Euler’'s Method for Ordinary Differential Equations

What is Euler’s method?

Euler’s method is a numerical technique to solve ordinary differential equations of the form

d

d—i = f(x ) y(0)=y, (1)
So only first order ordinary differential equations can be solved by using Euler’s method. In
another chapter we will discuss how Euler’s method is used to solve higher order ordinary
differential equations or coupled (simultaneous) differential equations. How does one write a

first order differential equation in the above form?

Example 1
Rewrite

v, 2y=1.3e7,y(0)=5

dx
in
d
2= oY), y(0) =y, form.
X
Solution
dy _
—=+2y=13e7",y(0)=5
Y y(0)
dy _
—=13e"-2y,y(0)=5
» y,y(0)
In this case
f(x,y)=13e" -2y
Example 2
Rewrite
ey%ﬂzy2 = 2sin(3x), y(0)=5
X
in

d
2= oY), y(0) =y, form.
X



Solution
e’ %4‘ x?y? = 2sin(3x), y(0)=5
X

dy _ 2sin(3x) - x%y?

, y(0)=5
™ > y(0)
In this case
2sin(3x) — x%y?
f(xy)= ( e)y y

Derivation of Euler’s method

At x=0, we are given the value of y=vy,. Letuscall x=0 as x,. Now since we know
the slope of y with respect to x, that is, f(x,y), then at x = x,, the slope is f(x,,Y,).
Both x, and y, are known from the initial condition y(x,)=Y,.

A
y
\ True value
Y1,
(%01 Yo) o Predicted
value
€ Stepsize, h >
> X
Xl

Figure 1 Graphical interpretation of the first step of Euler’s method.

So the slope at x = x, as shown in Figure 1 is

Slope = Rise
Run
y1 - yo
X, —Xp
= (X, Yo)
From here

Yi=Yot+ f(XO’yO)(Xl_XO)



Calling x, — x, the step sizeh, we get

Yi=Yot f(xo' Yo )h 2)
One can now use the value of y, (an approximate value of y at x=x,) to calculate y,, and
that would be the predicted value at x,, given by

Yo=Y%+ f(xl’ yl)h

X, =X +h
Based on the above equations, if we now know the value of y =y, at x,, then

Yia=VYit f(xi 1 Yi )h 3)
This formula is known as Euler’s method and is illustrated graphically in Figure 2. In some
books, it is also called the Euler-Cauchy method.
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Figure 2 General graphical interpretation of Euler’s method.

Example 3
A ball at 1200K is allowed to cool down in air at an ambient temperature of 300K .
Assuming heat is lost only due to radiation, the differential equation for the temperature of
the ball is given by

‘;—f ——2.2067x102(9* —81x10° ), 6(0)=1200K
where @ isin K and t in seconds. Find the temperature at t =480 seconds using Euler’s
method. Assume a step size of h =240 seconds.



Solution

‘Z—f — —2.2067x107?(¢* ~81x10°)
f(t,0)=—2.2067x10"2(9* —81x10°)
Per Equation (3), Euler’s method reduces to
0,.,=06+ f(tiiei )h
Fori=0,t,=0, 6, =1200
6, =6, + f(t,,6,)n
=1200+ f(0,1200)x 240
— 1200+ (- 2.2067x1072(1200* —81x10° ))x 240
=1200+ (—4.5579)x 240

=106.09K
6, is the approximate temperature at

t=t,=t,+h =0+240=240
6, = 6(240) ~106.09K
For i=1, t, =240, 6, =106.09
0,=6,+f(t,0)h
—106.09+ f(240106.09)x 240
—106.09+(~2.2067x10?(106.09* —81x10° ))x 240
=106.09+(0.017595x 240
=110.32K
6, is the approximate temperature at
t=t, =t +h =240+ 240=480
0, = 6(480)~110.32K
Figure 3 compares the exact solution with the numerical solution from Euler’s method for the
step size of h=240.
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Figure 3 Comparing the exact solution and Euler’s method.

