Runge-Kutta 2nd Order Method for
Ordinary Differential Equations

What is the Runge-Kutta 2nd order method?

The Runge-Kutta 2nd order method is a numerical technique used to solve an ordinary
differential equation of the form

d

d—i = f(xy).y(0)=y,

Only first order ordinary differential equations can be solved by using the Runge-Kutta 2nd
order method. In other sections, we will discuss how the Euler and Runge-Kutta methods are
used to solve higher order ordinary differential equations or coupled (simultaneous)
differential equations.

How does one write a first order differential equation in the above form?

Example 1
Rewrite

v, 2y=1.3e7,y(0)=5

dx
in
dy
- f(x,y), y(0) =y, form.
X
Solution
dy _
2 4+2y=13e7%,y(0)=5
VR y(0)
dy _
—~=13e*-2y,y(0)=5
» y,y(0)
In this case
f(x,y)=13e" -2y
Example 2
Rewrite
yay oo B
e XY = 2sin(3x), y(0)=5
X
in

d
2= oY), y(0) =y, form.
X



Solution
e’ %4‘ x?y? = 2sin(3x), y(0)=5
X

dy _ 2sin(3x) - x%y?

, y(0)=5
™ > y(0)
In this case
2sin(3x) — x%y?
f(xy)= ( e)y y

Runge-Kutta 2" order method

Euler’s method is given by

Yia=Yit f(xi i )h 1)
where

X, =0

Yo = y(xo)

h=X,—X
To understand the Runge-Kutta 2nd order method, we need to derive Euler’s method from
the Taylor series.

d 1d? 1d?
Yia =Yi +d_i (Xi+l _Xi)+EWZXA,yA (Xi+l =X )2 +§d_xgl o (Xi+1 =X )3 +..

XihYi WYi
1., 1.,
=Y+ f(Xi J yi)(Xi+l — X )"‘5 f (Xi ’ yi)(xi+l — X )2 +§ f (Xi J yi)(Xi+l =X )3 +. (2)
As you can see the first two terms of the Taylor series
Yin =Y f(Xi »Yi )h

are Euler’s method and hence can be considered to be the Runge-Kutta 1st order method.
The true error in the approximation is given by
g, - 0y V) e ®)
2! 3
So what would a 2nd order method formula look like. It would include one more term of the
Taylor series as follows.

1.,
yi+1=yi+f(xi7yi)h+5f (Xi’Yi)h2 4)
Let us take a generic example of a first order ordinary differential equation

dy -2X
—_— = —3 , O :5
i € y,y(0)

floy)=e -3y
Now sincey is a function of x,
F(x,y)= of (x,y), of (x,y)dy
19)4 oy dx

()



) SR

=2+ (—C%)(e‘2X —3y)
= -5e > +9y
The 2nd order formula for the above example would be

Yian =Y+ f(xivyi)h+%f'(xi’yi)h2

Syl oy e vy

However, we already see the difficulty of having to find f'(x, y) in the above method. What
Runge and Kutta did was write the 2nd order method as

Yia =Yi (alkl +3a,k, )h (6)
where

k, = f(xi ; Yi)

kz = f(xi + plh' Yi +q11k1h) (7)

This form allows one to take advantage of the 2nd order method without having to
calculate f'(x, y).

So how do we find the unknowns a,, a,, p, and q,,. Without proof (see Appendix
for proof), equating Equation (4) and (6) , gives three equations.

a+a, =1

a,p, =

a,q, =

Since we have 3 equations and 4 unknowns, we can assume the value of one of the
unknowns. The other three will then be determined from the three equations. Generally the

value of a, is chosen to evaluate the other three constants. The three values generally used

2
1
2

for a, are % 1 and % and are known as Heun’s Method, the midpoint method and

Ralston’s method, respectively.

Heun’s Method

Here a, :% is chosen, giving

-t

2

p, =1

q; =1
resulting in

1 1
Yia =Yi "‘(E ky "‘Eszh (8)



where
kl = f(xi ) Yi)

(92)
k, = f(x, +h,y, +kh) (9b)
This method is graphically explained in Figure 1.
Va Slope= f(x, +h,y, +kh)
Slope= f (x, y,).~~_v Yuu Predicted
AverageSIope:%[f (x, +h,y, +kh)+ f(x,y,)]
Xi Xi+1 > X
Figure 1 Runge-Kutta 2nd order method (Heun’s method).
Midpoint Method
Here a, =1 is chosen, giving
a =0
_1
Py >
q, ==
1 = 2
resulting in
Yia =V +k;h (10)
where
k, = 1:(Xi , Yi) (11a)

1 1
k, =f| X, +=h,y, + =k;h
2 (I 2 yl 21)

(11b)
Ralston’s Method

Here a, :§ is chosen, giving
a, =

P, =

Blw @k



3
011 ZZ

resulting in

y.lzy.+(lkl+gk2jh (12)
" '3 3

where
k, = f(x. ;) (13a)
k, = f(x. +§h, Y, +§klhj (13b)

4T 4
Example 3

A ball at 1200K is allowed to cool down in air at an ambient temperature of 300K.
Assuming heat is lost only due to radiation, the differential equation for the temperature of
the ball is given by

O('j_f =-2.2067x10" (0* —81x10°)

where @ isin K and t in seconds. Find the temperature at t =480 seconds using Runge-
Kutta 2nd order method. Assume a step size of h =240 seconds.

