Runge-Kutta 4th Order Method for Ordinary Differential Equations

What is the Runge-Kutta 4th order method?

Runge-Kutta $4^{\text {th }}$ order method is a numerical technique used to solve ordinary differential equation of the form

$$
\frac{d y}{d x}=f(x, y), y(0)=y_{0}
$$

So only first order ordinary differential equations can be solved by using the Runge-Kutta $4^{\text {th }}$ order method. In other sections, we have discussed how Euler and Runge-Kutta methods are used to solve higher order ordinary differential equations or coupled (simultaneous) differential equations.

How does one write a first order differential equation in the above form?

Example 1

Rewrite

$$
\frac{d y}{d x}+2 y=1.3 e^{-x}, y(0)=5
$$

in

$$
\frac{d y}{d x}=f(x, y), y(0)=y_{0} \text { form } .
$$

Solution

$$
\begin{aligned}
& \frac{d y}{d x}+2 y=1.3 e^{-x}, y(0)=5 \\
& \frac{d y}{d x}=1.3 e^{-x}-2 y, y(0)=5
\end{aligned}
$$

In this case

$$
f(x, y)=1.3 e^{-x}-2 y
$$

Example 2

Rewrite

$$
e^{y} \frac{d y}{d x}+x^{2} y^{2}=2 \sin (3 x), y(0)=5
$$

in

$$
\frac{d y}{d x}=f(x, y), y(0)=y_{0} \text { form }
$$

Solution

$$
\begin{aligned}
& e^{y} \frac{d y}{d x}+x^{2} y^{2}=2 \sin (3 x), y(0)=5 \\
& \frac{d y}{d x}=\frac{2 \sin (3 x)-x^{2} y^{2}}{e^{y}}, y(0)=5
\end{aligned}
$$

In this case

$$
f(x, y)=\frac{2 \sin (3 x)-x^{2} y^{2}}{e^{y}}
$$

The Runge-Kutta $4^{\text {th }}$ order method is based on the following

$$
\begin{equation*}
y_{i+1}=y_{i}+\left(a_{1} k_{1}+a_{2} k_{2}+a_{3} k_{3}+a_{4} k_{4}\right) h \tag{1}
\end{equation*}
$$

where knowing the value of $y=y_{i}$ at x_{i}, we can find the value of $y=y_{i+1}$ at x_{i+1}, and

$$
h=x_{i+1}-x_{i}
$$

Equation (1) is equated to the first five terms of Taylor series

$$
\begin{gather*}
y_{i+1}=y_{i}+\left.\frac{d y}{d x}\right|_{x_{i}, y_{i}}\left(x_{i+1}-x_{i}\right)+\left.\frac{1}{2!} \frac{d^{2} y}{d x^{2}}\right|_{x_{i}, y_{i}}\left(x_{i+1}-x_{i}\right)^{2}+\left.\frac{1}{3!} \frac{d^{3} y}{d x^{3}}\right|_{x_{i}, y_{i}}\left(x_{i+1}-x_{i}\right)^{3} \tag{2}\\
+\left.\frac{1}{4!} \frac{d^{4} y}{d x^{4}}\right|_{x_{i}, y_{i}}\left(x_{i+1}-x_{i}\right)^{4}
\end{gather*}
$$

Knowing that $\frac{d y}{d x}=f(x, y)$ and $x_{i+1}-x_{i}=h$

$$
\begin{equation*}
y_{i+1}=y_{i}+f\left(x_{i}, y_{i}\right) h+\frac{1}{2!} f^{\prime}\left(x_{i}, y_{i}\right) h^{2}+\frac{1}{3!} f^{\prime \prime}\left(x_{i}, y_{i}\right) h^{3}+\frac{1}{4!} f^{\prime \prime \prime}\left(x_{i}, y_{i}\right) h^{4} \tag{3}
\end{equation*}
$$

Based on equating Equation (2) and Equation (3), one of the popular solutions used is

$$
\begin{align*}
& y_{i+1}=y_{i}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) h \tag{4}\\
& k_{1}=f\left(x_{i}, y_{i}\right) \tag{5a}\\
& k_{2}=f\left(x_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{1} h\right) \tag{5b}\\
& k_{3}=f\left(x_{i}+\frac{1}{2} h, y_{i}+\frac{1}{2} k_{2} h\right) \tag{5c}\\
& k_{4}=f\left(x_{i}+h, y_{i}+k_{3} h\right) \tag{5d}
\end{align*}
$$

