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Runge-Kutta 2nd Order Method for  
Ordinary Differential Equations 
 

 

What is the Runge-Kutta 2nd order method? 

The Runge-Kutta 2nd order method is a numerical technique used to solve an ordinary 

differential equation of the form 

     00,, yyyxf
dx

dy
  

Only first order ordinary differential equations can be solved by using the Runge-Kutta 2nd 

order method.  In other sections, we will discuss how the Euler and Runge-Kutta methods are 

used to solve higher order ordinary differential equations or coupled (simultaneous) 

differential equations. 

How does one write a first order differential equation in the above form? 

 

Example 1  

Rewrite 

   50,3.12   yey
dx

dy x  

in 

 0)0(  ),,( yyyxf
dx

dy
  form. 

 

Solution 

   50,3.12   yey
dx

dy x
 

   50,23.1   yye
dx

dy x
 

In this case 

   yeyxf x 23.1,    

Example 2 

Rewrite 

   50  ),3sin(222  yxyx
dx

dy
e y

 

in  

0)0(  ),,( yyyxf
dx

dy
  form. 
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Solution 

   50  ),3sin(222  yxyx
dx

dy
e y  

   50  ,
)3sin(2 22




 y
e

yxx

dx

dy
y

 

In this case 

  
ye

yxx
yxf

22)3sin(2
,


  

 

Runge-Kutta 2nd order method 

Euler’s method is given by 

  hyxfyy iiii ,1                                          (1) 

where 

 00 x  

 )( 00 xyy   

 ii xxh  1  

To understand the Runge-Kutta 2nd order method, we need to derive Euler’s method from 

the Taylor series. 
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          ...),(''
!3

1
),('

!2

1
),(

3

1

2

11   iiiiiiiiiiiii xxyxfxxyxfxxyxfy  (2) 

As you can see the first two terms of the Taylor series 

  hyxfyy iiii ,1   

are Euler’s method and hence can be considered to be the Runge-Kutta 1st order method. 

The true error in the approximation is given by 

 
   

...
!3

,

!2

, 32 





 h
yxf

h
yxf

E iiii
t                                                                           (3) 

So what would a 2nd order method formula look like.  It would include one more term of the 

Taylor series as follows. 

     2

1 ,
!2

1
, hyxfhyxfyy iiiiii

                                         (4) 

Let us take a generic example of a first order ordinary differential equation 

   50,32   yye
dx

dy x
  

   yeyxf x 3, 2    

Now since y is a function of x, 

  
   

dx

dy

y

yxf

x

yxf
yxf











,,
,                                                                                  (5) 
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       yeye
y

ye
x

xxx 333 222 








   

   yee xx 3)3(2 22    

  ye x 95 2    

The 2nd order formula for the above example would be 

     2

1 ,
!2

1
, hyxfhyxfyy iiiiii

  

     222
95

!2

1
3 hyehyey i

x

i

x

i
ii 


 

However, we already see the difficulty of having to find  yxf ,  in the above method.  What 

Runge and Kutta did was write the 2nd order method as 

  hkakayy ii 22111                                         (6) 

where 

  ii yxfk ,1   

  hkqyhpxfk ii 11112 ,                                 (7) 

This form allows one to take advantage of the 2nd order method without having to 

calculate  yxf , . 

 So how do we find the unknowns 
1a , 

2a , 
1p  and 11q . Without proof (see Appendix 

for proof), equating Equation (4) and (6) , gives three equations. 

 121  aa  

 
2

1
12 pa  

 
2

1
112 qa  

Since we have 3 equations and 4 unknowns, we can assume the value of one of the 

unknowns.  The other three will then be determined from the three equations.  Generally the 

value of 
2a  is chosen to evaluate the other three constants.  The three values generally used 

for 
2a  are 

2

1
, 1 and 

3

2
, and are known as Heun’s Method, the midpoint method and 

Ralston’s method, respectively. 

 

Heun’s Method 

Here 
2

1
2 a  is chosen, giving 

 
2

1
1 a  

 11 p  

 111 q  

resulting in 

 hkkyy ii 







 211

2

1

2

1
                                                                                           (8) 
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where 

  ii yxfk ,1                                                                                                               (9a) 

  hkyhxfk ii 12 ,                                                                                              (9b) 

This method is graphically explained in Figure 1. 

 

 
Figure 1  Runge-Kutta 2nd order method  (Heun’s method). 

 

Midpoint Method 

Here 12 a  is chosen, giving 

 01 a  

 
2

1
1 p  

 
2

1
11 q  

resulting in 

 hkyy ii 21                                                                                                            (10) 

where 

  ii yxfk ,1                                                                                                             (11a) 

 







 hkyhxfk ii 12

2

1
,

2

1
                                                                                    (11b) 

Ralston’s Method 

Here 
3

2
2 a  is chosen, giving 

 
3

1
1 a  

 
4

3
1 p  

xi xi+1 
x 

y 

  1iy   predicted 

 yi 

 ii yxfSlope ,  

 hkyhxfSlope ii 1,   

    iiii yxfhkyhxfSlopeAverage ,,
2

1
 1   
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4

3
11 q  

resulting in 

 hkkyy ii 







 211

3

2

3

1
                                                                                       (12) 

where 

  ii yxfk ,1                                                                                                             (13a) 

 







 hkyhxfk ii 12

4

3
,

4

3
                                                                                    (13b) 

 

Example 3 

A ball at 1200K is allowed to cool down in air at an ambient temperature of 300K.  

