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Finite Difference Method for Ordinary Differential 
Equations 
 

 

 

 

What is the finite difference method? 

The finite difference method is used to solve ordinary differential equations that have 

conditions imposed on the boundary rather than at the initial point.  These problems are 

called boundary-value problems.  In this chapter, we solve second-order ordinary differential 

equations of the form 

 bxayyxf
dx

yd
 ),',,(

2

2

,          (1) 

with boundary conditions 

 ayay )(  and byby )(          (2) 

Many academics refer to boundary value problems as position-dependent and initial value 

problems as time-dependent.  That is not necessarily the case as illustrated by the following 

examples. 

The differential equation that governs the deflection y  of a simply supported beam under 

uniformly distributed load (Figure 1) is given by 

EI

xLqx

dx

yd

2

)(
2

2 
           (3) 

where 

 x location along the beam (in) 

 E Young’s modulus of elasticity of the beam (psi) 

 I second moment of area (in4) 

 q uniform loading intensity (lb/in) 

 L length of beam (in) 

The conditions imposed to solve the differential equation are 

0)0( xy            (4) 

 0)(  Lxy  

Clearly, these are boundary values and hence the problem is considered a boundary-value 

problem. 
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         Figure 1 Simply supported beam with uniform distributed load. 

 

Now consider the case of a cantilevered beam with a uniformly distributed load (Figure 2).  

The differential equation that governs the deflection y  of the beam is given by 

EI

xLq

dx

yd

2

)( 2

2

2 
           (5) 

where 

 x location along the beam (in) 

 E Young’s modulus of elasticity of the beam (psi) 

 I second moment of area (in4) 

 q uniform loading intensity (lb/in) 

 L length of beam (in) 

The conditions imposed to solve the differential equation are 

0)0( xy            (6) 

 0)0( x
dx

dy
 

Clearly, these are initial values and hence the problem needs to be considered as an initial 

value problem. 

 

 
 Figure 2 Cantilevered beam with a uniformly distributed load. 
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Example 1 

The deflection y  in a simply supported beam with a uniform load q and a tensile axial load 

T is given by 

 
EI

xLqx

EI

Ty

dx

yd

2

)(
2

2 
  (E1.1) 

where 

 x location along the beam (in) 

 T tension applied (lbs) 

 E Young’s modulus of elasticity of the beam (psi) 

 I second moment of area (in4) 

 q uniform loading intensity (lb/in) 

 L length of beam (in) 

 

 

             Figure 3 Simply supported beam for Example 1. 

Given, 

 7200T lbs, 5400q lbs/in, in 75L , Msi 30E , and 
4in 120I ,  

a) Find the deflection of the beam at "50x .  Use a step size of "25x  and approximate 

the derivatives by central divided difference approximation. 

b) Find the relative true error in the calculation of )50(y .   

 

Solution 

a) Substituting the given values, 

 
)120)(1030(2

)75()5400(

)120)(1030(

7200
662

2









xxy

dx

yd
 

           )75(105.7102 76

2

2

xxy
dx

yd
       (E1.2) 

Approximating the derivative 
2

2

dx

yd
 at node i  by the central divided difference 

approximation,  
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Figure 4 Illustration of finite difference nodes using                                                

central divided difference method. 
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x

yyy

dx

yd iii




      (E1.3) 

We can rewrite the equation as 

 )75(105.7102
)(

2 76

2

11

iii

iii xxy
x

yyy




                 (E1.4)  

Since 25x , we have 4 nodes as given in Figure 3 

 
Figure 5 Finite difference method from 0x  to 75x  with 25x . 

 

The location of the 4 nodes then is  

 00 x  

 2525001  xxx  

 50252512  xxx  

 75255023  xxx  

Writing the equation at each node, we get 

Node 1:  From the simply supported boundary condition at 0x , we obtain 

 01 y      (E1.5) 

Node 2:  Rewriting equation (E1.4) for node 2 gives 

 )75(105.7102
)25(

2
22

7

2

6

2

123 xxy
yyy


   

 )2575)(25(105.70016.0003202.00016.0 7

321  yyy  

 4

321 10375.90016.0003202.00016.0  yyy  (E1.6)  

Node 3:  Rewriting equation (E1.4) for node 3 gives 

 )75(105.7102
)25(

2
33

7

3

6

2

234 xxy
yyy


   

 )5075)(50(105.70016.0003202.00016.0 7

432  yyy  

 4

432 10375.90016.0003202.00016.0  yyy  (E1.7) 

Node 4:  From the simply supported boundary condition at 75x , we obtain 

 04 y   (E1.8) 

 

  0x    25x    50x  

1i  2i  3i  4i  

  75x  

1i  i  1i  
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Equations (E1.5-E1.8) are 4 simultaneous equations with 4 unknowns and can be written in 

matrix form as 

 






































































