoded as a long sequence of zeros.

Initially, the alphabet of the source is stored in an array and the index of each symbol in the array is used to encode a corresponding symbol. On each iteration, a new character is read and the symbol that has just been encoded is moved to the front of the array.

Algorithm
Input: set of alphabet and input sequence.
Output: Encoded sequence
Step 1: Store the source alphabet in an array.
Step 2: Repeat steps 3-5 until the end of the input sequence.
Step 3: Read a new character from the input sequence.
Step 4: Encode the character by its array's index.
Step 5: Move the character to the front of the array.
Step 6: Terminate.
Example: Suppose that the following sequence of symbols is
to be compressed:
DDCBEEEFGGAA from a source alphabet (A, B, C, D, E, F, G). Show how the MtF method works.

Encoding

Initially, the alphabet is stored in an array:

$$
\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
A & B & C & D & E & F & G
\end{array}
$$

1. Read D, the first symbol of the input sequence. Encode D by index 3 of the array, and then move D to the front of the array:

$$
\begin{array}{lllllll}
\mathrm{O} & 1 & 2 & 3 & 4 & 5 & 6 \\
\mathrm{D} & \mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{E} & \mathrm{~F} & \mathrm{G}
\end{array}
$$

2. Read D. Encode D by its index 0 , and leave the array unchanged because D is already at the front position of the array.

$$
\begin{array}{lllllll}
O & 1 & 2 & 3 & 4 & 5 & 6 \\
D & A & B & C & E & F & G
\end{array}
$$

3. Read C. Encode C by its index 3, and move C to the front:

$$
\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\mathrm{C} & \mathrm{D} & \mathrm{~A} & \mathrm{~B} & \mathrm{E} & \mathrm{~F} & \mathrm{G}
\end{array}
$$

1. Read B. Encode it by 3 and move B to the front:

$$
\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
B & C & D & A & E & F & G
\end{array}
$$

5. Read E. Encode it by 4 and nove E to the fiont:

$$
\begin{array}{lllllll}
O & 1 & 2 & 3 & 4 & 5 & 6 \\
E & B & C & D & A & F & G
\end{array}
$$

\vdots
and so on.

This process continucs until the entire string is processod. Hence the encoding is $3,0,3,3,4, \cdots$.

In this way, the more frequently occurring symbols are encoded by 0 or small decimal numbers.

Decoding

Read the following codes: 3, 0, 3, 3, 4, \cdots.
Initially,

$$
\begin{array}{lllllll}
\mathrm{O} & \mathbf{1} & 2 & 3 & 4 & 5 & 6 \\
\mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} & \mathrm{E} & \mathrm{~F} & \mathrm{G}
\end{array}
$$

1. Read 3, decode it to D, and move it to the front of the array:

$$
\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
D & A & B & C & E & F & G
\end{array}
$$

2. Read O, decode it to D, and do nothing since D is already at the front.
$\begin{array}{lllllll}\mathrm{O} & 1 & 2 & 3 & 4 & 5 & 6 \\ \mathrm{D} & \mathrm{A} & \mathrm{B} & \mathrm{C} & \mathrm{E} & \mathrm{F} & \mathrm{G}\end{array}$
3. Read 3, decode it to C, and move it to the front.

$$
\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & G \\
C & D & A & B & E & F & G
\end{array}
$$

\vdots
and so on.

Arithmetic Coding Algorithm:

The main steps of arithmetic coding Algorithm:

1. Start by defining the "current interval" as $[0,1)$.
2. Repeat the following two steps for each symbol s in the input stream:
2.1. Divide the current interval into subintervals whose sizes are proportional to the symbols' probabilities.
2.2. Select the subinterval for s and define it as the new current interval.
3. When the entire input stream has been processed in this way, the output should be any number that uniquely identifies the current interval (i.e., any number inside the current interval).

The next example is a little more involved. We show the compression steps for the short string "SWISS_MISS"

As more symbols are being input and processed, Low and High are being updated according to

$$
\begin{aligned}
& \text { NewHigh:=OldLow+Range*HighRange(X); } \\
& \text { NewLow:=OldLow+Range*LowRange(X); }
\end{aligned}
$$