Solution

‘z'j_‘tg = -2.2067x1072(9* -81x10°)

f(t,0)=—-2.2067x10"?(9* ~81x10°)
Per Heun’s method given by Equations (8) and (9)
6., =06 + [%kl +%k2jh
k= 1(t.6)
k, = f(t, +h,6 +kh)
i=0,t, =0,6, = 6(0) =1200
kl = f(to 1 ‘90)
= (0,1200)
= —2.2067x10?(1200* —81x10° )
= —4.5579
k, = f(t, +h,6, +kh)
= f(0+2401200+ (- 4.5579)240)
= (240,106.09)

— —2.2067x102(106.09* —81x10°)
—0.017595



1 1
91 :90 +[Ekl +Ek2jh

=1200+ (% (- 4.5579)+ %(0.017595)j240
=1200+(—2.2702)240
=655.16K
i=1t, =t, +h=0+240=240,6, = 655.16K
k1 = f(tvgl)
= (240,655.16)
— —2.2067x102(655.16* —81x10°)
=-0.38869
k,= f(t, +h,6,+kh)
= f(240+240,655.16+ (—0.38869)240)
= (480,561.87)
= -2.2067x10 *(561.87* —81x10°)
—-0.20206

1 1
02 :01 +(Ekl +Ek2Jh

= 655.16+(%(— O.38869)+%(— 0.20206))240

= 655.16+ (—0.29538)240
=58427K
0, = 6(480)=584.27K
The results from Heun’s method are compared with exact results in Figure 2.

The exact solution of the ordinary differential equation is given by the solution of a non-

linear equation as
0.925931n =390
6+300
The solution to this nonlinear equation at t = 480s is

0(480) = 64757 K

~1.8519tan (0.003333%) = -0.22067x10°t — 2.9282
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Figure 2 Heun’s method results for different step sizes.

Using a smaller step size would increase the accuracy of the result as given in Table 1 and
Figure 3 below.

Table 1 Effect of step size for Heun’s method

Step size, h | 6(480) | E; e |%
480 -393.87 | 1041.4 160.82
240 584.27 |63.304 9.7756
120 651.35 | -3.7762 | 0.58313
60 649.91 |-2.3406 | 0.36145
30 648.21 | -0.63219 | 0.097625
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Figure 3 Effect of step size in Heun’s method.



In Table 2, Euler’s method and the Runge-Kutta 2nd order method results are shown as a
function of step size,

Table 2 Comparison of Euler and the Runge-Kutta methods

Step size, 6(480)

h Euler Heun Midpoint Ralston

480 -087.84 | -393.87 | 1208.4 449.78

240 110.32 | 584.27 976.87 690.01

120 546.77 | 651.35 690.20 667.71
60 614.97 | 649.91 654.85 652.25
30 632.77 | 648.21 649.02 648.61

while in Figure 4, the comparison is shown over the range of time.
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Figure 4 Comparison of Euler and Runge Kutta methods with exact
results over time.

How do these three methods compare with results obtained if we found f'(x,y)
directly?
Of course, we know that since we are including the first three terms in the series, if the
solution is a polynomial of order two or less (that is, quadratic, linear or constant), any of the
three methods are exact. But for any other case the results will be different.

Let us take the example of
dy -
—~=e"-3y,y(0)=5.
i y,(0)
If we directly find f ’(x, y), the first three terms of the Taylor series gives



Yia =Y+ f(xifyi)h+%f’(xivyi)h2

where
f(x,y)=e? -3y
f'(x,y)=-5e +9y
For a step size of h=0.2, using Heun’s method, we find
y(0.6)=1.0930
The exact solution
y(x)=e2* + 4~
gives
y(O.6): efz(o.e) T 4e—3(0.6)
=0.96239
Then the absolute relative true error is
e | = |0.96239—1.0930| <100
| 096239 |

=13571%
For the same problem, the results from Euler’s method and the three Runge-Kutta methods
are given in Table 3.

Table 3 Comparison of Euler’s and Runge-Kutta 2nd order methods

y(0.6)
Exact Euler | Direct 2nd | Heun | Midpoint | Ralston

Value | 0.96239 | 0.4955 | 1.0930 1.1012 | 1.0974 | 1.0994
| % 48.514 | 13,571 14.423 | 14.029 | 14.236
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