The problem was solved again using a smaller step size. The results are given below in
Table 1.

Table 1 Temperature at 480 seconds as a function of step size, h .

Step size, h | 6(480) | E, le,| %
480 -987.81 | 1635.4 | 252.54
240 110.32 |537.26 | 82.964
120 546.77 | 100.80 | 15.566
60 614.97 | 32.607 | 5.0352
30 632.77 | 14.806 | 2.2864

Figure 4 shows how the temperature varies as a function of time for different step sizes.
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Figure 4 Comparison of Euler’s method with the exact solution
for different step sizes.



The values of the calculated temperature at t =480s as a function of step size are plotted in
Figure 5.
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Figure 5 Effect of step size in Euler’s method.

The exact solution of the ordinary differential equation is given by the solution of a non-
linear equation as

0.92593In 0-300

6 +300
The solution to this nonlinear equation is
0=64757K
It can be seen that Euler’s method has large errors. This can be illustrated using the Taylor
Series.

dy 1d%y 1d%
Yia =Yi +& » (X1 — Xi)+§ dx? | ; (X =% ) +§ A . (X =% ) . (5)

~1.8519tan (0.333x1020) = -0.22067x10°t -2.9282  (4)

= O Y0 =X+ 5 0¥ 1 5 )6 =1 P e (6)

As you can see the first two terms of the Taylor series

Yia=Yit f(xi +Yi )h
are Euler’s method.
The true error in the approximation is given by

g, = LY ), PO ™

2! 3

The true error hence is approximately proportional to the square of the step size, that is, as
the step size is halved, the true error gets approximately quartered. However from Table 1,
we see that as the step size gets halved, the true error only gets approximately halved. This is
because the true error, being proportioned to the square of the step size, is the local truncation




error, that is, error from one point to the next. The global truncation error is however
proportional only to the step size as the error keeps propagating from one point to another.

Can one solve a definite integral using numerical methods such as Euler’s method of
solving ordinary differential equations?
Let us suppose you want to find the integral of a function f(x)

b

= f(x)dx.
a
Both fundamental theorems of calculus would be used to set up the problem so as to solve it
as an ordinary differential equation.
The first fundamental theorem of calculus states that if f is a continuous function in the

interval [a,b], and F is the antiderivative of f , then

[ 1(x=Flb)- F(a)

a

The second fundamental theorem of calculus states that if f is a continuous function in the
open interval D, and a is a point in the interval D, and if

F()= [ f (oot

a

F'(x)=1(x)

at each point in D

then

Asked to find J' x)dx, we can rewrite the integral as the solution of an ordinary

differential equatlon (here is where we are using the second fundamental theorem of
calculus)

jy (x) y(@)=0,

f
where then y( ) (here is where we are using the first fundamental theorem of calculus) will

give the value of the integral J dx

Example 4
Find an approximate value of

8
f6x3dx
5

using Euler’s method of solving an ordinary differential equation. Use a step size of h=1.5.
Solution

8
Given _[ 6x°%dx, we can rewrite the integral as the solution of an ordinary differential equation



dy 3
— =6x", y(5)=0
dx X Y()

8
where y(8) will give the value of the integral I6x3dx.
5

%%XS =f(x,y), y(5)=0

The Euler’s method equation is
Yia=Yit f(xi’ Yi )h
Step 1
i=0,x%,=51Y,=0
h=15
X, =X, +h
=5+15
=6.5
Yi=Yo+ f(xo’ yo)h
=0+ f(5,0)x1.5
=0+(6x5°)x15
=1125

Step 2
=1 x, =65y, =1125

X, =X +h
=6.5+15
=8

Yo=Y F f(Xv yl)h
=1125+ f(6.51125)x1.5
—1125+(6x6.5°)x1.5
=3596.625
~Y(8)

Hence

[6x*dx = y(®) - y(5)

~ 3596.625-0
=3596.625