0

10375.9

10375.9

0

1000

0016.0003202.00016.00

00016.0003202.00016.0

0001

4

4

4

3

2

1

y

y

y

y

 

 

The above equations have a coefficient matrix that is tridiagonal (we can use Thomas’ 

algorithm to solve the equations) and is also strictly diagonally dominant (convergence is 

guaranteed if we use iterative methods such as the Gauss-Siedel method).  Solving the 

equations we get, 

 










































0

5852.0

5852.0

0

4

3

2

1

y

y

y

y

 

 "5852.0)()50( 22  yxyy  

 

The exact solution of the ordinary differential equation is derived as follows.  The 

homogeneous part of the solution is given by solving the characteristic equation 

 0102 62  m  

 0014142.0m  

Therefore, 

 xx

h eKeKy 0014142.0

2

0014142.0

1

  

The particular part of the solution is given by 

 CBxAxy p  2  

Substituting the differential equation (E1.2) gives 

 )75(105.7102 76

2

2

xxy
dx

yd
p

p
   

 )75(105.7)(102)( 7262

2

2

xxCBxAxCBxAx
dx

d
   

 )75(105.7)(1022 726 xxCBxAxA    

 2756626 105.710625.5)1022(102102 xxCABxAx    

Equating terms gives 

 
76 105.7102   A  

 
56 10625.5102   B  

 01022 6   CA  

Solving the above equation gives 

 375.0A  

 125.28B  

 
51075.3 C  
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The particular solution then is 

 52 1075.3125.28375.0  xxy p  

The complete solution is then given by 

 xx eKeKxxy 0014142.0

2

0014142.0

1

52 1075.3125.28375.0   

Applying the following boundary conditions 

 0)0( xy  

 0)75( xy  

we obtain the following system of equations  

           5

21 1075.3  KK  

         5

21 1075.389937.01119.1  KK  

These equations are represented in matrix form by 

 




























5

5

2

1

1075.3

1075.3

89937.01119.1

11

K

K
 

A number of different numerical methods may be utilized to solve this system of equations 

such as the Gaussian elimination.  Using any of these methods yields 

 




















5

5

2

1

10974343774.1

10775656226.1

K

K
 

Substituting these values back into the equation gives  
xx eexxy 0014142.050014142.0552 10974343774.110775656266.11075.3125.28375.0 

Unlike other examples in this chapter and in the book, the above expression for the deflection 

of the beam is displayed with a larger number of significant digits.  This is done to minimize 

the round-off error because the above expression involves subtraction of large numbers that 

are close to each other. 

 

b) To calculate the relative true error, we must first calculate the value of the exact solution at 

50y . 

 )50(0014142.0552 10775656266.11075.3)50(125.28)50(375.0)50( ey   

  )50(0014142.0510974343774.1  e  

 5320.0)50( y  

The true error is given by 

 tE  = Exact Value – Approximate Value 

 )5852.0(5320.0 tE  

 05320.0tE   

The relative true error is given by 

 %100
Value True

Error True
t  

 %100
5320.0

05320.0



t  

 %10t  
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Example 2 

Take the case of a pressure vessel that is being tested in the laboratory to check its ability to 

withstand pressure.  For a thick pressure vessel of inner radius a  and outer radius b , the 

differential equation for the radial displacement u  of a point along the thickness is given by 

  0
1

22

2


r

u

dr

du

rdr

ud
                                     (E2.3) 

The inner radius 5 a  and the outer radius 8 b , and the material of the pressure vessel is 

ASTM A36 steel. The yield strength of this type of steel is 36 ksi. Two strain gages that are 

bonded tangentially at the inner and the outer radius measure normal tangential strain as  

 00077462.0/  art          

            00038462.0/  brt                (E2.4a,b) 

at the maximum needed pressure. Since the radial displacement and tangential strain are 

related simply by 

 
r

u
t  ,                (E2.5) 

then 

 ''0038731.0500077462.0 aru  

            ''0030769.0800038462.0 bru   

The maximum normal stress in the pressure vessel is at the inner radius ar   and is given by 

 














 arar dr

du

r

uE





2max
1

                         (E2.7) 

where 

 E  Young’s modulus of steel (E= 30 Msi) 

   Poisson’s ratio (  0.3) 

The factor of safety, FS is given by  

  
max

steel of strength Yield


FS               (E2.8) 

a) Divide the radial thickness of the pressure vessel into 6 equidistant nodes, and find 

the radial displacement profile 

b) Find the maximum normal stress and factor of safety as given by equation (E2.8) 

c) Find the exact value of the maximum normal stress as given by equation (E2.8) if it is 

given that the exact expression for radial displacement is of the form  

r

C
rCu 2

1  .   

Calculate the relative true error. 
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Solution 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a)  The radial locations from ar   to br   are divided into n  equally spaced segments, and 

hence resulting in 1n  nodes.  This will allow us to find the dependent variable u  

numerically at these nodes.  

