Finite Difference Method for Ordinary Differential
Equations

What is the finite difference method?

The finite difference method is used to solve ordinary differential equations that have
conditions imposed on the boundary rather than at the initial point. These problems are
called boundary-value problems. In this chapter, we solve second-order ordinary differential
equations of the form

2
Sl fxyy)asxsh, ®
X
with boundary conditions
y(@) =y, and y(b) =y, )

Many academics refer to boundary value problems as position-dependent and initial value
problems as time-dependent. That is not necessarily the case as illustrated by the following
examples.

The differential equation that governs the deflection y of a simply supported beam under

uniformly distributed load (Figure 1) is given by
d?y  gx(L-x)

dx’ 2El

where
x = location along the beam (in)

E =Young’s modulus of elasticity of the beam (psi)
| =second moment of area (in%)

g =uniform loading intensity (Ib/in)

L =length of beam (in)

The conditions imposed to solve the differential equation are
y(x=0)=0 4)
y(x=L)=0

Clearly, these are boundary values and hence the problem is considered a boundary-value

problem.

(3)
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Figure 1 Simply supported beam with uniform distributed load.

Now consider the case of a cantilevered beam with a uniformly distributed load (Figure 2).
The differential equation that governs the deflection y of the beam is given by

d?y q(L-x)?
- 5
dx? 2El ®)

where
x = location along the beam (in)
E =Young’s modulus of elasticity of the beam (psi)
| =second moment of area (in%)
g =uniform loading intensity (Ib/in)
L =length of beam (in)
The conditions imposed to solve the differential equation are
y(x=0)=0 (6)

dy
(x=0)=0
OIX(>< )

Clearly, these are initial values and hence the problem needs to be considered as an initial
value problem.

{L

Figure 2 Cantilevered beam with a uniformly distributed load.



Example 1

The deflection y in a simply supported beam with a uniform load gand a tensile axial load
T is given by

dy Ty _ax(L-x)

El1
dx* El 2El (ELD)
where
x = location along the beam (in)
T =tension applied (Ibs)
E =Young’s modulus of elasticity of the beam (psi)
| =second moment of area (in%)
q = uniform loading intensity (lb/in)
L = length of beam (in)
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Figure 3 Simply supported beam for Example 1.
Given,

T =7200Ibs, q =5400lbs/in, L =75in, E=30Msi, and |1 =120in*,
a) Find the deflection of the beam at x =50". Use a step size of Ax=25" and approximate
the derivatives by central divided difference approximation.
b) Find the relative true error in the calculation of y(50) .

Solution
a) Substituting the given values,
d’y 7200y _ (5400)x(75-x)
dx* (30x10°)(120) 2(30x10°)(120)
2
3 Z—2x10’6y:7.5x10’7x(75—x) (E1.2)
X
2
Approximating the derivative 32/ at node i by the central divided difference
X

approximation,
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Figure 4 lllustration of finite difference nodes using
central divided difference method.

dzy ~ Yia —2Yi +VYig

E1.3
dx® (AXx)? (EL3)
We can rewrite the equation as
Yin “2Yi tYia 5,90y 75107 %, (75— x,) (E1.4)
(Ax)

Since Ax =25, we have 4 nodes as given in Figure 3

i=1 =2 =3 I =
° ° ® °
x=0 X=25 x=50 X =

Figure 5 Finite difference method from x =0 to x =75 with Ax =25.