Example 3

A ball at 1200 K is allowed to cool down in air at an ambient temperature of 300 K . Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by

$$
\frac{d \theta}{d t}=-2.2067 \times 10^{-12}\left(\theta^{4}-81 \times 10^{8}\right), \theta(0)=1200 \mathrm{~K}
$$

where θ is in K and t in seconds. Find the temperature at $t=480$ seconds using RungeKutta 4th order method. Assume a step size of $h=240$ seconds.

Solution

$$
\begin{aligned}
& \frac{d \theta}{d t}=-2.2067 \times 10^{-12}\left(\theta^{4}-81 \times 10^{8}\right) \\
& f(t, \theta)=-2.2067 \times 10^{-12}\left(\theta^{4}-81 \times 10^{8}\right) \\
& \theta_{i+1}=\theta_{i}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) h
\end{aligned}
$$

For $i=0, t_{0}=0, \theta_{0}=1200 \mathrm{~K}$

$$
\begin{aligned}
k_{1}= & f\left(t_{0}, \theta_{0}\right) \\
& =f(0,1200) \\
& =-2.2067 \times 10^{-12}\left(1200^{4}-81 \times 10^{8}\right) \\
& =-4.5579
\end{aligned}
$$

$$
k_{2}=f\left(t_{0}+\frac{1}{2} h, \theta_{0}+\frac{1}{2} k_{1} h\right)
$$

$$
=f\left(0+\frac{1}{2}(240), 1200+\frac{1}{2}(-4.5579) \times 240\right)
$$

$$
=f(120,653.05)
$$

$$
=-2.2067 \times 10^{-12}\left(653.05^{4}-81 \times 10^{8}\right)
$$

$$
=-0.38347
$$

$$
k_{3}=f\left(t_{0}+\frac{1}{2} h, \theta_{0}+\frac{1}{2} k_{2} h\right)
$$

$$
=f\left(0+\frac{1}{2}(240), 1200+\frac{1}{2}(-0.38347) \times 240\right)
$$

$$
=f(120,1154.0)
$$

$$
=-2.2067 \times 10^{-12}\left(1154.0^{4}-81 \times 10^{8}\right)
$$

$$
=-3.8954
$$

$$
k_{4}=f\left(t_{0}+h, \theta_{0}+k_{3} h\right)
$$

$$
=f(0+240,1200+(-3.894) \times 240)
$$

$$
=f(240,265.10)
$$

$$
=-2.2067 \times 10^{-12}\left(265.10^{4}-81 \times 10^{8}\right)
$$

$$
\begin{aligned}
& =0.0069750 \\
\theta_{1} & =\theta_{0}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) h \\
& =1200+\frac{1}{6}(-4.5579+2(-0.38347)+2(-3.8954)+(0.069750)) 240 \\
& =1200+(-2.1848) \times 240 \\
& =675.65 \mathrm{~K}
\end{aligned}
$$

θ_{1} is the approximate temperature at

$$
\begin{aligned}
t & =t_{1} \\
& =t_{0}+h \\
& =0+240 \\
& =240 \\
\theta_{1} & =\theta(240) \\
& \approx 675.65 \mathrm{~K}
\end{aligned}
$$

For $i=1, t_{1}=240, \theta_{1}=675.65 \mathrm{~K}$

$$
\begin{aligned}
k_{1} & =f\left(t_{1}, \theta_{1}\right) \\
& =f(240,675.65) \\
& =-2.2067 \times 10^{-12}\left(675.65^{4}-81 \times 10^{8}\right) \\
& =-0.44199
\end{aligned}
$$

$$
k_{2}=f\left(t_{1}+\frac{1}{2} h, \theta_{1}+\frac{1}{2} k_{1} h\right)
$$

$$
=f\left(240+\frac{1}{2}(240), 675.65+\frac{1}{2}(-0.44199) 240\right)
$$

$$
=f(360,622.61)
$$

$$
=-2.2067 \times 10^{-12}\left(622.61^{4}-81 \times 10^{8}\right)
$$

$$
=-0.31372
$$

$$
k_{3}=f\left(t_{1}+\frac{1}{2} h, \theta_{1}+\frac{1}{2} k_{2} h\right)
$$

$$
=f\left(240+\frac{1}{2}(240), 675.65+\frac{1}{2}(-0.31372) \times 240\right)
$$

