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Euler’s Method for Ordinary Differential Equations 
 

 

 

 

What is Euler’s method? 

Euler’s method is a numerical technique to solve ordinary differential equations of the form 

     00,, yyyxf
dx

dy
                                (1) 

So only first order ordinary differential equations can be solved by using Euler’s method.  In 

another chapter we will discuss how Euler’s method is used to solve higher order ordinary 

differential equations or coupled (simultaneous) differential equations.  How does one write a 

first order differential equation in the above form? 

 

Example 1  

Rewrite 

   50,3.12   yey
dx

dy x  

in  

0)0(  ),,( yyyxf
dx

dy
  form. 

 

Solution 

   50,3.12   yey
dx

dy x  

   50,23.1   yye
dx

dy x
 

In this case 

   yeyxf x 23.1,    

 

Example 2 

Rewrite 

   50  ),3sin(222  yxyx
dx

dy
e y

 

in  

0)0(  ),,( yyyxf
dx

dy
  form. 
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Solution 

   50  ),3sin(222  yxyx
dx

dy
e y  

   50  ,
)3sin(2 22




 y
e

yxx

dx

dy
y

 

In this case 

  
ye

yxx
yxf

22)3sin(2
,


  

 

Derivation of Euler’s method 

At 0x , we are given the value of .0yy    Let us call 0x  as 0x .  Now since we know 

the slope of y  with respect to x , that is,  yxf , , then at 0xx  , the slope is  00 , yxf .  

Both 0x  and 0y  are known from the initial condition   00 yxy  . 

 

 
Figure 1  Graphical interpretation of the first step of Euler’s method. 

 

So the slope at 0xx   as shown in Figure 1 is 
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            00 , yxf  

From here 

   010001 , xxyxfyy   

 y 

Φ 
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),( 00 yx  
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1x  
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Calling 01 xx  the step size h , we get 

  hyxfyy 0001 ,                                              (2) 

One can now use the value of 
1y  (an approximate value of y  at 

1xx  ) to calculate
2y , and 

that would be the predicted value at 
2x , given by 

  hyxfyy 1112 ,  

 hxx  12
 

Based on the above equations, if we now know the value of iyy   at ix , then 

  hyxfyy iiii ,1                                                          (3) 

This formula is known as Euler’s method and is illustrated graphically in Figure 2.  In some 

books, it is also called the Euler-Cauchy method. 

 
Figure 2 General graphical interpretation of Euler’s method.  

 

 

 

 

 

Example 3 

A ball at K1200  is allowed to cool down in air at an ambient temperature of K300 .  

Assuming heat is lost only due to radiation, the differential equation for the temperature of 

the ball is given by  

     K12000  ,1081102067.2 8412   


dt

d
   

where   is in K  and t  in seconds.  Find the temperature at 480t  seconds using Euler’s 

method.  Assume a step size of  240h  seconds. 

 Φ 

Step size 

h 

True Value 

  

  yi+1, Predicted value 

 

yi 

x 

y 

xi xi+1 
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Solution 

  8412 1081102067.2   


dt

d
 

    8412 1081102067.2,   tf  

Per Equation (3), Euler’s method reduces to  

  htf iiii  ,1   

For 0i , 00 t , 12000   

  htf 0001 ,   

        2401200,01200  f  

         24010811200102067.21200 8412    

        2405579.41200   

      09.106 K 

1  is the approximate temperature at 

 httt  01 2400 240  

   09.1062401  K 

For 1i , 2401 t , 09.1061   

  htf 1112 ,   
        24009.106,24009.106  f  

         240108109.106102067.209.106 8412    

        240017595.009.106   

      32.110 K 

2  is the approximate temperature at  

 httt  12 240240 480  
   32.1104802  K 

Figure 3 compares the exact solution with the numerical solution from Euler’s method for the 

step size of 240h . 
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Figure 3  Comparing the exact solution and Euler’s method. 