The location of the 4 nodes then is

X, =0

X, =X, +AX=0+25=25

X, =X +Ax=25+25=50

Xg =X, +AX=50+25=75
Writing the equation at each node, we get
Node 1: From the simply supported boundary condition at x =0, we obtain

Y, =0 (EL5)
Node 2: Rewriting equation (E1.4) for node 2 gives

%—mm-ﬁ y, = 7.5x107 %, (75— X,)

0.0016y, —0.003202y, +0.0016y, = 7.5x107" (25)(75— 25)

0.0016y, —0.003202y, +0.0016y, =9.375x10™* (E1.6)
Node 3: Rewriting equation (E1.4) for node 3 gives

Y4 B 2y3 + y2

(25)°

0.0016y, —0.003202y, +0.0016y, = 7.5x107" (50)(75—50)

0.0016y, —0.003202y, +0.0016y, =9.375x10™* (EL.7)
Node 4: From the simply supported boundary condition at x = 75, we obtain

y, =0 (E1.8)

—2x107°%y, =7.5x107" %, (75— X,)



Equations (E1.5-E1.8) are 4 simultaneous equations with 4 unknowns and can be written in
matrix form as

1 0 0 0 Tv.] [0

0.0016 —0.003202  0.0016 0 |y,| |9.375x10™
0 0.0016  —0.003202 0.0016]y,| |9.375x10™
0 0 0 1 |yl |o

The above equations have a coefficient matrix that is tridiagonal (we can use Thomas’
algorithm to solve the equations) and is also strictly diagonally dominant (convergence is
guaranteed if we use iterative methods such as the Gauss-Siedel method). Solving the
equations we get,

y: | |0
Y, | |-05852
Yy, | |-0.5852
Yol [0

y(50) = y(x,) = y, =—-0.5852"

The exact solution of the ordinary differential equation is derived as follows. The
homogeneous part of the solution is given by solving the characteristic equation

m? -2x10° =0
m =10.0014142
Therefore,
y _ K e0.0014142>< + K e—0.0014142x
h — 1 2

The particular part of the solution is given by
y, = Ax* +Bx+C

Substituting the differential equation (E1.2) gives
d?y,

X2

2x10°y, =7.5x107 X(75-X)

2
d—z(sz +Bx+C)-2x10°(Ax* + Bx+C) =7.5x10" x(75-X)
X

2A—2x10"°(AX* + Bx+C) =7.5x107" x(75— X)

—2x10° Ax* —2x10°Bx+(2A-2x10°C) =5.625x10°x - 7.5x107" x*
Equating terms gives

—2x10°A=-75%x10"

—~2x10°B =-5.625x10"°

2A-2x10°C =0
Solving the above equation gives

A=0.375
B=-28.125

C =3.75x10°



The particular solution then is
y, =0.375x* —28.125x +3.75%10°
The complete solution is then given by
y =0.375x* —28.125x +3.75x 10° + K, g4 4 K g7 o01414x
Applying the following boundary conditions
y(x=0)=0
y(x=75)=0
we obtain the following system of equations
K, +K, =-3.75x10°
1.1119K, +0.89937K, = -3.75x10°
These equations are represented in matrix form by
1 1 | K] [-375x10°
[1.1119 0.89937}{&} - {— 3.75><105}
A number of different numerical methods may be utilized to solve this system of equations
such as the Gaussian elimination. Using any of these methods yields
K, 3 —1.775656226x10°
{Kj - {—1.97434377&104
Substituting these values back into the equation gives
y =0.375x* —28.125x + 3.75x10° —1.775656266x10° %4> _1.974343774x10° g 0001414

Unlike other examples in this chapter and in the book, the above expression for the deflection
of the beam is displayed with a larger number of significant digits. This is done to minimize
the round-off error because the above expression involves subtraction of large numbers that
are close to each other.

b) To calculate the relative true error, we must first calculate the value of the exact solution at
y =50.
y(50) = 0.375(50)? — 28.125(50) + 3.75x10° —1.775656266x 10° g 014142(0)

—1.974343774x10° g 00014142(50)
y(50) =-0.5320
The true error is given by
E, = Exact Value — Approximate Value

E, = —0.5320— (~0.5852)

E, =0.05320
The relative true error is given by
e, = JTUEEITOT ) 00%
True Value
€ = 005320 x100%
—-0.5320

c,=-10%



Example 2

Take the case of a pressure vessel that is being tested in the laboratory to check its ability to
withstand pressure. For a thick pressure vessel of inner radius a and outer radius b, the
differential equation for the radial displacement u of a point along the thickness is given by