Assuming heat is lost only due to radiation, the differential equation for the temperature of 

the ball is given by  

 
)1081( 102067.2 8412-  



dt

d

   
where   is in K and t  in seconds.  Find the temperature at 480t  seconds using Runge-

Kutta 2nd order method.  Assume a step size of  240h  seconds. 

 

Solution 

  8412 1081102067.2   


dt

d
 

    8412 1081102067.2,   tf  
Per Heun’s method given by Equations (8) and (9) 

 

hkkii 







 211

2

1

2

1


 
  iitfk ,1   

  hkhtfk ii 12 ,    

 1200)0(,0,0 00  ti  

  otfk ,01   

                  1200,0f  

       8412 10811200102067.2  

 

      5579.4  
  hkhtfk 1002 ,    

        2405579.41200,2400  f  

       09.106,240f  

                  8412 108109.106102067.2      

                 017595.0  
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 hkk 







 2101

2

1

2

1
  

          240017595.0
2

1
5579.4

2

1
1200 








  

       2402702.21200   

      16.655 K 

 K16.655,2402400,1 101  htti  

  111 ,tfk   

       16.655,240f  

       8412 108116.655102067.2  

 

      38869.0  

  hkhtfk 1112 ,    
       24038869.016.655,240240  f  

      87.561,480f  

      8412 108187.561102067.2  

 

                20206.0  

 

hkk 







 2112

2

1

2

1


 

      

    24020206.0
2

1
38869.0

2

1
16.655 










 

       24029538.016.655   
                 27.584 K 

   27.5844802  K 

The results from Heun’s method are compared with exact results in Figure 2. 

The exact solution of the ordinary differential equation is given by the solution of a non-

linear equation as 

   9282.21022067.00033333.0tan8519.1
300

300
ln92593.0 31 



  t



 

The solution to this nonlinear equation at 480t s is 

 57.647)480(  K 
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Figure 2  Heun’s method results for different step sizes. 

 

Using a smaller step size would increase the accuracy of the result as given in Table 1 and 

Figure 3 below. 

 

                                     Table 1  Effect of step size for Heun’s method 

Step size, h   480  tE
 

%t  
480 

240 

120 

60 

30 

-393.87 

584.27 

651.35 

649.91 

648.21 

1041.4 

63.304 

-3.7762 

-2.3406 

-0.63219 

160.82 

9.7756 

0.58313 

0.36145 

0.097625 
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Figure 3  Effect of step size in Heun’s method. 
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In Table 2, Euler’s method and the Runge-Kutta 2nd order method results are shown as a 

function of step size, 

 

                        Table 2  Comparison of Euler and the Runge-Kutta methods 

Step size, 

h  

)480(  
Euler Heun Midpoint Ralston 

480 

240 

120 

  60 

  30 

-987.84 

110.32 

546.77 

614.97 

632.77 

-393.87 

584.27 

651.35 

649.91 

648.21 

1208.4 

976.87 

690.20 

654.85 

649.02 

449.78 

690.01 

667.71 

652.25 

648.61 

 

while in Figure 4, the comparison is shown over the range of time. 

 

500

600

700

800

900

1000

1100

1200

0 100 200 300 400 500 600

Time, t (sec)

T
em

p
er

at
u
re

,

Analytical

Ralston

Midpoint

Euler

Heun

θ
(K

)

 
Figure 4 Comparison of Euler and Runge Kutta methods with exact  

results over time. 
 

 

How do these three methods compare with results obtained if we found  yxf ,  

directly? 

Of course, we know that since we are including the first three terms in the series, if the 

solution is a polynomial of order two or less (that is, quadratic, linear or constant), any of the 

three methods are exact.  But for any other case the results will be different. 

 Let us take the example of  

    50,32   yye
dx

dy x
. 

If we directly find  yxf , , the first three terms of the Taylor series gives 
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     2

1 ,
!2

1
, hyxfhyxfyy iiiiii

  

where 

   yeyxf x 3, 2    

   yeyxf x 95, 2    

For a step size of 2.0h , using Heun’s method, we find  

   0930.16.0 y  

The exact solution 

   xx eexy 32 4    
gives 

      6.036.02 46.0   eey  

           96239.0  

Then the absolute relative true error is 

 100
96239.0

0930.196239.0



t  

       %571.13  

For the same problem, the results from Euler’s method and the three Runge-Kutta methods 

are given in Table 3. 

 

           Table 3  Comparison of Euler’s and Runge-Kutta 2nd order methods 

 
y(0.6) 

Exact Euler Direct 2nd Heun Midpoint Ralston 

Value 0.96239 0.4955 1.0930 1.1012 1.0974 1.0994 

t  %  48.514 13.571 14.423 14.029 14.236 

 

 

 

 

 

 

 

Reference  

 

ORDINARY DIFFERENTIAL EQUATIONS  

Topic Runge 2nd Order Method for Ordinary Differential Equations 

Summary Textbook notes on Runge 2nd order method for ODE 

Major General Engineering 

Authors Autar Kaw 

 

 


