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Euler’s Method for Ordinary Differential Equations 
 

 

 

 

What is Euler’s method? 

Euler’s method is a numerical technique to solve ordinary differential equations of the form 

     00,, yyyxf
dx

dy
                                (1) 

So only first order ordinary differential equations can be solved by using Euler’s method.  In 

another chapter we will discuss how Euler’s method is used to solve higher order ordinary 

differential equations or coupled (simultaneous) differential equations.  How does one write a 

first order differential equation in the above form? 

 

Example 1  

Rewrite 

   50,3.12   yey
dx

dy x  

in  

0)0(  ),,( yyyxf
dx

dy
  form. 

 

Solution 

   50,3.12   yey
dx

dy x  

   50,23.1   yye
dx

dy x
 

In this case 

   yeyxf x 23.1,    

 

Example 2 

Rewrite 

   50  ),3sin(222  yxyx
dx

dy
e y

 

in  

0)0(  ),,( yyyxf
dx

dy
  form. 
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Solution 

   50  ),3sin(222  yxyx
dx

dy
e y  

   50  ,
)3sin(2 22




 y
e

yxx

dx

dy
y

 

In this case 

  
ye

yxx
yxf

22)3sin(2
,


  

 

Derivation of Euler’s method 

At 0x , we are given the value of .0yy    Let us call 0x  as 0x .  Now since we know 

the slope of y  with respect to x , that is,  yxf , , then at 0xx  , the slope is  00 , yxf .  

Both 0x  and 0y  are known from the initial condition   00 yxy  . 

 

 
Figure 1  Graphical interpretation of the first step of Euler’s method. 

 

So the slope at 0xx   as shown in Figure 1 is 

 Slope 
Run

Rise
  

           
01

01

xx

yy




  

            00 , yxf  

From here 

   010001 , xxyxfyy   

 y 

Φ 

Step size, h 
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),( 00 yx  

True value 
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Calling 01 xx  the step size h , we get 

  hyxfyy 0001 ,                                              (2) 

One can now use the value of 
1y  (an approximate value of y  at 

1xx  ) to calculate
2y , and 

that would be the predicted value at 
2x , given by 

  hyxfyy 1112 ,  

 hxx  12
 

Based on the above equations, if we now know the value of iyy   at ix , then 

  hyxfyy iiii ,1                                                          (3) 

This formula is known as Euler’s method and is illustrated graphically in Figure 2.  In some 

books, it is also called the Euler-Cauchy method. 

 
Figure 2 General graphical interpretation of Euler’s method.  

 

 

 

 

 

Example 3 

A ball at K1200  is allowed to cool down in air at an ambient temperature of K300 .  

Assuming heat is lost only due to radiation, the differential equation for the temperature of 

the ball is given by  

     K12000  ,1081102067.2 8412   


dt

d
   

where   is in K  and t  in seconds.  Find the temperature at 480t  seconds using Euler’s 

method.  Assume a step size of  240h  seconds. 

 Φ 

Step size 

h 

True Value 

  

  yi+1, Predicted value 

 

yi 

x 

y 

xi xi+1 
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Solution 

  8412 1081102067.2   


dt

d
 

    8412 1081102067.2,   tf  

Per Equation (3), Euler’s method reduces to  

  htf iiii  ,1   

For 0i , 00 t , 12000   

  htf 0001 ,   

        2401200,01200  f  

         24010811200102067.21200 8412    

        2405579.41200   

      09.106 K 

1  is the approximate temperature at 

 httt  01 2400 240  

   09.1062401  K 

For 1i , 2401 t , 09.1061   

  htf 1112 ,   
        24009.106,24009.106  f  

         240108109.106102067.209.106 8412    

        240017595.009.106   

      32.110 K 

2  is the approximate temperature at  

 httt  12 240240 480  
   32.1104802  K 

Figure 3 compares the exact solution with the numerical solution from Euler’s method for the 

step size of 240h . 
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Figure 3  Comparing the exact solution and Euler’s method. 

 

The problem was solved again using a smaller step size.  The results are given below in 

Table 1. 

 

                     Table 1  Temperature at 480 seconds as a function of step size, h . 