2
d’u ldu_u _, (E2.3)

dr? rdr r?
The inner radius a =5" and the outer radius b =8", and the material of the pressure vessel is
ASTM A36 steel. The yield strength of this type of steel is 36 ksi. Two strain gages that are
bonded tangentially at the inner and the outer radius measure normal tangential strain as

€. = 000077462
€, = 0.00038462 (E2.4a,b)

at the maximum needed pressure. Since the radial displacement and tangential strain are
related simply by

€= F y (E25)
then

U= 000077462x5 = 0.0038731'

u|r:b = 0.00038462x8 = 0.0030769"
The maximum normal stress in the pressure vessel is at the inner radius r = a and is given by

E (u du
= — — E2.7

Tma =72 (r . dr r_aj (E2.7)

where

E = Young’s modulus of steel (E= 30 Msi)
v = Poisson’s ratio (v =0.3)
The factor of safety, FS is given by
s _ Yield strength of steel
Gmax

a) Divide the radial thickness of the pressure vessel into 6 equidistant nodes, and find
the radial displacement profile

b) Find the maximum normal stress and factor of safety as given by equation (E2.8)

c) Find the exact value of the maximum normal stress as given by equation (E2.8) if it is
given that the exact expression for radial displacement is of the form

(E2.8)

C
u=Cr+—=.
r

Calculate the relative true error.



Solution

i+1

i-1 i i+1

Figure 4 Nodes along the radial direction.

a) The radial locations from r =a to r =b are divided into n equally spaced segments, and
hence resulting in n+1 nodes. This will allow us to find the dependent variable u
numerically at these nodes.

At node i along the radial thickness of the pressure vessel,

d’u u,, —2u, +u,,

~ 1+ 1 1—. E2.9
dr’? (Ar)? (£29)
du U, U, (E2.10)
dr Ar

Such substitutions will convert the ordinary differential equation into a linear equation (but
with more than one unknown). By writing the resulting linear equation at different points at
which the ordinary differential equation is valid, we get simultaneous linear equations that
can be solved by using techniques such as Gaussian elimination, the Gauss-Siedel method,
etc.
Substituting these approximations from Equations (E2.9) and (E2.10) in Equation (E2.3)
u., —2U; + U, lu,,—-u u

i+1 |2 = + = i+1 i __I2 _ (E211)

(Ar) L Ar r

1 1 2 1 1 1
et Uyt 5 ——— = U+ —5 U, =0 E2.12
[ [ (arf v j (ary =

Let us break the thickness, b—a, of the pressure vessel into n+1 nodes, that is r=a is
node i =0 and r =b isnode i =n. That means we have n+1 unknowns.
We can write the above equation for nodesl,...,n—1. This will give us n—1 equations. At

the edge nodes, i =0 and i =n, we use the boundary conditions of




u0 = u|r:a

l'In: u|r:b

This gives a total of n+1 equations. So we have n+1 unknowns and n+1 linear equations.
These can be solved by any of the numerical methods used for solving simultaneous linear

equations.

We have been asked to do the calculations for n =5, that is a total of 6 nodes. This

gives

b-a
n

-5

Ar =

oo

(J-I ‘

=06"
Atnode i=0,r,=a=5", u, =0.0038737

Atnode i=1r =r,+Ar=5+0.6=5.6"

iu+—2—1—1u+1+1 u,=0
06> " [ 06° (56)06) (567)  l06° (56)0.6))°

2.77781, —5.8851u, +3.0754u, =0
Atnode i=2, r,=r+Ar=56+0.6=6.2"