 

The problem was solved again using a smaller step size.  The results are given below in 

Table 1. 

 

                     Table 1  Temperature at 480 seconds as a function of step size, h . 

Step size, h   480  tE
 

%|| t  
480 

240 

120 

60 

30 

-987.81 

110.32 

546.77 

614.97 

632.77 

1635.4 

537.26 

100.80 

32.607 

14.806 

252.54 

82.964 

15.566 

5.0352 

2.2864 

Figure 4 shows how the temperature varies as a function of time for different step sizes. 
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Figure 4  Comparison of Euler’s method with the exact solution 

 for different step sizes. 

h=240 
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The values of the calculated temperature at 480t s as a function of step size are plotted in 

Figure 5. 
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              Figure 5  Effect of step size in Euler’s method. 

 

 

The exact solution of the ordinary differential equation is given by the solution of a non-

linear equation as 

  9282.21022067.010333.0tan8519.1
300

300
ln92593.0 321 



  t



          (4) 

The solution to this nonlinear equation is 

 57.647 K 

It can be seen that Euler’s method has large errors.  This can be illustrated using the Taylor 

series. 
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As you can see the first two terms of the Taylor series 

  hyxfyy iiii ,1   

are Euler’s method. 

The true error in the approximation is given by 

 
   

...
!3

,

!2

, 32 





 h
yxf

h
yxf

E iiii
t                                                                           (7) 

The true error hence is approximately proportional to the square of the step size, that is, as 

the step size is halved, the true error gets approximately quartered.  However from Table 1, 

we see that as the step size gets halved, the true error only gets approximately halved.  This is 

because the true error, being proportioned to the square of the step size, is the local truncation 
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error, that is, error from one point to the next.  The global truncation error is however 

proportional only to the step size as the error keeps propagating from one point to another. 

 

Can one solve a definite integral using numerical methods such as Euler’s method of 

solving ordinary differential equations? 

Let us suppose you want to find the integral of a function )(xf  

  
b

a

dxxfI . 

Both fundamental theorems of calculus would be used to set up the problem so as to solve it 

as an ordinary differential equation. 

The first fundamental theorem of calculus states that if f  is a continuous function in the 

interval [a,b], and F  is the antiderivative of f , then 

     aFbFdxxf

b

a

  

The second fundamental theorem of calculus states that if f  is a continuous function in the 

open interval D , and a  is a point in the interval D , and if  

   
x

a

dttfxF  

then  

   xfxF   

at each point in D .  

Asked to find   
b

a

dxxf , we can rewrite the integral as the solution of an ordinary 

differential equation (here is where we are using the second fundamental theorem of 

calculus) 

   ,0)(  ,  ayxf
dx

dy
  

where then  by  (here is where we are using the first fundamental theorem of calculus) will 

give the value of the integral  
b

a

dxxf .   

 

Example 4 

Find an approximate value of  

 
8

5

36 dxx  

using Euler’s method of solving an ordinary differential equation.  Use a step size of 5.1h . 

Solution 

Given 
8

5

36 dxx , we can rewrite the integral as the solution of an ordinary differential equation 
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   05,6 3  yx
dx

dy
 

where  8y  will give the value of the integral 
8

5

36 dxx .   

  yxfx
dx

dy
,6 3  ,   05 y  

The Euler’s method equation is 

  hyxfyy iiii ,1   

Step 1  

 0,5,0 00  yxi  

           5.1h  

          

5.6    

5.15    

01





 hxx

 

          hyxfyy 0001 ,  

     5.10,50  f  

     5.1560 3   

   1125  
   )5.6(y  

  

Step 2 

            1125,5.6,1 11  yxi  

         

8     

5.15.6     

12





 hxx

 

          hyxfyy 1112 ,  

     5.11125,5.61125  f  

               5.15.661125 3   

   625.3596  
   )8(y  

Hence 

 )5()8(6

8

5

3 yydxx   

              0625.3596   

                 625.3596  