At node i  along the radial thickness of the pressure vessel, 

 
 2

11

2

2 2

r

uuu

dr

ud iii




                                      (E2.9) 

 
r

uu

dr

du ii




 1                                                                       (E2.10) 

Such substitutions will convert the ordinary differential equation into a linear equation (but 

with more than one unknown).  By writing the resulting linear equation at different points at 

which the ordinary differential equation is valid, we get simultaneous linear equations that 

can be solved by using techniques such as Gaussian elimination, the Gauss-Siedel method, 

etc. 

Substituting these approximations from Equations (E2.9) and (E2.10) in Equation (E2.3) 

 
 

0
12

2

1

2

11 







 

i

iii

i

iii

r

u

r

uu

rr

uuu
                                            (E2.11) 

 
     

0
111211

122212











































 ii

ii

i

i

u
r

u
rrrr

u
rrr

                          (E2.12) 

 

Let us break the thickness, ab , of the pressure vessel into 1n  nodes, that is ar   is 

node 0i  and br   is node ni  . That means we have 1n  unknowns. 

We can write the above equation for nodes 1,...,1 n .  This will give us 1n  equations.  At 

the edge nodes, 0i  and ni  , we use the boundary conditions of  
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Figure 4  Nodes along the radial direction. 

 

 i+1 



  

9 

 

 
aruu 0

 

 brn uu 
 

This gives a total of 1n  equations. So we have 1n  unknowns and 1n  linear equations. 

These can be solved by any of the numerical methods used for solving simultaneous linear 

equations. 

 We have been asked to do the calculations for ,5n  that is a total of 6 nodes. This 

gives 

 
n

ab
r


  

                 
5

58 
  

                 6.0 " 

At node "5,0 0  ari , "0038731.00 u                                               (E2.13) 

At node "6.56.05,1 01  rrri                                  (E2.14) 

 
       

0
6.06.5

1

6.0

1

6.5

1

6.06.5

1

6.0

2

6.0

1
2212202























 uuu  

 00754.38851.57778.2 210  uuu                                  (E2.15) 

At node ,2i   "2.66.06.512  rrr  

 
     

0
6.02.6

1

6.0

1

2.6

1

6.02.6

1

6.0

2

6.0

1
3222212


















 uuu       

 00466.38504.57778.2 321  uuu                                  (E2.16) 

At node ,3i  "8.66.02.623  rrr  

 
     

0
6.08.6

1

6.0

1

8.6

1

6.08.6

1

6.0

2

6.0

1
4232222


















 uuu

 
 00229.38223.57778.2 432  uuu                                  (E2.17) 

At node ,4i   4.76.08.634  rrr ″ 

 
       

0
6.04.7

1

6.0

1

4.7

1

6.04.7

1

6.0

2

6.0

1
5242232


















 uuu

 
 00030.37990.57778.2 543  uuu                                  (E2.18) 

At node ,5i  86.04.745  rrr ″ 

 0030769.05 
br

uu ″                                  (E2.19) 

Writing Equation (E2.13) to (E2.19) in matrix form gives 
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

































100000

0030.37990.57778.2000

00229.38223.57778.200

000466.38504.57778.20

0000754.38851.57778.2

000001



























5

4

3

2

1

0

u

u

u

u

u

u

=



























0030769.0

0

0

0

0

0038731.0

  

  

The above equations are a tri-diagonal system of equations and special algorithms such as 

Thomas’ algorithm can be used to solve such a system of equations. 

 0038731.00 u ″ 

 0036165.01 u ″ 

 0034222.02 u ″ 

 0032743.03 u ″ 

 0031618.04 u ″ 

 0030769.05 u ″ 

b)   To find the maximum stress, it is given by Equation (E2.7) as 

 














 arar dr

du

r

uE





2max
1

 

 psi1030 6E  

 3.0  
 0038731.00  uu ar ″ 

  

r

uu

dr

du
ar






01  

  6.0

0038731.00036165.0 


 

  00042767.0  
The maximum stress in the pressure vessel then is 

 

 












 00042767.03.0

5

0038731.0

3.01

1030
2

6

max

 
                    psi101307.2 4  

So the factor of safety FS  from Equation (E2.8) is  

 6896.1
101307.2

1036
4

3





FS  

c)  The differential equation has an exact solution and is given by the form 

 
r

C
rCu 2

1                                      (E2.20) 

where 
1C  and 2C  are found by using the boundary conditions at ar   and br  . 