Step size, h   480  tE
 

%|| t  
480 

240 

120 

60 

30 

-987.81 

110.32 

546.77 

614.97 

632.77 

1635.4 

537.26 

100.80 

32.607 

14.806 

252.54 

82.964 

15.566 

5.0352 

2.2864 

Figure 4 shows how the temperature varies as a function of time for different step sizes. 
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Figure 4  Comparison of Euler’s method with the exact solution 

 for different step sizes. 

h=240 
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The values of the calculated temperature at 480t s as a function of step size are plotted in 

Figure 5. 

 

-1200

-800

-400

0

400

800

0 100 200 300 400 500

Step size, h (s) 

T
em

p
er

at
u
re

,
θ

(K
)

  
              Figure 5  Effect of step size in Euler’s method. 

 

 

The exact solution of the ordinary differential equation is given by the solution of a non-

linear equation as 

  9282.21022067.010333.0tan8519.1
300

300
ln92593.0 321 



  t



          (4) 

The solution to this nonlinear equation is 

 57.647 K 

It can be seen that Euler’s method has large errors.  This can be illustrated using the Taylor 

series. 

           ...
!3

1

!2

1 3

1

,

3

3
2

1

,

2

2

1

,

1   ii

yx

ii

yx

ii

yx

ii xx
dx

yd
xx

dx

yd
xx

dx

dy
yy

iiiiii

             (5) 

    ...),(''
!3

1
),('

!2

1
))(,(

3

1

2

11   iiiiiiiiiiiii xxyxfxxyxfxxyxfy      (6) 

As you can see the first two terms of the Taylor series 

  hyxfyy iiii ,1   

are Euler’s method. 

The true error in the approximation is given by 

 
   

...
!3

,

!2

, 32 





 h
yxf

h
yxf

E iiii
t                                                                           (7) 

The true error hence is approximately proportional to the square of the step size, that is, as 

the step size is halved, the true error gets approximately quartered.  However from Table 1, 

we see that as the step size gets halved, the true error only gets approximately halved.  This is 

because the true error, being proportioned to the square of the step size, is the local truncation 
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error, that is, error from one point to the next.  The global truncation error is however 

proportional only to the step size as the error keeps propagating from one point to another. 

 

Can one solve a definite integral using numerical methods such as Euler’s method of 

solving ordinary differential equations? 

Let us suppose you want to find the integral of a function )(xf  

  
b

a

dxxfI . 

Both fundamental theorems of calculus would be used to set up the problem so as to solve it 

as an ordinary differential equation. 

The first fundamental theorem of calculus states that if f  is a continuous function in the 

interval [a,b], and F  is the antiderivative of f , then 

     aFbFdxxf

b

a

  

The second fundamental theorem of calculus states that if f  is a continuous function in the 

open interval D , and a  is a point in the interval D , and if  

   
x

a

dttfxF  

then  

   xfxF   

at each point in D .  

Asked to find   
b

a

dxxf , we can rewrite the integral as the solution of an ordinary 

differential equation (here is where we are using the second fundamental theorem of 

calculus) 

   ,0)(  ,  ayxf
dx

dy
  

where then  by  (here is where we are using the first fundamental theorem of calculus) will 

give the value of the integral  
b

a

dxxf .   

 

Example 4 

Find an approximate value of  

 
8

5

36 dxx  

using Euler’s method of solving an ordinary differential equation.  Use a step size of 5.1h . 

Solution 

Given 
8

5

36 dxx , we can rewrite the integral as the solution of an ordinary differential equation 
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   05,6 3  yx
dx

dy
 

where  8y  will give the value of the integral 
8

5

36 dxx .   

  yxfx
dx

dy
,6 3  ,   05 y  

The Euler’s method equation is 

  hyxfyy iiii ,1   

Step 1  

 0,5,0 00  yxi  

           5.1h  

          

5.6    

5.15    

01





 hxx

 

          hyxfyy 0001 ,  

     5.10,50  f  

     5.1560 3   

   1125  
   )5.6(y  

  

Step 2 

            1125,5.6,1 11  yxi  

         

8     

5.15.6     

12





 hxx

 

          hyxfyy 1112 ,  

     5.11125,5.61125  f  

               5.15.661125 3   

   625.3596  
   )8(y  

Hence 

 )5()8(6

8

5

3 yydxx   

              0625.3596   

                 625.3596  