$$
=f(360,638.00)
$$

$$
=-2.2067 \times 10^{-12}\left(638.00^{4}-81 \times 10^{8}\right)
$$

$$
=-0.34775
$$

$$
k_{4}=f\left(t_{1}+h, \theta_{1}+k_{3} h\right)
$$

$$
=f(240+240,675.65+(-0.34775) \times 240)
$$

$$
=f(480,592.19)
$$

$$
=2.2067 \times 10^{-12}\left(592.19^{4}-81 \times 10^{8}\right)
$$

$$
=-0.25351
$$

$$
\begin{aligned}
\theta_{2} & =\theta_{1}+\frac{1}{6}\left(k_{1}+2 k_{2}+2 k_{3}+k_{4}\right) h \\
& =675.65+\frac{1}{6}(-0.44199+2(-0.31372)+2(-0.34775)+(-0.25351)) \times 240 \\
& =675.65+\frac{1}{6}(-2.0184) \times 240 \\
& =594.91 \mathrm{~K}
\end{aligned}
$$

θ_{2} is the approximate temperature at

$$
\begin{aligned}
t & =t_{2} \\
& =t_{1}+h \\
& =240+240 \\
& =480 \\
\theta_{2} & =\theta(480) \\
& \approx 594.91 \mathrm{~K}
\end{aligned}
$$

Figure 1 compares the exact solution with the numerical solution using the Runge-Kutta 4th order method with different step sizes.

Figure 1 Comparison of Runge-Kutta 4th order method with exact solution for different step sizes.

Table 1 and Figure 2 show the effect of step size on the value of the calculated temperature at $t=480$ seconds.

Table 1 Value of temperature at time, $t=480$ s for different step sizes

Step size, h	$\theta(480)$	E_{t}	$\left\|\varepsilon_{t}\right\| \%$
480	-90.278	737.85	113.94
240	594.91	52.660	8.1319
120	646.16	1.4122	0.21807
60	647.54	0.033626	0.0051926
30	647.57	0.00086900	0.00013419

Figure 2 Effect of step size in Runge-Kutta 4th order method.
In Figure 3, we are comparing the exact results with Euler's method (Runge-Kutta 1st order method), Heun's method (Runge-Kutta 2nd order method), and Runge-Kutta 4th order method.
The formula described in this chapter was developed by Runge. This formula is same as Simpson's $1 / 3$ rule, if $f(x, y)$ were only a function of x. There are other versions of the $4^{\text {th }}$ order method just like there are several versions of the second order methods. The formula developed by Kutta is

$$
\begin{equation*}
y_{i+1}=y_{i}+\frac{1}{8}\left(k_{1}+3 k_{2}+3 k_{3}+k_{4}\right) h \tag{6}
\end{equation*}
$$

where

$$
\begin{align*}
& k_{1}=f\left(x_{i}, y_{i}\right) \tag{7a}\\
& k_{2}=f\left(x_{i}+\frac{1}{3} h, y_{i}+\frac{1}{3} h k_{1}\right) \tag{7b}\\
& k_{3}=f\left(x_{i}+\frac{2}{3} h, y_{i}-\frac{1}{3} h k_{1}+h k_{2}\right) \tag{7c}\\
& k_{4}=f\left(x_{i}+h, y_{i}+h k_{1}-h k_{2}+h k_{3}\right) \tag{7d}
\end{align*}
$$

This formula is the same as the Simpson's $3 / 8$ rule, if $f(x, y)$ is only a function of x.

Figure 3 Comparison of Runge-Kutta methods of $1^{\text {st }}$ (Euler), $2^{\text {nd }}$, and $4^{\text {th }}$ order.

Reference

ORDINARY DIFFERENTIAL EQUATIONS	
Topic	Runge-Kutta 4th order method
Summary	Textbook notes on the Runge-Kutta 4th order method for solving ordinary differential equations.
Major	General Engineering
Authors	Autar Kaw
Last Revised	April 11, 2022