1 2 1 1 1 1

2.7778u, —5.8504u,+3.0466u, =0
Atnode i=3, r;=r,+Ar=6.2+0.6=6.8"

iu+(—2— L —1]u+(1+ L Ju:o

0.6 ° 0.6° (6.8)0.6) 6.8°)° |0.6° (6.8)0.6))"
2.77781, —5.8223u, +3.022%, =0

Atnode i=4, r,=r,+Ar=6.8+06=7.4"

iu+—2— L —1u+l+ L u, =0
06° ° | 06° (74)06) (747 )" (06* (7.4f06))°

27778, —5.7990u, +3.0030u, =0
Atnode i =5, r, =1, +Ar=74+0.6=8"
Us = u|r:b =0.0030769"
Writing Equation (E2.13) to (E2.19) in matrix form gives

TR . - =0
0.6° u“{ 0.6° (6.2)0.6) 6.22)u2+(0.62+(6.2)(0.6)ju3

(E2.13)
(E2.14)

(E2.15)

(E2.16)

(E2.17)

(E2.18)

(E2.19)



1 0 0 0 0 0 7fu,] [0.0038731]
27778 -5.8851 3.0754 0 0 0 ||y 0

0 27778 -58504 3.0466 0 0 |lu,| | 0

0 0 27778 -58223 30229 O ||lu,| | O

0 0 0 27778 —5.7990 3.0030]|u, 0
0 0 0 0 0 1 |{us] |0.0030769)

The above equations are a tri-diagonal system of equations and special algorithms such as
Thomas’ algorithm can be used to solve such a system of equations.
u, =0.0038731"

u, =0.003616%"
u, =0.0034222"
u, =0.0032743"
u, =0.0031618"
u; =0.0030769"
b) To find the maximum stress, it is given by Equation (E2.7) as

E (u du
Omax = - V—
1-v?r|,_, dr|._
E =30x10°psi
v=0.3

u|,_, =U, =0.0038731"

%| U U,
dr'™® Ar
~0.0036165-0.0038731

0.6
=-0.00042767
The maximum stress in the pressure vessel then is

6
O = 210 (0'0038731+ 0.3(- 0.000427@)
1-0.3 5
=2.1307x10"psi
So the factor of safety FS from Equation (E2.8) is
36x10°

~ 2.1307x10°
¢) The differential equation has an exact solution and is given by the form

u=Cyr+2 (E2.20)
r

=1.6896

where C, and C, are found by using the boundary conditionsat r =a and r =b.



u(r =a)=u(r =5)=0.0038731=C,(5) +%

u(r =b) =u(r =8) =0.0030769=C, (8) + %
giving
C, =0.00013462
C, =0.016000
Thus
U = 000013467 + 2016000 (E2.21)
r
U _ 0,00013462- o.c>1_<23000 (E2.22)
dr r
E (u du
O max = -  Av—
1-vi\r|_, ~dr|_
0.01600
6| 0.000134645)+
_ 3019 +O.3(0.0013462— _o.oujoooj
1-0.3 5
= 2.0538x10" psi

The true error is
E, =2.0538x 10* - 2.1307x10*

= —7.6859x10?
The absolute relative true error is

el 2.0538x10* - 2.1307x10" |
1 2.0538x10* |
=3.744%

x100

Example 3
The approximation in Example 2
du Uy, —U
dr Ar
is first order accurate, that is , the true error is of O(Ar).
The approximation
d’u U, —2u,+u,
arr = (Ar)’
is second order accurate, that is , the true error is O((Ar)z)
Mixing these two approximations will result in the order of accuracy of O(Ar) and
O((Ar)?), that is O(Ar).
So it is better to approximate

(E3.1)



du u,,—Uu,
dr 2(ar)
because this equation is second order accurate. Repeat Example 2 with the more accurate
approximations.
Solution

(E3.2)

a) Repeating the problem with this approximation, at node i in the pressure vessel,
d’u U, —2u,+u,