  

11 

 

 5
)5(0038731.0)5()( 2

1

C
Cruaru 

 

 8
)8(0030769.0)8()( 2

1

C
Crubru 

  
giving 

 00013462.01 C  

 016000.02 C  
Thus 

 
r

ru
016000.0

00013462.0                                    (E2.21) 

 
2

016000.0
00013462.0

rdr

du
                                  (E2.22) 

 














 arar dr

du

r

uE





2max
1

 

                   

 




































22

6

5

016000.0
0013462.03.0

5

5

01600.0
500013462.0

3.01

1030

 
                   psi100538.2 4  

The true error is 

 44 101307.2100538.2 tE  

                 
2106859.7   

The absolute relative true error is 

 100
100538.2

101307.2100538.2
4

44





t  

       %744.3  

 

Example 3 

The approximation in Example 2 

 
r

uu

dr

du ii




 1  

is first order accurate, that is , the true error is of )( rO  . 

The approximation 

 
 2

11

2

2 2

r

uuu

dr

ud iii




                                      (E3.1) 

is second order accurate, that is , the true error is   2
rO   

 Mixing these two approximations will result in the order of accuracy of  rO   and 

  2
rO  , that is  rO  . 

           So it is better to approximate 
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 r

uu

dr

du ii




 

2

11                                      (E3.2) 

because this equation is second order accurate.  Repeat Example 2 with the more accurate 

approximations. 

Solution 

a)  Repeating the problem with this approximation, at node i in the pressure vessel, 

 
2

11

2

2

)(

2

r

uuu

dr

ud iii




                                                 (E3.3) 

 
r

uu

dr

du ii




 

2

11                                                 (E3.4) 

Substituting Equations (E3.3) and (E3.4) in Equation (E2.3) gives 

 
   

0
2

12
2

11

2

11 







 

i

iii

i

iii

r

u

r

uu

rr

uuu
 

 
       

0
2

11121

2

1
122212
























































  i

i

i

i

i

i

u
rrr

u
rr

u
rrr

               (E3.5) 

At node 5,0 0  ari " 

 0038731.00 u "                                      (E3.6) 

At node "6.56.05,1 01  rrri  

 
           

0
6.06.52

1

6.0

1

6.5

1

6.0

2

6.0

1

6.06.52

1
2212202





































 uuu  

 09266.25874.56297.2 210  uuu                                    (E3.7) 

At node ,2i  2.66.06.512  rrr " 

      
     

0
6.02.62

1

6.0

1

2.6

1

6.0

2

6.0

1

6.02.62

1
3222212



























 uuu              (E3.8) 

 
09122.25816.56434.2 321  uuu

 
At node ,3i  8.66.02.623  rrr " 

      
     

0
6.08.62

1

6.0

1

8.6

1

6.0

2

6.0

1

6.08.62

1
4232222



























 uuu              (E3.9) 

 09003.25772.56552.2 432  uuu  

At node ,4i   4.76.08.634  rrr " 

     
       

0
6.04.72

1

6.0

1

4.7

1

6.0

2

6.0

1

6.04.72

1
5242232
































 uuu           (E3.10) 

 08903.25738.56651.2 543  uuu  

At node ,5i  86.04.745  rrr " 

 0030769.0/5  bruu "                                  (E3.11) 

 

Writing Equations (E3.6) thru (E3.11) in matrix form gives 
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



















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








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8903.25738.56651.2000

09003.25772.56552.200
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0009266.25874.56297.2
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





















5

4

3

2

1

0

u

u

u

u

u

u

=



























0030769.0

0

0

0

0

0038731.0

  

  

The above equations are a tri-diagonal system of equations and special algorithms such as 

Thomas’ algorithm can be used to solve such equations. 

 0038731.00 u " 

 0036115.01 u " 

 0034159.02 u " 

 0032689.03 u " 

 0031586.04 u " 

 0030769.05 u " 

b) 
 r

uuu

dr

du

ar 




 2

43 210  

  
)6.0(2

0034159.00036115.040038731.03 
  

  
410925.4   

  












 4

2

6

max 10925.43.0
5

0038731.0

3.01

1030
  

                     psi100666.2 4  

 Therefore, the factor of safety FS  is  

 
4

3

100666.2

1036




FS  

       7420.1  

c)  The true error in calculating the maximum stress is 

 44 100666.2100538.2 tE  

                 psi128  

The relative true error in calculating the maximum stress is 

 100
100538.2

128
4





t  

      %62323.0  
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Table 1 Comparisons of radial displacements from two methods. 

r  exactu  order1st u  t  order  2ndu  t  

5 0.0038731 0.0038731 0.0000 0.0038731 0.0000 

5.6 0.0036110 0.0036165 1105160.1   0.0036115 2104540.1   

6.2 0.0034152 0.0034222 1100260.2   0.0034159 2108765.1   

6.8 0.0032683 0.0032743 1108157.1   0.0032689 2106334.1   

7.4 0.0031583 0.0031618 1100903.1   0.0031586 3105665.9   

8 0.0030769 0.0030769 0.0000 0.0030769 0.0000 
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