E3.3
dr? (Ar)? (E3.3)
du < Jia —Uig (E3.4)
dr 2Ar

Substituting Equations (E3.3) and (E3.4) in Equation (E2.3) gives
Uia — Zui:_ui—l +£ Uig Uiy _u_i2 =0
(Ar) . 2(Ar) r
I + lzui_l+— 22—%ui+ 12+ ! u,, =0 (E3.5)
2r, (Ar) (Ar) (Ar) r, (Ar) 21, Ar
Atnode i=0,r,=a=>5"
u, = 0.0038731" (E3.6)

Atnode i=1 1 =r,+Ar=5+0.6 =5.6"

[_ 2(5.61)(0.6) ’ (o.ts)2 JU" +[_(o.i6)2_@}ul J{o.tsz " 2(5.61)(0.6)]u2 =0

2.6297u, —5.5874u, +2.9266u, = 0 (E3.7)
Atnode i=2, r,=r,+Ar=56+06=6.2"
1 1 2 1 1 1
- + U +| ——— u, + + u, =0 E3.8
( 2(6.2)(0.6) O.GZJ ' ( 0.6° 6.22j ? (0.62 2(6.2)(0.6)) ’ (E38)

2.6434u, —5.5816u,+2.9122u, =0
Atnode i=3, r,=r,+Ar=6.2+0.6=6.8"

1 1 2 1 1 1
(_ 2(6.8)0.6) " 0.67 ]uz " (_W 687 ju3 " [0.62 ’ 2(6.8)(0.6)ju4 =0 (E39)
2.6552, —5.5772, +2.9003, =0
Atnode i=4, r,=r,+Ar=6.8+06=74"

1 1 2 1 1 1
_ L= =0 E3.10
[ 2(7.4)(0.6)+ 0.6 ju3 +( 0.6> (7.4Y ]u“ +(0.62 ’ 2(7.4)(0.6))uS ( )
2.6651u, —5.5738u, +2.8903u, =0

Atnode i=5, r,=r,+Ar=74+06=8"
u; =u/,_, =0.0030769" (E3.11)

Writing Equations (E3.6) thru (E3.11) in matrix form gives



1 0 0 0 0 0 ][u,| [0.0038731]
2.6297 -55874 2.9266 0 0 0 u, 0
0

0 26434 -55816 29122 0 u,| | 0

0 0 26552 -55772 29003 0 |[|lu,| | ©

0 0 0 2.6651 -55738 2.8903||u, 0
0 0 0 0 0 1 ||u,| |0.0030769]

The above equations are a tri-diagonal system of equations and special algorithms such as
Thomas’ algorithm can be used to solve such equations.
u, =0.0038731"

u, =0.003611%"
u, = 0.0034159"
u, =0.0032689"
u, =0.0031586"
u, =0.0030769"
du

—3u, +4u, —u,
dr

2(Ar)
- 3x0.0038731+4x0.0036115-0.0034159
2(0.6)

b)

r=a

=-4.925x10™"
o 30x10° [0.0038731
" 1-0.3? 5
=2.0666x10"psi
Therefore, the factor of safety FS is
36x10°

~ 2.0666x10°
=1.7420
c) The true error in calculating the maximum stress is

E, =2.0538x10" —2.0666x10*

+0.3(-4.925x10™ )]

=-128 psi
The relative true error in calculating the maximum stress is
e =228 1,100
2.0538x10

=0.62323%



Table 1 Comparisons of radial displacements from two methods.

r Uyt Uyt order e, | Uprg orcer &

5 0.0038731 | 0.0038731 | 0.0000 0.0038731 | 0.0000

5.6 |0.0036110 |0.0036165 |1.5160x10" |0.0036115 | 1.4540x10°
6.2 |0.0034152 |0.0034222 | 2.0260x107* | 0.0034159 | 1.8765x107?
6.8 |0.0032683 | 0.0032743 | 1.8157x10" | 0.0032689 | 1.6334x10°*
7.4 10.0031583 | 0.0031618 | 1.0903x10" |0.0031586 | 9.5665x107°
8 0.0030769 | 0.0030769 | 0.0000 0.0030769 | 0.0000
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